
remote sensing

Article

A Novel OpenMVS-Based Texture Reconstruction
Method Based on the Fully Automatic Plane
Segmentation for 3D Mesh Models

Shenhong Li 1,† , Xiongwu Xiao 1,2,*,† , Bingxuan Guo 1,2,† and Lin Zhang 1

1 State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing,
Wuhan University, Wuhan 430079, China; shenhonglee@whu.edu.cn (S.L.); 00201550@whu.edu.cn (B.G.);
lynnzhang@whu.edu.cn (L.Z.)

2 Collaborative Innovation Center for Geospatial Technology, Wuhan 430079, China
* Correspondence: xwxiao@whu.edu.cn; Tel.: +86-186-0276-2010
† These authors contributed equally to this work.

Received: 17 October 2020; Accepted: 27 November 2020; Published: 28 November 2020 ����������
�������

Abstract: The Markov Random Field (MRF) energy function, constructed by existing OpenMVS-based
3D texture reconstruction algorithms, considers only the image label of the adjacent triangle face
for the smoothness term and ignores the planar-structure information of the model. As a result,
the generated texture charts results have too many fragments, leading to a serious local miscut and
color discontinuity between texture charts. This paper fully utilizes the planar structure information
of the mesh model and the visual information of the 3D triangle face on the image and proposes
an improved, faster, and high-quality texture chart generation method based on the texture chart
generation algorithm of the OpenMVS. This methodology of the proposed approach is as follows:
(1) The visual quality on different visual images of each triangle face is scored using the visual
information of the triangle face on each image in the mesh model. (2) A fully automatic Variational
Shape Approximation (VSA) plane segmentation algorithm is used to segment the blocked 3D mesh
models. The proposed fully automatic VSA-based plane segmentation algorithm is suitable for
multi-threaded parallel processing, which solves the VSA framework needed to manually set the
number of planes and the low computational efficiency in a large scene model. (3) The visual quality
of the triangle face on different visual images is used as the data term, and the image label of adjective
triangle and result of plane segmentation are utilized as the smoothness term to construct the MRF
energy function. (4) An image label is assigned to each triangle by the minimizing energy function.
A texture chart is generated by clustering the topologically-adjacent triangle faces with the same image
label, and the jagged boundaries of the texture chart are smoothed. Three sets of data of different
types were used for quantitative and qualitative evaluation. Compared with the original OpenMVS
texture chart generation method, the experiments show that the proposed approach significantly
reduces the number of texture charts, significantly improves miscuts and color differences between
texture charts, and highly boosts the efficiency of VSA plane segmentation algorithm and OpenMVS
texture reconstruction.

Keywords: 3D texture reconstruction; fully automatic mesh plane segmentation; image scoring;
texture charts optimization

1. Introduction

Over the last two decades, 3D modeling from low-altitude oblique images has been used in a wide
range of applications, including urban planning, tourism, and computer vision. 3D image-modeling

Remote Sens. 2020, 12, 3908; doi:10.3390/rs12233908 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0002-0436-2768
https://orcid.org/0000-0002-3035-7727
https://orcid.org/0000-0002-5565-1033
http://dx.doi.org/10.3390/rs12233908
http://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/2072-4292/12/23/3908?type=check_update&version=2

Remote Sens. 2020, 12, 3908 2 of 21

technology primarily involves generating two kinds of reconstruction, the 3D model object [1–5] and its
texture. To improve the visual realism of the model, the former increases the complexity of the model
object, while the latter improves the precision of the texture mapping. Without increasing the model’s
geometric complexity, accurate and reliable texture reconstruction is essential to achieve visual realism.
Many sophisticated methods have been proposed for texture reconstruction. However, local miscuts
and color discontinuity caused by vast texture chart fragments continue to be major challenges in the
realistic texturing of models.

The texture chart is the basic unit of texture reconstruction, which is a connected region of the
triangle mesh [6–8], and its main task is to map the model surface into a 2D image domain. Texture chart
can establish the index relationship between the triangle face in the mesh model and texture image
corresponding to the texture chart. The texture information of all faces in a texture chart comes from the
same image. Color miscuts and discontinuity between the texture chart will cause a visual seam-line.
The seam-line of adjacent texture charts has a different slope and texture scale in images, resulting in
the inaccurate initial value of the color adjustment algorithm and influencing the model’s rendering
effect at the texture chart boundary. The problem becomes more evident as the number of texture
charts increases.

Texture reconstruction is the process of calculating and executing the image-to-geometry
registration, which generally includes multiple techniques, such as mesh segmentation,
texture transferring, and correction and optimization. Mesh segmentation generates texture charts,
which is crucial in 3D texture reconstruction and will directly affect subsequent steps. Most texture
chart generation approaches use the MRF energy function to assign an image label for each triangle face.
Then, the topologically adjacent triangle faces with the same label are aggregated into texture
charts [7,9–14]. The energy function contains the data term and the smoothness term. The main purpose
of the data term is to select a high-resolution image (the image clarity) and reduce chart-to-chart
miscuts to a certain extent. Intuitively, the purpose of the smoothness term is to reduce the number
of texture charts and the overall color discontinuity, which can effectively improve the efficiency of
subsequent texture mapping steps, and even have a better promotion effect on the future application
of real-time dynamic local texture mapping visualization (3D texture model visualization). In addition,
it can minimize the sampling error of the texture chart boundary seam-line to a certain extent.

The plane is basic geometric structure information in the model. Triangle faces in the same plane
are easier to maintain a similar visual quality on the same image. In this paper, the plane is used as
a constraint condition to limit the results of texture chart generation. Many scholars [15–19] introduced
the Variational Shape Approximation (VSA) framework, which segments the input mesh surface
into planar charts. The quality of the segmentation is measured by the sum of the derivation of each
chart from its corresponding planar proxy. The VSA framework needs to manually set the number
of charts, which is easy to do for small data models (such as Computer-Aided Design (CAD) parts)
but not for large data models (such as an entire city). For each model, the number of texture charts
required is different. The VSA results lack image information and cannot be used directly in the texture
reconstruction process.

Open Multi-View Stereovision (OpenMVS) [20] is an open-source 3D reconstruction program
that uses MRF energy function in texture reconstruction. This paper fully utilizes the planar structure
information of the mesh model and the visual information of the 3D triangle face on the image
and provides an improved, faster, and high-quality texture chart generation method based on the
OpenMVS texture chart generation algorithm. Improvements include: adding improved VSA plane
segmentation, modifying the smoothness term of the MRF energy function, and optimizing the
boundary seam-line problem of texture charts. Using the method proposed in this paper, the number of
generated texture chart fragments greatly reduces, which will help solve the problem of miscutting and
large color discontinuity between texture charts, and will help to improve the efficiency of subsequent
texture mapping steps and the visual expression of 3D texture models. Compared with the original
OpenMVS texture chart generation method, this paper’s method achieves the following three goals:

Remote Sens. 2020, 12, 3908 3 of 21

(1) improving the operating efficiency of the OpenMVS texture chart generation method to a certain
extent; (2) reducing the number of texture charts (it helps ameliorate the problem by miscuts and large
color discontinuity between texture charts); (3) to a certain extent, minimizing the sampling error of
the boundary seam-line of texture charts.

The remainder of this paper is organized as follows. Section 2 introduces the related work of texture
chart generation. Section 3 describes the texture reconstruction method of OpenMVS. In Section 4,
we explain our proposed improved texture reconstruction method based on the block VSA fully
automatic plane segmentation algorithm. Experiments and discussion are described and analyzed in
Section 5. Conclusions are drawn in Section 6.

2. Related Works

2.1. 3D Texture Reconstruction

Blending-based method: It is the simplest method of texture mapping. Bi et al. [7], Callieri et al. [21],
and Hoegner et al. [22] projected the captured images onto the surface of the geometric model according
to the intrinsic and extrinsic orientation parameters of the camera and then merged all the images to
obtain the final texture image. This method is suitable for processing close-range and small-range
models, such as indoor scenes and small objects. It requires high calculation accuracy. The blurring
and ghosting will easily emerge if the recovered camera poses or the 3D geometry model is slightly
inaccurate. Besides, the process of model subdivision and model size in different perspectives also
affect the texture reconstruction effect.

Parameterization-based method is the process of segmenting the model surface under certain
rules (equal-area mapping, conformal mapping, minimum deformation [8,23–25]) and mapping the 3D
mesh model to the 2D texture image domain. It computes the texture coordinate for each triangle face.
This method generates small amounts of texture charts, but the 2D texture image domain is deformed
compared to the original image, which will inevitably cause the loss of texture information and is
not conducive to improving the texture reconstruction effect. Moreover, the triangle face in the same
texture chart is invisible or has poor visual quality on the same image. Other standards (such as normal
vector [26], area of the triangle face projected on the image [27]) are still required to assign an image
label for each triangle face.

Projection-based method is projective texture mapping, which associates each triangle face with
one image label, and then selects the topologically-adjacent triangle face with the same image label
to form a texture chart. Lempitsky et al. [28] first proposed to use the MRF energy function to select
an optimal image for each triangle face. On this basis, Fu et al. [29] and Li et al. [30] improved the data
term of the energy function, and the image clarity was used as the value of the data term. Yang et al. [31]
sampled the image sequence by using the spatio-temporal adaptive method. This method is a projection
transformation from the model surface to the input image, which constitutes the optimal and most
natural mapping. Compared with the blending-based method and parameterization-based method,
the ghosting and the loss of texture information caused by the deformation are avoided.

The MRF energy function can avoid the discretization of label selection to a certain extent.
However, the current smoothness terms of the MRF energy function are not fully considered, which will
still result in a large number of texture chart fragments. Furthermore, there are generally serious local
miscuts and color differences between texture charts, which reduces the execution efficiency of the
texture mapping process.

2.2. Plane Structure Feature Segmentation

Plane structure feature segmentation is to segment the mesh model into planes based on the
geometric attribute of the model.

The region growing approach is one of the most widely used segmentation methods.
This method [32–36] selects a set of seed faces under certain rules and then grows around each

Remote Sens. 2020, 12, 3908 4 of 21

seed face until all faces are assigned to a single region. When expanding a region, the local surface
features are the main criteria. This method can separate the model well along high curvatures, but for
surfaces with smooth curvatures (e.g., flat ellipse), this approach causes excessive planes.

The hierarchical approach comprises two main techniques: One way is the bottom-up region
merging method [37–40]. This method assigns each face as a chart. In each step, a pair of adjacent
charts with the least merging error is merged to form a new chart. The steps are repeated until the stop
merging criteria are met. The merging criteria usually make use of the angle of the region normal vector,
as proposed by Garland et al. [41]. This approach may encounter problems when blending charts
with two smooth surfaces, merged in the early stages. Another technique is the gradual subdivision
from top to bottom. Splitting algorithms [42,43] are based on the minima rule and part salience theory.
The feature curves on mesh surfaces are first detected and used as segmentation criteria. Bi et al. [7],
Kaiser et al. [44], and Yi et al. [45] defined various metrics for different application scenarios and
subdivided them based on Cheng’s results. Since this approach tends to subdivide meshes in the
concave region, many meaningful parts may be over-segmented.

Both the region growing approach and the hierarchical approach essentially belong to the same
type of algorithm, where once the segmentation is done for a triangle face, it will not be changed in
the subsequent process. However, mesh segmentation can also be treated as an energy minimization
problem, where an energy function is defined and optimized for the segmentation. The planarity
of the surface chart is usually used as error metrics to define the energy functions [16,17,46,47] in
texture reconstruction. Because of its optimization nature, this method is often referred to as the
variational method. Generally, the variational method provides better segmentation quality than the
other approach.

The variational approach. Cohen-Steiner et al. [16] firstly proposed a VSA framework with
minimal approximation errors. This framework uses the angle or distance between the face and the
plane as the error term, and consistent energy minimization is applied to drive down the approximation
error. A distortion minimization flooding algorithm is designed to keep the connectivity for each
region. For different application scenarios, many types of surface element features were also introduced
to extend this segmentation method. Kaiser et al. [44], Quan et al. [48], and Simari et al. [49] used the
ellipsoid surface as an approximate plane to segment the ellipsoid area in the model by minimizing
combined energy functions. Sun et al. [47], Wu et al. [50], and Thul et al. [51] also adopted a similar
method and introduced spheres, cylinders, and rolling spheres as several basic approximate shapes.
These methods have achieved good results in fitting known planes, but there may be under-segmenting
or over-segmenting for different types of surface elements. Moreover, because this approach needs to
manually set the number of charts, an automated setting method needs to be incorporated when used
in urban texture reconstruction to provide automatic segmentation.

3. OpenMVS Texture Reconstruction Method

The texture reconstruction method of OpenMVS is based on the MRF energy function [52].
The energy function E contains two parts: data term Edata and smoothness term Esmooth. The data term
Edata prefers high-quality views (visual quality) for texturing a face. The scoring formula for visual
quality is expressed in Equation (1):

Ql(fi) =
Ai
ai
×

ai∑
j=1

Gradi j, (1)

where Ai is the area occupied by the faces fi projected on the image; ai is the number of all grid points
obtained by rasterizing the projection result of fi; Gradi j is the gradient value of each grid point of fi on
the image labeled l; and Ql(fi) is the score of the fi on the image labeled l.

The smoothness term Esmooth minimizes seam (edges between faces textured with different images)
visibility. The Esmooth value is determined by the image label selected by the adjacent face. If the same

Remote Sens. 2020, 12, 3908 5 of 21

image is selected for adjacent triangles, Esmooth value is 0, and if different images are selected for the
adjacent faces, Esmooth value is infinite value.

At last, the energy function E is minimized by graph-cut to assign the image label for each
face, and the topologically adjacent triangles with the same label are aggregated into a texture chart.
In addition, OpenMVS used the MVE‘s [12] method to adjust the texture chart color and packed the
image information corresponding to the texture chart to output the texture image.

4. Improved Texture Reconstruction Method Based on the Fully automatic Plane Segmentation

This paper proposes an improved OpenMVS texture chart generation algorithm. Improvements
include: (1) adding a fully automatic VSA-based plane segmentation algorithm for blocked 3D mesh
models, which uses the degree of planar approximate error change as the standard for fully-automatic
plane segmentation and realizes the multi-threaded parallel processing of the VSA algorithm by
partition and merging the meshes after plane segmentation; (2) modifying the smoothness term of the
MRF energy function, which combines the planar-structure information of the mesh model and the
visual information to generate texture chart; and, (3) providing strategies for optimizing the jagged
boundary problem of the texture chart. The flowchart of our algorithm is shown in Figure 1.

Remote Sens. 2020, 12, 3908 5 of 21

addition, OpenMVS used the MVE‘s [12] method to adjust the texture chart color and packed the
image information corresponding to the texture chart to output the texture image.

4. Improved Texture Reconstruction Method Based on the Fully automatic Plane Segmentation

This paper proposes an improved OpenMVS texture chart generation algorithm. Improvements
include: (1) adding a fully automatic VSA-based plane segmentation algorithm for blocked 3D mesh
models, which uses the degree of planar approximate error change as the standard for fully-
automatic plane segmentation and realizes the multi-threaded parallel processing of the VSA
algorithm by partition and merging the meshes after plane segmentation; (2) modifying the
smoothness term of the MRF energy function, which combines the planar-structure information of
the mesh model and the visual information to generate texture chart; and, (3) providing strategies for
optimizing the jagged boundary problem of the texture chart. The flowchart of our algorithm is
shown in Figure 1.

4.1 A fully automatic VSA-based plane segmentation algorithm
for blocked 3D mesh Models

Mesh ,
Images

and
orientation
elements

M
es

h
pa

rt
iti

on

4.1.2 Fully automatic plane segmentation
algorithm based on the VSA framework

M
er

ge
 th

e
m

es
he

s
af

te
r p

la
ne

se

gm
en

ta
tio

n

 Texture charts
generation based

on improved MRF
energy function

Score the visual quality of each triangle face

Texture
chart

pack and
output

...
4.3 Texture

charts
boundary
smoothing

4.1.2 Fully automatic plane segmentation
algorithm based on the VSA framework

4.1.2 Fully automatic plane segmentation
algorithm based on the VSA framework

4.1.3 A fast VSA plane segmentation method
suitable for multi-threaded parallel processing

4.2 Texture chart
generation method

with the mesh planar-
structure information

Figure 1. Flowchart of improved texture reconstruction method based on the fully automatic plane
segmentation.

4.1. A Fully Automatic VSA-Based Plane Segmentation Algorithm for Blocked 3D Mesh Models

In this step, the VSA framework is adopted as the basic method for extracting the model’s planar
structural feature. The efficiency and effects of the VSA framework are improved by analyzing the
deficiencies of the framework in processing models.

4.1.1. The VSA Framework

The overall segmentation strategy of the VSA framework includes two steps: First, the entire
model is taken as the initial plane, and the framework is used in calculating the approximate error of
the initial plane. The approximate error of the plane is the accumulation of the approximate error
from each face to the planar proxy. The seed face of the plane is the face with the smallest
approximation error. Yan et al. [17] provided two approximation error calculation methods (ܮଶ, ܮଶ,ଵ),
which are based on the distance from the face ௜ܶ to the planar proxy ܲ and the angle between the
normal vectors of the face and planar proxy. Given a planar surface represented by ܲ , ࢄ)= |ࡺ| ,(ࡺ = 0 refers to the plane passing through ࢄ of normal ࡺ. The normal of the plane is the
normal of the corresponding seed face. The error function for a plane is expressed as: ܮଶ(௜ܶ , ܲ) = 16 (݀ଵଶ + ݀ଶଶ + ݀ଷଶ + ݀ଵ݀ଶ + ݀ଵ݀ଷ + ݀ଶ݀ଷ)| ௜ܶ| (2) ܮଶ,ଵ(௜ܶ , ܲ) = ࢏࢔‖ − |ଶ‖࢏ࡺ ௜ܶ|, (3)

where ݀ଵ, ݀ଶ, ݀ଷ are the orthogonal distances from three vertices of ௜ܶ to the plane. ࢏࢔ and | ௜ܶ| are
the normal vector and area of each face, and ௜ܰ is the normal vector of a planar proxy.

Figure 1. Flowchart of improved texture reconstruction method based on the fully automatic
plane segmentation.

4.1. A Fully Automatic VSA-Based Plane Segmentation Algorithm for Blocked 3D Mesh Models

In this step, the VSA framework is adopted as the basic method for extracting the model’s planar
structural feature. The efficiency and effects of the VSA framework are improved by analyzing the
deficiencies of the framework in processing models.

4.1.1. The VSA Framework

The overall segmentation strategy of the VSA framework includes two steps: First, the entire
model is taken as the initial plane, and the framework is used in calculating the approximate error of the
initial plane. The approximate error of the plane is the accumulation of the approximate error from each
face to the planar proxy. The seed face of the plane is the face with the smallest approximation error.
Yan et al. [17] provided two approximation error calculation methods (L2, L2,1), which are based on
the distance from the face Ti to the planar proxy P and the angle between the normal vectors of the
face and planar proxy. Given a planar surface represented by P = X , N, |N| = 0 refers to the plane
passing through X of normal N. The normal of the plane is the normal of the corresponding seed face.
The error function for a plane is expressed as:

Remote Sens. 2020, 12, 3908 6 of 21

L2(Ti , P) =
1
6

(
d2

1 + d2
2 + d2

3 + d1d2 + d1d3 + d2d3
)
|Ti| (2)

L2,1(Ti , P) = ‖ni −Ni‖
2
|Ti|, (3)

where d1, d2, d3 are the orthogonal distances from three vertices of Ti to the plane. ni and |Ti| are the
normal vector and area of each face, and Ni is the normal vector of a planar proxy.

Next, the face with the largest error of all the planes is selected as a new seed face, and the
Distortion-minimizing Flooding method is used to grow around the seed faces of the mesh. This step
is repeated until the number of planes reaches a pre-specified tolerance (user manual setting).
Since the seed face represents the proxy plane, all the approximate errors need to be recalculated
after a new proxy plane is added. The seed face would be updated using the smallest error face for
each plane.

4.1.2. Fully Automatic Plane Segmentation Algorithm Based on the VSA Framework

The number of planes in the VSA framework needs to be set manually. Achieving great results
would be difficult when the set number of planes is insufficient. The number of planes required for
different models varies considerably, and the fixed number of planes lacks versatility. This study
proposes a fully automatic plane segmentation algorithm based on the VSA framework, which uses
the change in the plane error Vdrop as the stopping segmentation criteria after adding a new plane.
We take L2,1 as the error function for the plane. Since the images are taken by oblique photography,
close faces are more likely to maintain a similar degree of deformation on the same image. The texture
charts should be approximate to a connected plane. Mathematically, the computational cost of the
approximate procedure using the normal vector is smaller than the distance. The formula Vdrop is
defined as:

Vdrop = Errordrop(i) − Errordrop(j)

Errordrop(i) =
Error(i)
Errorinit

 , (4)

where Errordrop(i) and Errordrop(j) are the error drop ratio before and after adding a new plane.
The value of Errordrop(i) is the ratio of Error(i) to Errorinit, where Error(i) is the error sum of all
current planes and Errorinit is the error of the initial plane (same as Errordrop(j)). Vdrop is the difference
between the Errordrop(i) and Errordrop(j). The smaller Vdrop indicates that the segmentation result is
more approximate a plane. With the number of planes increasing, Errordrop(i) and Errordrop(j) gradually
decrease. Vdrop declines until it is less than the threshold (1× 10−4 in all our experiments), which then
stops the addition of new planes. At this point, all the planes have been extracted, and the mesh is
segmented by the planes. The segmentation result is shown in Figure 2. Different planes are marked
with different colors in each picture. Figure 2a shows the raw RGB model. Figure 2b displays the
segmentation results when using a fixed value of 500. Some objects are not segmented, such as roof
and plants on the ground. Figure 2c presents the results when the planes are dynamically increased.
Unlike in Figure 2b, the main objects are extracted appropriately.

4.1.3. A Fast VSA Plane Segmentation Method Suitable for Multi-Threaded Parallel Processing

In the segmentation process, each time a new plane is added, the errors of all planes need to be
recalculated. Parallel processing is not suitable for this algorithm, which means that the computer
is not able to perform at its maximum performance. To deal with parallelism, the model is split into
multiple blocks on the XOY plane, and then the algorithm uses multi-threading to fully automatically
segment the planes of blocks at the same time. The range of each block is approximately equal, and the
number of blocks is set by the user or can use the default value of 9. As shown in Figure 3, the model is
divided into nine blocks.

Remote Sens. 2020, 12, 3908 7 of 21

Remote Sens. 2020, 12, 3908 6 of 21

Next, the face with the largest error of all the planes is selected as a new seed face, and the
Distortion-minimizing Flooding method is used to grow around the seed faces of the mesh. This step
is repeated until the number of planes reaches a pre-specified tolerance (user manual setting). Since the
seed face represents the proxy plane, all the approximate errors need to be recalculated after a new
proxy plane is added. The seed face would be updated using the smallest error face for each plane.

4.1.2. Fully Automatic Plane Segmentation Algorithm Based on the VSA Framework

The number of planes in the VSA framework needs to be set manually. Achieving great results
would be difficult when the set number of planes is insufficient. The number of planes required for
different models varies considerably, and the fixed number of planes lacks versatility. This study
proposes a fully automatic plane segmentation algorithm based on the VSA framework, which uses
the change in the plane error ௗܸ௥௢௣ as the stopping segmentation criteria after adding a new plane.
We take ܮଶ,ଵ as the error function for the plane. Since the images are taken by oblique photography,
close faces are more likely to maintain a similar degree of deformation on the same image. The texture
charts should be approximate to a connected plane. Mathematically, the computational cost of the
approximate procedure using the normal vector is smaller than the distance. The formula ௗܸ௥௢௣ is
defined as:

ௗܸ௥௢௣ = (࢏)ௗ௥௢௣ݎ݋ݎݎܧ − (࢏)ௗ௥௢௣ݎ݋ݎݎܧ(࢐)ௗ௥௢௣ݎ݋ݎݎܧ = ௜௡௜௧ݎ݋ݎݎܧ(࢏)ݎ݋ݎݎܧ ቑ , (4)

where ݎ݋ݎݎܧௗ௥௢௣(࢏) and ݎ݋ݎݎܧௗ௥௢௣(࢐) are the error drop ratio before and after adding a new plane.
The value of ݎ݋ݎݎܧௗ௥௢௣(࢏) is the ratio of ݎ݋ݎݎܧ(݅) to ݎ݋ݎݎܧ௜௡௜௧, where ݎ݋ݎݎܧ(݅) is the error sum of
all current planes and ݎ݋ݎݎܧ௜௡௜௧ is the error of the initial plane (same as ݎ݋ݎݎܧௗ௥௢௣(࢐)). ௗܸ௥௢௣ is the
difference between the ݎ݋ݎݎܧௗ௥௢௣(࢏) and ݎ݋ݎݎܧௗ௥௢௣(࢐) . The smaller ௗܸ௥௢௣ indicates that the
segmentation result is more approximate a plane. With the number of planes increasing, ݎ݋ݎݎܧௗ௥௢௣(࢏)
and ݎ݋ݎݎܧௗ௥௢௣(࢐) gradually decrease. ௗܸ௥௢௣ declines until it is less than the threshold (1 × 10ିସ in
all our experiments), which then stops the addition of new planes. At this point, all the planes have
been extracted, and the mesh is segmented by the planes. The segmentation result is shown in Figure
2. Different planes are marked with different colors in each picture. Figure 2a shows the raw RGB
model. Figure 2b displays the segmentation results when using a fixed value of 500. Some objects are
not segmented, such as roof and plants on the ground. Figure 2c presents the results when the planes
are dynamically increased. Unlike in Figure 2b, the main objects are extracted appropriately.

(a) Raw RGB model

(b) 500 planes

(c) 1292 planes

Figure 2. Segmentation results were generated by two methods: (a) raw RGB model; (b) fixed the
number of planes; (c) dynamically increasing the plane.

4.1.3. A Fast VSA Plane Segmentation Method Suitable for Multi-Threaded Parallel Processing

In the segmentation process, each time a new plane is added, the errors of all planes need to be
recalculated. Parallel processing is not suitable for this algorithm, which means that the computer is
not able to perform at its maximum performance. To deal with parallelism, the model is split into
multiple blocks on the XOY plane, and then the algorithm uses multi-threading to fully automatically

Figure 2. Segmentation results were generated by two methods: (a) raw RGB model; (b) fixed the
number of planes; (c) dynamically increasing the plane.

Remote Sens. 2020, 12, 3908 7 of 21

segment the planes of blocks at the same time. The range of each block is approximately equal, and
the number of blocks is set by the user or can use the default value of 9. As shown in Figure 3, the
model is divided into nine blocks.

Figure 3. Dividing mesh into nine blocks.

A plane may be split into multiple parts in this method, and the generated planes would be
merged. The merging of adjacent plane is realized by the dual graph. The dual graph is defined by
mapping every plane to a node in the dual graph, and the two dual nodes are connected by an edge if
the corresponding plane is adjacent in the mesh. An edge collapse in this graph will merge two nodes
into one, which corresponds to grouping their associated faces into a single plane. Figure 4 illustrates
an example. In the dual graph, underlying planes are shown in a different color. Figure 4a is a mesh
where each dual node corresponds to a plane. Similar to edge collapse [53], a new vertex is created after
each contraction. The edge is contracted on the top of the graph, and its dual nodes are merged. After a
collapse, the two regions are merged to produce a single region, as shown in Figure 4b.

(a) (b)

Figure 4. Merge plane. Each color represents a plane. (a) The correspondence between the plane and
dual graphs. (b) An edge in the dual graph is collapsed, and the two planes corresponding to the edge
endpoints are merged into a new plane.

For this study, a simple greedy approach is adopted in the merging process, similar to the existing
mesh decimation algorithm. Each edge is assigned a price-value, and the edge with the least price-value
is collapsed in each iteration. The result of the merge should satisfy two objectives: 1) The effect on the
approximate error of the plane should be minimized after merging, and 2) the merged region with a
more regular shape should be prioritized. Thus, the price-value of the edge is defined by: ݎݎܧ൫࢏ࡺ, ࢐൯ࡺ = ,࢏ࡺ௣௟௔௡௘൫ݎݎܧ ࢐൯ࡺ + ,࢏ࡺ௦௛௔௣௘൫ݎݎܧ ࢐൯, (5)ࡺ

where the price-value ࢏ࡺ)ݎݎܧ, (࢐ࡺ is composed of two components: ݎݎܧ௦௛௔௣௘൫࢏ࡺ, ࢐൯ࡺ and ݎݎܧ௣௟௔௡௘(࢏ࡺ, ,࢏ࡺ)௣௟௔௡௘ݎݎܧ The first term .(࢐ࡺ ,in Equation (5) corresponds to the first objective (࢐ࡺ
which measures the change of error before and after the plane merge. It is defined as: ݎݎܧ௣௟௔௡௘(࢏ࡺ, (࢐ࡺ = ݌ܧ − max (࢏࢖ࡱ, ݌ܧ݌ܧ(࢐࢖ࡱ = ෍ ௙೔ܧ

௡
௜ୀ଴ ۙۘۖ

ۖۗ, (6)

where ݌ܧ௜ and ݌ܧ௝ are the errors of planes ݅ and ݆, respectively, and ݌ܧ is the error of the new
plane after plane ݅, and ݆ are merged. The plane error is the sum of the error ܧ௙೔ of each face in the

Figure 3. Dividing mesh into nine blocks.

A plane may be split into multiple parts in this method, and the generated planes would be
merged. The merging of adjacent plane is realized by the dual graph. The dual graph is defined by
mapping every plane to a node in the dual graph, and the two dual nodes are connected by an edge if
the corresponding plane is adjacent in the mesh. An edge collapse in this graph will merge two nodes
into one, which corresponds to grouping their associated faces into a single plane. Figure 4 illustrates
an example. In the dual graph, underlying planes are shown in a different color. Figure 4a is a mesh
where each dual node corresponds to a plane. Similar to edge collapse [53], a new vertex is created
after each contraction. The edge is contracted on the top of the graph, and its dual nodes are merged.
After a collapse, the two regions are merged to produce a single region, as shown in Figure 4b.

Remote Sens. 2020, 12, 3908 7 of 21

segment the planes of blocks at the same time. The range of each block is approximately equal, and
the number of blocks is set by the user or can use the default value of 9. As shown in Figure 3, the
model is divided into nine blocks.

Figure 3. Dividing mesh into nine blocks.

A plane may be split into multiple parts in this method, and the generated planes would be
merged. The merging of adjacent plane is realized by the dual graph. The dual graph is defined by
mapping every plane to a node in the dual graph, and the two dual nodes are connected by an edge if
the corresponding plane is adjacent in the mesh. An edge collapse in this graph will merge two nodes
into one, which corresponds to grouping their associated faces into a single plane. Figure 4 illustrates
an example. In the dual graph, underlying planes are shown in a different color. Figure 4a is a mesh
where each dual node corresponds to a plane. Similar to edge collapse [53], a new vertex is created after
each contraction. The edge is contracted on the top of the graph, and its dual nodes are merged. After a
collapse, the two regions are merged to produce a single region, as shown in Figure 4b.

(a) (b)

Figure 4. Merge plane. Each color represents a plane. (a) The correspondence between the plane and
dual graphs. (b) An edge in the dual graph is collapsed, and the two planes corresponding to the edge
endpoints are merged into a new plane.

For this study, a simple greedy approach is adopted in the merging process, similar to the existing
mesh decimation algorithm. Each edge is assigned a price-value, and the edge with the least price-value
is collapsed in each iteration. The result of the merge should satisfy two objectives: 1) The effect on the
approximate error of the plane should be minimized after merging, and 2) the merged region with a
more regular shape should be prioritized. Thus, the price-value of the edge is defined by: ݎݎܧ൫࢏ࡺ, ࢐൯ࡺ = ,࢏ࡺ௣௟௔௡௘൫ݎݎܧ ࢐൯ࡺ + ,࢏ࡺ௦௛௔௣௘൫ݎݎܧ ࢐൯, (5)ࡺ

where the price-value ࢏ࡺ)ݎݎܧ, (࢐ࡺ is composed of two components: ݎݎܧ௦௛௔௣௘൫࢏ࡺ, ࢐൯ࡺ and ݎݎܧ௣௟௔௡௘(࢏ࡺ, ,࢏ࡺ)௣௟௔௡௘ݎݎܧ The first term .(࢐ࡺ ,in Equation (5) corresponds to the first objective (࢐ࡺ
which measures the change of error before and after the plane merge. It is defined as: ݎݎܧ௣௟௔௡௘(࢏ࡺ, (࢐ࡺ = ݌ܧ − max (࢏࢖ࡱ, ݌ܧ݌ܧ(࢐࢖ࡱ = ෍ ௙೔ܧ

௡
௜ୀ଴ ۙۘۖ

ۖۗ, (6)

where ݌ܧ௜ and ݌ܧ௝ are the errors of planes ݅ and ݆, respectively, and ݌ܧ is the error of the new
plane after plane ݅, and ݆ are merged. The plane error is the sum of the error ܧ௙೔ of each face in the

Figure 4. Merge plane. Each color represents a plane. (a) The correspondence between the plane and
dual graphs. (b) An edge in the dual graph is collapsed, and the two planes corresponding to the edge
endpoints are merged into a new plane.

For this study, a simple greedy approach is adopted in the merging process, similar to the existing
mesh decimation algorithm. Each edge is assigned a price-value, and the edge with the least price-value
is collapsed in each iteration. The result of the merge should satisfy two objectives: (1) The effect on the
approximate error of the plane should be minimized after merging, and (2) the merged region with a
more regular shape should be prioritized. Thus, the price-value of the edge is defined by:

Err
(
Ni, N j

)
= Errplane

(
Ni, N j

)
+ Errshape

(
Ni, N j

)
, (5)

Remote Sens. 2020, 12, 3908 8 of 21

where the price-value Err
(
Ni, N j

)
is composed of two components: Errshape

(
Ni, N j

)
and Errplane

(
Ni, N j

)
.

The first term Errplane
(
Ni, N j

)
in Equation (5) corresponds to the first objective, which measures the

change of error before and after the plane merge. It is defined as:

Errplane
(
Ni, N j

)
=

Ep−max
(
Epi, Ep j

)
Ep

Ep =
n∑

i=0

E fi


, (6)

where Epi and Ep j are the errors of planes i and j, respectively, and Ep is the error of the new plane after
plane i, and j are merged. The plane error is the sum of the error E fi of each face in the plane. The value
of Ep is greater than Epi or Ep j. The larger the value of Ep, the merged result less approximate to a
plane, and Errplane

(
Ni, N j

)
will increase.

The second term Errshape
(
Ni, N j

)
in Equation (5) corresponds to the second objective, which

measures the changes of shape. It is defined as:

Errshape
(
Ni, N j

)
=

Er−max(Eri,Er j)
Er

Er = ρ2

4πω

, (7)

where Eri and Er j are the shape factors of planes i, j, respectively, Er is the shape factor of the merging
planes i and j. Er is the ratio of the squared perimeter ρ2 to the squared perimeter of a circle with
area ω. In the ideal case (r = 1), the plane is a circle. The larger value of r corresponds to the more
irregular plane. To quickly calculate the shape factor, the area and the perimeter of the plane have to be
determined. The area is easy to calculate, which is simply the sum of the area of the constituent planes.
For the perimeter, the values are not additive. In each plane, the perimeter information is recorded
in a dual node. When two planes are merged, the perimeter of the resulting plane is the sum of the
perimeters of the constituent planes minus twice the length of the boundary separating them.

Figure 5 shows the changes of the merged result after the shape factor is added. Each color
represents a plane in each result. In Figure 5b, only the plane error is considered, and the merged result
is irregular. In Figure 5c, the merged result shows a more regular form than Figure 5b, after the shape
factor is added.

Remote Sens. 2020, 12, 3908 8 of 21

plane. The value of 𝐸𝑝 is greater than 𝐸𝑝௜ or 𝐸𝑝௝. The larger the value of 𝐸𝑝, the merged result less
approximate to a plane, and 𝐸𝑟𝑟௣௟௔௡௘(𝑵𝒊, 𝑵𝒋) will increase.

The second term 𝐸𝑟𝑟௦௛௔௣௘൫𝑵𝒊, 𝑵𝒋൯ in Equation (5) corresponds to the second objective, which
measures the changes of shape. It is defined as: 𝐸𝑟𝑟௦௛௔௣௘(𝑵𝒊, 𝑵𝒋) = 𝐸𝑟 − max (𝑬𝒓𝒊, 𝑬𝒓𝒋)𝐸𝑟𝐸𝑟 = 𝜌ଶ4𝜋𝜔 ⎭⎬

⎫, (7)

where 𝐸𝑟௜ and 𝐸𝑟௝ are the shape factors of planes 𝑖, 𝑗, respectively, 𝐸𝑟 is the shape factor of the
merging planes 𝑖 and 𝑗. 𝐸𝑟 is the ratio of the squared perimeter 𝜌ଶ to the squared perimeter of a
circle with area 𝜔. In the ideal case (𝑟 = 1), the plane is a circle. The larger value of 𝑟 corresponds
to the more irregular plane. To quickly calculate the shape factor, the area and the perimeter of the
plane have to be determined. The area is easy to calculate, which is simply the sum of the area of the
constituent planes. For the perimeter, the values are not additive. In each plane, the perimeter
information is recorded in a dual node. When two planes are merged, the perimeter of the resulting
plane is the sum of the perimeters of the constituent planes minus twice the length of the boundary
separating them.

Figure 5 shows the changes of the merged result after the shape factor is added. Each color
represents a plane in each result. In Figure 5b, only the plane error is considered, and the merged
result is irregular. In Figure 5c, the merged result shows a more regular form than Figure 5b, after

(a) (b) (c)
Figure 5. Merging results from different factors. (a) Variational Shape Approximation (VSA) mesh
segmentation; (b) only with approximation error; (c) combined shape factors.

The geometry attribute of the mesh is not altered by this merging algorithm. Each vertex remains
in its original position, and the connectivity of faces is unchanged. Only the number of nodes in the
graph is constantly decreasing. When the minimum price–value of the edge reaches the set threshold,
the merging algorithm stops collapsing, and the merge is completed.

4.2. Texture Chart Generation Method with the Mesh Planar-Structure Information

A texture chart is a set of topologically adjacent faces with the same image label. The result of
the texture chart generation depends on the selected image label for each face. Typically, there is
more than one visual image for each face, and choosing an optimal visual image from all candidate
images for each face is essentially a multi-label graph cut optimization problem. As shown in Figure
6, we constructed an undirected weighted graph 𝐺 of mesh, where the number of nodes and the
number of faces is equal. Each face in the surface model is regarded as a node in graph 𝐺, and the
edges between nodes represent the adjacent relationship between faces. There are k terminal nodes,
with each corresponding to an image in the graph. The edges connecting the terminal node and
common nodes are t-link, which means that the face is visible on this image. Moreover, the edges
connecting the common nodes are n-link, indicating an adjacent relationship between the two faces.

Figure 5. Merging results from different factors. (a) Variational Shape Approximation (VSA) mesh
segmentation; (b) only with approximation error; (c) combined shape factors.

The geometry attribute of the mesh is not altered by this merging algorithm. Each vertex remains
in its original position, and the connectivity of faces is unchanged. Only the number of nodes in the
graph is constantly decreasing. When the minimum price–value of the edge reaches the set threshold,
the merging algorithm stops collapsing, and the merge is completed.

Remote Sens. 2020, 12, 3908 9 of 21

4.2. Texture Chart Generation Method with the Mesh Planar-Structure Information

A texture chart is a set of topologically adjacent faces with the same image label. The result of
the texture chart generation depends on the selected image label for each face. Typically, there is
more than one visual image for each face, and choosing an optimal visual image from all candidate
images for each face is essentially a multi-label graph cut optimization problem. As shown in Figure 6,
we constructed an undirected weighted graph G of mesh, where the number of nodes and the number
of faces is equal. Each face in the surface model is regarded as a node in graph G, and the edges
between nodes represent the adjacent relationship between faces. There are k terminal nodes, with each
corresponding to an image in the graph. The edges connecting the terminal node and common nodes
are t-link, which means that the face is visible on this image. Moreover, the edges connecting the
common nodes are n-link, indicating an adjacent relationship between the two faces. When considering
these edges as pipelines, finding the max flow from one terminal to another terminal is a Max Flow
problem. Liu et al. [54] pointed out that when the n-link edges are located in the max flow and separate
the terminal nodes, the cut of these edges is the minimum cut. Therefore, this becomes a MaxFlow cut
and MinCut problem.

Remote Sens. 2020, 12, 3908 9 of 21

connecting the common nodes are n-link, indicating an adjacent relationship between the two faces.
When considering these edges as pipelines, finding the max flow from one terminal to another
terminal is a Max Flow problem. Liu et al. [54] pointed out that when the n-link edges are located in
the max flow and separate the terminal nodes, the cut of these edges is the minimum cut. Therefore,
this becomes a MaxFlow cut and MinCut problem.

Figure 6. Our multi-labeled graph.

The graph cut energy function is the mathematical expression of the actual problem and
provides the bridge between the graph cut theory and specific problems. The weights of the edges
are determined by the MRF energy function in the graph. Compared with the original MRF energy
function, the mesh model's structural information (plane) is introduced and integrated with the
visual information of the 3D triangle face on the image as the constraint condition of the smoothness
term’s value. Our improved energy function formula is as follows: ܧ(ܲ) = ,ࢌ)ௗ௔௧௔ܧ (࢒ + ,ࢌ)௦௠௢௢௧௛ܧ ,࢒ (࢖ = ෍ ܳ௟(௜݂)௙೔∈ி௔௖௘ + ෍ ܹ൫ ௜݂, ௝݂ , ݈௜, ௝݈ , ,௜݌ ௝൯൛௙೔,௙ೕൟ∈ே݌ (8)

The data item ܧௗ௔௧௔(ࢌ, indicates the possibility of node ௜݂ selecting the image with the label ݈௜ (࢒ . The visual quality ܳ௟(௜݂) of the face on the image is used as the value of the data item. ܧ௦௠௢௢௧௛(݂, ݈, is the smoothness term, which affects the image selection of the adjacent faces. To (݌
ensure that the faces do not deviate too far from the original segmentation plane during the
optimization process, this study also takes the angle between each pair of adjacent nodes ൛ ௜݂, ௝݂ൟ, the
charts that the nodes belong to, and the selected image, as three factors. Different weights ݓ௜ to ܹ൫ ௜݂, ௝݂ , ݈௜, ௝݈ , ,௜݌ .௝൯ were given for the six different cases, as presented in Table 1݌

Table 1. The value of ܧ௦௠௢௢௧௛(ࢌ, ,࢒ .(࢖

Conditions Value ࢏࢒ = ࢏࢖ ࢐࢒ ് ߙ ࢐࢖ ൏ ߙ ଵݓ ݈݁݃݊ܣ ൐ ଶݓ ݈݁݃݊ܣ = ௜݌ ∞ = ଷݓ / ௝݌ = 0 ݈௜ ് ௝݈
௜݌ = ߙ ௝݌ ൏ ߙ ସݓ ݈݁݃݊ܣ ൐ ହݓ ݈݁݃݊ܣ = ௜݌ ∞ ് ଺ݓ / ௝݌ = ∞

Texture mapping should prioritize image quality. When the adjacent faces are on the same chart
and can be captured by the same image (݈௜ = ௝݈, ௜݌ = ଷݓ) ௝), the value of the smoothness term is 0݌ =0). On the contrary, when the adjacent faces are neither in the same plane nor captured by the same
image, the value of the smoothness term is infinite (ݓହ = ∞, ଺ݓ = ∞). If the dihedral angle is greater
than the threshold ݈݁݃݊ܣ (30 degrees in this study) (݌௜ ് ,௝݌ ߙ ൐ the visual quality on the ,(݈݁݃݊ܣ
same image cannot be assured, and the smoothness term is also infinite (ݓଶ = ∞). The above four
cases have fixed parameters, and the optimization effect of the energy function depends on the

Figure 6. Our multi-labeled graph.

The graph cut energy function is the mathematical expression of the actual problem and provides
the bridge between the graph cut theory and specific problems. The weights of the edges are determined
by the MRF energy function in the graph. Compared with the original MRF energy function, the mesh
model’s structural information (plane) is introduced and integrated with the visual information of the
3D triangle face on the image as the constraint condition of the smoothness term’s value. Our improved
energy function formula is as follows:

E(P) = Edata(f , l) + Esmooth(f , l, p) =
∑

fi∈Face

Ql(fi) +
∑
{ fi, f j}∈N

W
(

fi, f j, li, l j, pi, p j
)

(8)

The data item Edata(f , l) indicates the possibility of node fi selecting the image with the label li.
The visual quality Ql(fi) of the face on the image is used as the value of the data item. Esmooth(f , l, p) is
the smoothness term, which affects the image selection of the adjacent faces. To ensure that the faces
do not deviate too far from the original segmentation plane during the optimization process, this study
also takes the angle between each pair of adjacent nodes

{
fi, f j

}
, the charts that the nodes belong to,

and the selected image, as three factors. Different weights wi to W
(

fi, f j, li, l j, pi, p j
)

were given for the
six different cases, as presented in Table 1.

Remote Sens. 2020, 12, 3908 10 of 21

Table 1. The value of Esmooth(f , l, p).

Conditions Value

li = l j
pi , p j

α < Angle w1
α > Angle w2 = ∞

pi = p j / w3 = 0

li , l j
pi = p j

α < Angle w4
α > Angle w5 = ∞

pi , p j / w6 = ∞

Texture mapping should prioritize image quality. When the adjacent faces are on the same chart
and can be captured by the same image (li = l j, pi = p j), the value of the smoothness term is 0 (w3 = 0).
On the contrary, when the adjacent faces are neither in the same plane nor captured by the same image,
the value of the smoothness term is infinite (w5 = ∞, w6 = ∞). If the dihedral angle is greater than the
threshold Angle (30 degrees in this study) (pi , p j, α > Angle), the visual quality on the same image
cannot be assured, and the smoothness term is also infinite (w2 = ∞). The above four cases have fixed
parameters, and the optimization effect of the energy function depends on the settings of w1 and w4.
The optimization of texture charts would eventually affect the display effect. The display effect can be
evaluated by the texture quality of each face and the number of texture charts. In this study, we propose
the use of texture clarity to evaluate the optimized texture quality. Formula Qtex is defined as follows:

Qtex =

∑
fi∈Face Q(fi)

np
, (9)

where Q(fi) is the visual clarity for each face on the specified image after optimization, and np is the
number of texture charts after optimization. As shown in Figure 7, the influence of w1 and w4 on the
optimization effect is tested separately by the control variable method. When w1 = 1, w4 ∈ (0, 100),
the texture visual quality increases rapidly, and the number of texture charts continuously decreases.
When w4 > 100, the optimization effect begins to converge. When w4 = 1, w1 ∈ (0, 10000), the texture
clarity declines slowly, and the number of texture charts gradually increases. The change is not obvious.
When w1 < w4, it would be more advisable to reduce the number of texture charts and improve the
display effect of textures. In this study, we used w1 = 1 and w4 = 100 as the smoothness term’s value.

Remote Sens. 2020, 12, 3908 10 of 21

The display effect can be evaluated by the texture quality of each face and the number of texture
charts. In this study, we propose the use of texture clarity to evaluate the optimized texture quality.
Formula 𝑄௧௘௫ is defined as follows: 𝑄௧௘௫ = ∑ 𝑄(𝑓௜)௙೔∈ி௔௖௘𝑛௣ , (9)

where 𝑄(𝑓௜) is the visual clarity for each face on the specified image after optimization, and 𝑛௣ is
the number of texture charts after optimization. As shown in Figure 7, the influence of 𝑤ଵ and 𝑤ସ
on the optimization effect is tested separately by the control variable method. When 𝑤ଵ = 1,𝑤ସ ∈ (0,100), the texture visual quality increases rapidly, and the number of texture charts continuously
decreases. When 𝑤ସ ൐ 100 , the optimization effect begins to converge. When 𝑤ସ = 1 ， 𝑤ଵ ∈ (0,1 × 10ସ), the texture clarity declines slowly, and the number of texture charts gradually increases.
The change is not obvious. When 𝑤ଵ ൏ 𝑤ସ, it would be more advisable to reduce the number of
texture charts and improve the display effect of textures. In this study, we used 𝑤ଵ = 1 and 𝑤ସ =

(a) Texture clarity (b) Number of texture charts

Figure 7. The influence of 𝑤ଵ, 𝑤ସ on optimization results: (a) fix the values of 𝑤ଵ,𝑤ସ, respectively,
the changes of texture clarity; (b) fix the values of 𝑤ଵ,𝑤ସ, respectively, the change of texture charts’
number.

Moreover, the value of the data item needs to be normalized. This is because the fluctuating
value of the energy is supposed to be in the same order of magnitude in the graph cut problem;
otherwise, the expected result and the abstract model will intensify the difference. Here, we adopted
the value of 99.5% for the normalization.

For this study, we used the 𝛼-𝛽 𝑠𝑤𝑎𝑝 optimization algorithm to solve the energy function. This
algorithm can split the initially labeled data set and transform the multidimensional undirected
graph into a two-dimensional simple undirected single graph, thereby avoiding the uncertainty of t-
link and n-link capacity [55]. The basic idea behind this algorithm is that by exchanging α and β label
sets, a new label set 𝐿௡௘௪ can be formed by assuming that there are two labels 𝛼 and 𝛽 in the
known label set 𝐿 and the segmented set 𝑃. To ensure that the cut in the Graph-Cuts is smaller than
the original ones in the new label set, the algorithm is iterated until the minimum cut in the Graph-
Cuts appears. The label set 𝐿 that splits the set 𝑃 can be expressed as 𝑃௟ = ൛𝑝 ∈ 𝑃ห𝑙௣ = 𝑙ൟ, where 𝐿
is the definitional domain of the label set, and 𝑃௟ = ൛𝑝 ∈ 𝑃ห𝑙௣ = 𝑙ൟ is the subset of label 𝐿 in the set 𝑃. The 𝛼-𝛽 𝑠𝑤𝑎𝑝 is applied to a given set of labels 𝛼 and 𝛽, indicating the exchange of 𝑃ఈ and 𝑃ఉ
and forms a new segmented set 𝑃௡௘௪. The remaining set of 𝛼 and 𝛽, which is not contained in label 𝐿, remains unchanged.

4.3. Texture Charts Boundary Smoothing

The texture chart generated according to the graph-cut would result in a jagged boundary,
increasing the sampling error of the chart's boundary seam. A smoothing method needs to be adopted

Figure 7. The influence of w1, w4 on optimization results: (a) fix the values of w1,w4, respectively, the
changes of texture clarity; (b) fix the values of w1,w4, respectively, the change of texture charts’ number.

Moreover, the value of the data item needs to be normalized. This is because the fluctuating value
of the energy is supposed to be in the same order of magnitude in the graph cut problem; otherwise,

Remote Sens. 2020, 12, 3908 11 of 21

the expected result and the abstract model will intensify the difference. Here, we adopted the value of
99.5% for the normalization.

For this study, we used the α-β swap optimization algorithm to solve the energy function.
This algorithm can split the initially labeled data set and transform the multidimensional undirected
graph into a two-dimensional simple undirected single graph, thereby avoiding the uncertainty of t-link
and n-link capacity [55]. The basic idea behind this algorithm is that by exchanging α and β label sets,
a new label set Lnew can be formed by assuming that there are two labels α and β in the known label set
L and the segmented set P. To ensure that the cut in the Graph-Cuts is smaller than the original ones in
the new label set, the algorithm is iterated until the minimum cut in the Graph-Cuts appears. The label
set L that splits the set P can be expressed as Pl =

{
p ∈ P

∣∣∣lp = l
}
, where L is the definitional domain

of the label set, and Pl =
{
p ∈ P

∣∣∣lp = l
}

is the subset of label L in the set P. The α-β swap is applied to
a given set of labels α and β, indicating the exchange of Pα and Pβ and forms a new segmented set Pnew.
The remaining set of α and β, which is not contained in label L, remains unchanged.

4.3. Texture Charts Boundary Smoothing

The texture chart generated according to the graph-cut would result in a jagged boundary,
increasing the sampling error of the chart’s boundary seam. A smoothing method needs to be adopted
to shorten the boundary length. For this study, two boundary smoothing principles are proposed when
the face is visible in the selected image of the adjacent texture chart. These principles are implemented
as follows:

• Quantity priority principle: Traverse all adjacent charts of the face, and count the number of
texture charts. If two or more faces belong to the same texture chart, the current face is also added
to this largest texture chart.

• The longest side principle: Count the length of the three sides of the face if the texture charts to
which the adjacent faces belong are different. Sort the edges in order from large to small, and the
current face is added to the texture chart corresponding to the longest edge.

Figure 8 presents the results of boundary smoothing, where the different texture charts are
represented by different colors. In the image, there are only two texture blocks around the triangles
T1 and T2. According to the principle of number dominance, T1 and T2 are smoothed to the pink
and green charts, respectively. For the triangle surface T3, three texture charts surround the surface,
which, according to the longest side principle, is optimized into the green texture chart.

Remote Sens. 2020, 12, 3908 11 of 21

to shorten the boundary length. For this study, two boundary smoothing principles are proposed
when the face is visible in the selected image of the adjacent texture chart. These principles are
implemented as follows:
• Quantity priority principle: Traverse all adjacent charts of the face, and count the number of

texture charts. If two or more faces belong to the same texture chart, the current face is also
added to this largest texture chart.

• The longest side principle: Count the length of the three sides of the face if the texture charts to
which the adjacent faces belong are different. Sort the edges in order from large to small, and
the current face is added to the texture chart corresponding to the longest edge.
Figure 8 presents the results of boundary smoothing, where the different texture charts are

represented by different colors. In the image, there are only two texture blocks around the triangles ଵܶ and ଶܶ. According to the principle of number dominance, ଵܶ and ଶܶ are smoothed to the pink
and green charts, respectively. For the triangle surface ଷܶ, three texture charts surround the surface,
which, according to the longest side principle, is optimized into the green texture chart.

Figure 8. Boundary smoothing. Left: un-smoothed boundary; Right: smoothed boundary.

5. Experiments and Analysis

To verify the effectiveness of our algorithm, we utilized the model using different data types
and images from different regions with varying numbers and angles. The experiment content
includes two parts: qualitative assessment and quantitative evaluation. We compared the
experimental results with the open-source program OpenMVS, which provides a complete set of
processes to recover the full surface of the scene from being reconstructed. OpenMVS is an open-
source method that is convenient for others to learn and improve and can be easily transplanted to
other application scenarios. This experiment is modified based on OpenMVS, and the theoretical
content of this study is implemented by replacing the code of the texture chart generation.

The experimental models and images are divided into three data sets. The image details are
specified in Table 2. Figure 9 shows the 3D models without texture. The experimental models were
all generated from the corresponding images using OpenMVS. Among them, Church is a close-range
model (building gate), Villa is a small-scale model (a building), and City is a large-scale model (the
entire city). These models cover the major reconstruction types, and it is of universal significance to
texturing them. The computer environment used in the experiments was a Win10 64-bit operating
system, with 64G computer memory, Intel Core i7 (3.6 GHz, four cores, and eight threads). The test
program was written in the C++ language, and the model display software was MeshLab [56].

Table 2. Experimental data information.

Model Number of Images Image Size (Pixels × Pixels) Number of Faces Area
Church 25 3072 × 2048 2.1 × 10ସ 13.2݉ଶ

Villa 161 3072 × 2048 6.01 × 10଺ 794.7݉ଶ
City 151 4000 × 3000 1.02 × 10଻ 577,431݉ଶ

Figure 8. Boundary smoothing. Left: un-smoothed boundary; Right: smoothed boundary.

5. Experiments and Analysis

To verify the effectiveness of our algorithm, we utilized the model using different data types and
images from different regions with varying numbers and angles. The experiment content includes
two parts: qualitative assessment and quantitative evaluation. We compared the experimental results
with the open-source program OpenMVS, which provides a complete set of processes to recover

Remote Sens. 2020, 12, 3908 12 of 21

the full surface of the scene from being reconstructed. OpenMVS is an open-source method that
is convenient for others to learn and improve and can be easily transplanted to other application
scenarios. This experiment is modified based on OpenMVS, and the theoretical content of this study is
implemented by replacing the code of the texture chart generation.

The experimental models and images are divided into three data sets. The image details are
specified in Table 2. Figure 9 shows the 3D models without texture. The experimental models were all
generated from the corresponding images using OpenMVS. Among them, Church is a close-range model
(building gate), Villa is a small-scale model (a building), and City is a large-scale model (the entire city).
These models cover the major reconstruction types, and it is of universal significance to texturing them.
The computer environment used in the experiments was a Win10 64-bit operating system, with 64G
computer memory, Intel Core i7 (3.6 GHz, four cores, and eight threads). The test program was written
in the C++ language, and the model display software was MeshLab [56].

Table 2. Experimental data information.

Model Number of Images Image Size (Pixels × Pixels) Number of Faces Area

Church 25 3072 × 2048 2.1× 104 13.2 m2

Villa 161 3072 × 2048 6.01× 106 794.7 m2

City 151 4000 × 3000 1.02× 107 577,431 m2
Remote Sens. 2020, 12, 3908 12 of 21

(a) Church

(b) Villa

(c) City

Figure 9. 3D models without texture.

5.1. Qualitative Assessment Experiments

5.1.1. Qualitative Comparison of the Number of Texture Charts

From the local zoom view, the boundaries of planer structural segmentation results are mostly
located in high curvature regions of the models, such as wall corners (Church: region 1 of Figure 10;
Villa: region 1 and 2 of Figure 11; City: region 1 and 3 of Figure 12) and staircase edges (Church:
region 2 of Figure 10; Villa: region 1 of Figure 11), and can represent all the planes of the model well.
For the results of our method, the texture charts differed significantly. In the plane region, the texture
charts were further segmented by MRF energy function. In the non-planar region, A large number of
planes are merged. For example, in region 3 of Figure 11, due to the undulations of roof tiles, the
OpenMVS and plane segmentation results showed large numbers of fragments. In the results using
our MRF energy function, the number of texture charts is significantly declined. The same
observation can be made for the observatory’s dome in the City (region 1 and 3 of Figure 12).

(a) OpenMVS results

(b) Planar structural segmentation results

(c) Our results

Figure 10. The texture charts with different methods for the Church. In each method, different colors
represent different texture charts; (a) OpenMVS results; (b) planar structural segmentation results; (c)
our results.

Figure 9. 3D models without texture.

5.1. Qualitative Assessment Experiments

5.1.1. Qualitative Comparison of the Number of Texture Charts

To verify the effect of our proposed approach, our algorithm and the OpenMVS method were used
to generate the texture charts. Our algorithm contains two results planar structural segmentation and
generated texture chart. Planar structural segmentation results were produced using the methodology
discussed in Section 4.1. The method used in generating texture chart results is discussed in Sections 4.2
and 4.3. The default value of 9 was used for the number of blocks.

The results are presented in Figures 10–12. In each method, different colors represent different
texture charts. The number of texture charts generated by our algorithm is less than the number
generated by OpenMVS.

From the local zoom view, the boundaries of planer structural segmentation results are mostly
located in high curvature regions of the models, such as wall corners (Church: region 1 of Figure 10;
Villa: region 1 and 2 of Figure 11; City: region 1 and 3 of Figure 12) and staircase edges (Church:
region 2 of Figure 10; Villa: region 1 of Figure 11), and can represent all the planes of the model well.
For the results of our method, the texture charts differed significantly. In the plane region, the texture
charts were further segmented by MRF energy function. In the non-planar region, A large number
of planes are merged. For example, in region 3 of Figure 11, due to the undulations of roof tiles,
the OpenMVS and plane segmentation results showed large numbers of fragments. In the results using
our MRF energy function, the number of texture charts is significantly declined. The same observation
can be made for the observatory’s dome in the City (region 1 and 3 of Figure 12).

Remote Sens. 2020, 12, 3908 13 of 21

Remote Sens. 2020, 12, 3908 12 of 21

(a) Church

(b) Villa

(c) City

Figure 9. 3D models without texture.

5.1. Qualitative Assessment Experiments

5.1.1. Qualitative Comparison of the Number of Texture Charts

From the local zoom view, the boundaries of planer structural segmentation results are mostly
located in high curvature regions of the models, such as wall corners (Church: region 1 of Figure 10;
Villa: region 1 and 2 of Figure 11; City: region 1 and 3 of Figure 12) and staircase edges (Church:
region 2 of Figure 10; Villa: region 1 of Figure 11), and can represent all the planes of the model well.
For the results of our method, the texture charts differed significantly. In the plane region, the texture
charts were further segmented by MRF energy function. In the non-planar region, A large number of
planes are merged. For example, in region 3 of Figure 11, due to the undulations of roof tiles, the
OpenMVS and plane segmentation results showed large numbers of fragments. In the results using
our MRF energy function, the number of texture charts is significantly declined. The same
observation can be made for the observatory’s dome in the City (region 1 and 3 of Figure 12).

(a) OpenMVS results

(b) Planar structural segmentation results

(c) Our results

Figure 10. The texture charts with different methods for the Church. In each method, different colors
represent different texture charts; (a) OpenMVS results; (b) planar structural segmentation results; (c)
our results.

Figure 10. The texture charts with different methods for the Church. In each method, different colors
represent different texture charts; (a) OpenMVS results; (b) planar structural segmentation results;
(c) our results.Remote Sens. 2020, 12, 3908 13 of 21

(a) OpenMVS result

(b) Planar structural segmentation result

(c) Our result

Figure 11. The texture charts with different methods for Villa. In each method, different colors
represent different texture charts; (a) OpenMVS results; (b) planar structural segmentation results; (c)
our results.

(a) OpenMVS result

(b) Planar structural segmentation result

(c) Our result

Figure 11. The texture charts with different methods for Villa. In each method, different colors represent
different texture charts; (a) OpenMVS results; (b) planar structural segmentation results; (c) our results.

Remote Sens. 2020, 12, 3908 14 of 21

Remote Sens. 2020, 12, 3908 13 of 21

(a) OpenMVS result

(b) Planar structural segmentation result

(c) Our result

Figure 11. The texture charts with different methods for Villa. In each method, different colors
represent different texture charts; (a) OpenMVS results; (b) planar structural segmentation results; (c)
our results.

(a) OpenMVS result

(b) Planar structural segmentation result

(c) Our result

Figure 12. The texture charts with different methods for City. In each method, different colors represent
different texture charts; (a) OpenMVS results; (b) planar structural segmentation results; (c) our results.

5.1.2. Qualitative Comparison of Texture Reconstruction Results

The texture charts produced in Section 5.1.1 were used for texture reconstruction. The texture
reconstruction result of our algorithm and OpenMVS is visually shown in Figures 13–15. As shown by
comparing the overall display effects, the texture reconstruction effects generated by the two methods
are relatively similar. However, the overall effect generated by OpenMVS is darker, and the model
texture resolution is lower, which is due to the large number of generated texture charts. From the
local zoom view, OpenMVS generated a large number of texture charts that resulted in problems,
such as color inconsistency, mapping errors, and seam lines. For example, errors and inconsistencies
can be found in the generated images displaying the wall corner of the Church (region 1 and 3 of
Figure 13), the roof of the Villa (region 1 of Figure 14), and the parking area of the City (region 2 of
Figure 15). In contrast, our algorithm significantly reduced or even eliminated some of these problems.
Using our proposed approach, more texture information was retained, and the problem of miscutting
and large color discontinuity between texture charts had been resolved.

Remote Sens. 2020, 12, 3908 15 of 21

Remote Sens. 2020, 12, 3908 14 of 21

Figure 12. The texture charts with different methods for City. In each method, different colors
represent different texture charts; (a) OpenMVS results; (b) planar structural segmentation results; (c)
our results.

5.1.2. Qualitative Comparison of Texture Reconstruction Results

The texture charts produced in Section 5.1.1 were used for texture reconstruction. The texture
reconstruction result of our algorithm and OpenMVS is visually shown in Figures 13–15. As shown
by comparing the overall display effects, the texture reconstruction effects generated by the two
methods are relatively similar. However, the overall effect generated by OpenMVS is darker, and the
model texture resolution is lower, which is due to the large number of generated texture charts. From
the local zoom view, OpenMVS generated a large number of texture charts that resulted in problems,
such as color inconsistency, mapping errors, and seam lines. For example, errors and inconsistencies
can be found in the generated images displaying the wall corner of the Church (region 1 and 3 of
Figure 13), the roof of the Villa (region 1 of Figure 14), and the parking area of the City (region 2 of
Figure 15). In contrast, our algorithm significantly reduced or even eliminated some of these
problems. Using our proposed approach, more texture information was retained, and the problem of
miscutting and large color discontinuity between texture charts had been resolved.

(a) OpenMVS result

(b) Our result

Figure 13. The texture display effect of two methods for Church. (a) OpenMVS result; (b) our result;

(a) OpenMVS result

(b) Our result

Figure 14. The texture display effect of two methods for Villa. (a) OpenMVS result; (b) our result;

Figure 13. The texture display effect of two methods for Church. (a) OpenMVS result; (b) our result.

Remote Sens. 2020, 12, 3908 14 of 21

Figure 12. The texture charts with different methods for City. In each method, different colors
represent different texture charts; (a) OpenMVS results; (b) planar structural segmentation results; (c)
our results.

5.1.2. Qualitative Comparison of Texture Reconstruction Results

The texture charts produced in Section 5.1.1 were used for texture reconstruction. The texture
reconstruction result of our algorithm and OpenMVS is visually shown in Figures 13–15. As shown
by comparing the overall display effects, the texture reconstruction effects generated by the two
methods are relatively similar. However, the overall effect generated by OpenMVS is darker, and the
model texture resolution is lower, which is due to the large number of generated texture charts. From
the local zoom view, OpenMVS generated a large number of texture charts that resulted in problems,
such as color inconsistency, mapping errors, and seam lines. For example, errors and inconsistencies
can be found in the generated images displaying the wall corner of the Church (region 1 and 3 of
Figure 13), the roof of the Villa (region 1 of Figure 14), and the parking area of the City (region 2 of
Figure 15). In contrast, our algorithm significantly reduced or even eliminated some of these
problems. Using our proposed approach, more texture information was retained, and the problem of
miscutting and large color discontinuity between texture charts had been resolved.

(a) OpenMVS result

(b) Our result

Figure 13. The texture display effect of two methods for Church. (a) OpenMVS result; (b) our result;

(a) OpenMVS result

(b) Our result

Figure 14. The texture display effect of two methods for Villa. (a) OpenMVS result; (b) our result; Figure 14. The texture display effect of two methods for Villa. (a) OpenMVS result; (b) our result.Remote Sens. 2020, 12, 3908 15 of 21

(a) OpenMVS result

(b) Our result

Figure 15. The texture display effect of two methods for City. (a) OpenMVS result; (b) our result.

5.2. Quantitative Evaluation Experiments

5.2.1. Efficiency Comparison with OpenMVS Texture Reconstruction Algorithm

In Section 4.1.3, we showed that our algorithm could improve the efficiency of texture chart
segmentation through the model split. In both the OpenMVS and our proposed algorithm, the color
adjustment algorithm by Lempitsky et al.[28] is adopted, which separately adjusts the color of the
texture image corresponding to each pair of adjacent texture charts. The reduction in the number of
texture charts would significantly result in less time required by the color adjustment algorithm.

To verify if our method can improve the efficiency in plane segmentation, we compared the time
consumed with original VSA algorithm. As shown in the summary of results presented in Table 3,
our fully automatic plane segmentation algorithm consumed less processing time than the original
VSA algorithm. The highest efficiency improvement was found in the processing of the City model.

Figure 15. The texture display effect of two methods for City. (a) OpenMVS result; (b) our result.

Remote Sens. 2020, 12, 3908 16 of 21

5.2. Quantitative Evaluation Experiments

5.2.1. Efficiency Comparison with OpenMVS Texture Reconstruction Algorithm

In Section 4.1.3, we showed that our algorithm could improve the efficiency of texture chart
segmentation through the model split. In both the OpenMVS and our proposed algorithm, the color
adjustment algorithm by Lempitsky et al. [28] is adopted, which separately adjusts the color of the
texture image corresponding to each pair of adjacent texture charts. The reduction in the number of
texture charts would significantly result in less time required by the color adjustment algorithm.

To verify if our method can improve the efficiency in plane segmentation, we compared the time
consumed with original VSA algorithm. As shown in the summary of results presented in Table 3,
our fully automatic plane segmentation algorithm consumed less processing time than the original
VSA algorithm. The highest efficiency improvement was found in the processing of the City model.

Table 3. Efficiency comparison of VSA and our method.

Model VSA (s) Our Method (s) Time Decreased

Church 8.8 5.9 32.9%
Villa 483.2 148.4 69.2%
City 891.0 278.7 68.7%

This experiment simplifies the mesh model to different data quantities to test the texture
reconstruction efficiency of our method. In Figure 16, the texture reconstruction running time from the
proposed approach is compared with the OpenMVS method for the three models. The horizontal axis
is the number of triangles of the simplified model, and the vertical axis is the running time. The bar
with a red border is the statistical results of running time using the OpenMVS method, and the bar with
green borders is the statistical results from our proposed approach. Overall, the total time for texture
reconstruction generated in our method was shorter than in the OpenMVS. With the number of faces
increased, our proposed algorithm was able to shorten the running time. In terms of image scoring,
the two methods registered similar times due to having similar image scoring strategies. Since our
proposed approach uses parallel computing, the segmentation efficiency is better than the OpenMVS.
In terms of color adjustment, owing to cutting down the number of texture charts, the running time
decreased when the proposed algorithm was used. With the number of faces increased, the efficiency
of color adjustment significantly improved. The results suggest that the efficiency improvements of
our method are more significant for the texture mapping of larger scenes.

Remote Sens. 2020, 12, 3908 16 of 21

Table 3. Efficiency comparison of VSA and our method.

Model VSA (s) Our method (s) Time decreased
Church 8.8 5.9 32.9%

Villa 483.2 148.4 69.2%
City 891.0 278.7 68.7%

This experiment simplifies the mesh model to different data quantities to test the texture
reconstruction efficiency of our method. In Figure 16, the texture reconstruction running time from
the proposed approach is compared with the OpenMVS method for the three models. The horizontal
axis is the number of triangles of the simplified model, and the vertical axis is the running time. The
bar with a red border is the statistical results of running time using the OpenMVS method, and the
bar with green borders is the statistical results from our proposed approach. Overall, the total time
for texture reconstruction generated in our method was shorter than in the OpenMVS. With the
number of faces increased, our proposed algorithm was able to shorten the running time. In terms of
image scoring, the two methods registered similar times due to having similar image scoring
strategies. Since our proposed approach uses parallel computing, the segmentation efficiency is better
than the OpenMVS. In terms of color adjustment, owing to cutting down the number of texture charts,
the running time decreased when the proposed algorithm was used. With the number of faces
increased, the efficiency of color adjustment significantly improved. The results suggest that the
efficiency improvements of our method are more significant for the texture mapping of larger scenes.

(a) Church (b) Villa (c) City

Figure 16. Comparison of texture reconstruction efficiency (unit of the running time is second). (a)
Church running times; (b) villa running times; (c) city running times.

5.2.2. Quantitative Comparison of the Number of Texture Charts

The number of texture charts is a quantitative evaluation index that is currently used more
frequently [57,58]. Figure 17 presents the statistics of the number of texture charts generated by
OpenMVS and our proposed algorithm. Different methods are marked with different colors. As
shown in Figure 17, the texture charts generated by our proposed algorithm have been significantly
reduced compared with the OpenMVS technique. Besides, the number of texture charts generated

(a) Church (b) Villa (c) City

Figure 17. Changes in the number of texture charts generated by our algorithm and OpenMVS. (a)
Church results; (b) villa results; (c) city results.

Figure 16. Comparison of texture reconstruction efficiency (unit of the running time is second).
(a) Church running times; (b) villa running times; (c) city running times.

5.2.2. Quantitative Comparison of the Number of Texture Charts

The number of texture charts is a quantitative evaluation index that is currently used more
frequently [57,58]. Figure 17 presents the statistics of the number of texture charts generated by

Remote Sens. 2020, 12, 3908 17 of 21

OpenMVS and our proposed algorithm. Different methods are marked with different colors. As shown
in Figure 17, the texture charts generated by our proposed algorithm have been significantly reduced
compared with the OpenMVS technique. Besides, the number of texture charts generated by our
method is smaller than the number of model planes.

Remote Sens. 2020, 12, 3908 16 of 21

Table 3. Efficiency comparison of VSA and our method.

Model VSA (s) Our method (s) Time decreased
Church 8.8 5.9 32.9%

Villa 483.2 148.4 69.2%
City 891.0 278.7 68.7%

This experiment simplifies the mesh model to different data quantities to test the texture
reconstruction efficiency of our method. In Figure 16, the texture reconstruction running time from
the proposed approach is compared with the OpenMVS method for the three models. The horizontal
axis is the number of triangles of the simplified model, and the vertical axis is the running time. The
bar with a red border is the statistical results of running time using the OpenMVS method, and the
bar with green borders is the statistical results from our proposed approach. Overall, the total time
for texture reconstruction generated in our method was shorter than in the OpenMVS. With the
number of faces increased, our proposed algorithm was able to shorten the running time. In terms of
image scoring, the two methods registered similar times due to having similar image scoring
strategies. Since our proposed approach uses parallel computing, the segmentation efficiency is better
than the OpenMVS. In terms of color adjustment, owing to cutting down the number of texture charts,
the running time decreased when the proposed algorithm was used. With the number of faces
increased, the efficiency of color adjustment significantly improved. The results suggest that the
efficiency improvements of our method are more significant for the texture mapping of larger scenes.

(a) Church (b) Villa (c) City

Figure 16. Comparison of texture reconstruction efficiency (unit of the running time is second). (a)
Church running times; (b) villa running times; (c) city running times.

5.2.2. Quantitative Comparison of the Number of Texture Charts

The number of texture charts is a quantitative evaluation index that is currently used more
frequently [57,58]. Figure 17 presents the statistics of the number of texture charts generated by
OpenMVS and our proposed algorithm. Different methods are marked with different colors. As
shown in Figure 17, the texture charts generated by our proposed algorithm have been significantly
reduced compared with the OpenMVS technique. Besides, the number of texture charts generated

(a) Church (b) Villa (c) City

Figure 17. Changes in the number of texture charts generated by our algorithm and OpenMVS. (a)
Church results; (b) villa results; (c) city results.

Figure 17. Changes in the number of texture charts generated by our algorithm and OpenMVS.
(a) Church results; (b) villa results; (c) city results.

5.2.3. Quantitative Comparison of the Total Length of Texture Seam-Line

The seam-line is the common boundary edge between two adjacent texture charts. Texture color
discontinuities are prone to appear at the seam-line. The longer the seam-line, the more the color errors.
Calculating the length of the seam-line can effectively measure the texture discontinuity problem of
texture reconstruction results. Our algorithm can reduce the length of the seam-line by reducing the
number of texture charts. To verify the improvement in the reconstruction effect, we analyzed the
seam-line length. The statistical results of the seam-line length in Figure 18. The seam-line length of
the texture chart generated by our method is significantly smaller than the boundary length generated
by OpenMVS.

Remote Sens. 2020, 12, 3908 17 of 21

5.2.3. Quantitative Comparison of the Total Length of Texture Seam-Line

The seam-line is the common boundary edge between two adjacent texture charts. Texture color
discontinuities are prone to appear at the seam-line. The longer the seam-line, the more the color
errors. Calculating the length of the seam-line can effectively measure the texture discontinuity
problem of texture reconstruction results. Our algorithm can reduce the length of the seam-line by
reducing the number of texture charts. To verify the improvement in the reconstruction effect, we
analyzed the seam-line length. The statistical results of the seam-line length in Figure 18. The seam-
line length of the texture chart generated by our method is significantly smaller than the boundary
length generated by OpenMVS.

Figure 18. Seam-line length of OpenMVS and our algorithm.

5.2.4 Quantitative Comparison of Texture Clarity

Shan et al.[59] mentioned that the resolution (clarity) of texture is an important indicator of the
true degree of authenticity of texture reconstruction. However, if only the clarity is used, the method
of directly specifying the sharpest image for each triangle face will get the highest score. It is
unreasonable because the number of texture charts also needs to be considered. Therefore, this paper
uses the average texture clarity of each texture chart (formula 9) as the evaluation index. The
statistical results of texture clarity are shown in Figure 19. The texture clarity generated by our
algorithm is gradually improved with the amount of data increasing, while the texture clarity
generated by OpenMVS is gradually decreasing. This suggests that our proposed algorithm could
improve the texture reconstruction effect.

Figure 19. Texture clarity comparison of OpenMVS and our algorithm.

5.3. Discussion

Based on experiments on three typical sets of UAV data with different reconstruction range, the
experimental conclusions are as follows: (1) the improved OpenMVS texture chart generation method
proposed in this paper was suitable for scenes with different reconstruction ranges. Compared with
the original OpenMVS texture chart generation method, our method reduced the number of texture
charts, and exerted a profound improvement on the miscuts and color differences between texture
charts. The texture reconstruction results were more natural. (2) Due to the improved VSA plane
segmentation algorithm adopted multithread parallel processing, compared with the original VSA

Figure 18. Seam-line length of OpenMVS and our algorithm.

5.2.4. Quantitative Comparison of Texture Clarity

Shan et al. [59] mentioned that the resolution (clarity) of texture is an important indicator of the
true degree of authenticity of texture reconstruction. However, if only the clarity is used, the method of
directly specifying the sharpest image for each triangle face will get the highest score. It is unreasonable
because the number of texture charts also needs to be considered. Therefore, this paper uses the average
texture clarity of each texture chart (formula 9) as the evaluation index. The statistical results of texture
clarity are shown in Figure 19. The texture clarity generated by our algorithm is gradually improved
with the amount of data increasing, while the texture clarity generated by OpenMVS is gradually
decreasing. This suggests that our proposed algorithm could improve the texture reconstruction effect.

Remote Sens. 2020, 12, 3908 18 of 21

Remote Sens. 2020, 12, 3908 17 of 21

Figure 17. Changes in the number of texture charts generated by our algorithm and OpenMVS. (a)
Church results; (b) villa results; (c) city results.

5.2.3. Quantitative Comparison of the Total Length of Texture Seam-Line

The seam-line is the common boundary edge between two adjacent texture charts. Texture color
discontinuities are prone to appear at the seam-line. The longer the seam-line, the more the color
errors. Calculating the length of the seam-line can effectively measure the texture discontinuity
problem of texture reconstruction results. Our algorithm can reduce the length of the seam-line by
reducing the number of texture charts. To verify the improvement in the reconstruction effect, we
analyzed the seam-line length. The statistical results of the seam-line length in Figure 18. The seam-
line length of the texture chart generated by our method is significantly smaller than the boundary
length generated by OpenMVS.

Figure 18. Seam-line length of OpenMVS and our algorithm.

5.2.4 Quantitative Comparison of Texture Clarity

Shan et al.[59] mentioned that the resolution (clarity) of texture is an important indicator of the
true degree of authenticity of texture reconstruction. However, if only the clarity is used, the method
of directly specifying the sharpest image for each triangle face will get the highest score. It is
unreasonable because the number of texture charts also needs to be considered. Therefore, this paper
uses the average texture clarity of each texture chart (formula 9) as the evaluation index. The
statistical results of texture clarity are shown in Figure 19. The texture clarity generated by our
algorithm is gradually improved with the amount of data increasing, while the texture clarity
generated by OpenMVS is gradually decreasing. This suggests that our proposed algorithm could
improve the texture reconstruction effect.

Figure 19. Texture clarity comparison of OpenMVS and our algorithm.

5.3. Discussion

Based on experiments on three typical sets of UAV data with different reconstruction range, the
experimental conclusions are as follows: (1) the improved OpenMVS texture chart generation method
proposed in this paper was suitable for scenes with different reconstruction ranges. Compared with

Figure 19. Texture clarity comparison of OpenMVS and our algorithm.

5.3. Discussion

Based on experiments on three typical sets of UAV data with different reconstruction range,
the experimental conclusions are as follows: (1) the improved OpenMVS texture chart generation
method proposed in this paper was suitable for scenes with different reconstruction ranges. Compared
with the original OpenMVS texture chart generation method, our method reduced the number of
texture charts, and exerted a profound improvement on the miscuts and color differences between
texture charts. The texture reconstruction results were more natural. (2) Due to the improved VSA
plane segmentation algorithm adopted multithread parallel processing, compared with the original
VSA algorithm, the proposed algorithm highly boosted the extraction efficiency of mesh model planar
structure features. To a certain extent, it also improved the efficiency of OpenMVS texture reconstruction
algorithm. Compared with the original OpenMVS texture chart generation method, the proposed
method greatly reduced the number of texture charts, shortened the total length of the seam-line,
and significantly improved the average texture chart clarity.

From the experiments, however, we also found that there is still room for improvement in our
method. Parallel computing requires the merging of texture charts, which would still require the use
of considerable time. For future studies, the algorithm can be further improved to achieve a more
detailed and faster 3D texture reconstruction.

6. Conclusions

Texture reconstruction is a hot topic in the field of digital photogrammetry and computer vision.
Given insufficient consideration of the smoothness term in the MRF energy function constructed by
existing 3D texture reconstruction methods, the generated texture chart results still had considerable
fragment problems (which will result in serious local miscuts and color discontinuity between texture
charts and reduce the execution efficiency), and jaggy boundaries between texture charts. This study
fully utilized the planar structure information of the mesh model and the visual information of the 3D
triangle face on the image and proposed an improved, faster, and high-quality texture chart generation
method based on the OpenMVS texture chart generation algorithm. The main methodology is as follows:
first, the visual quality of different visual images is scored for each triangle face. The plane structural
features of the mesh model are extracted, and the processing flow is partitioned into three parts:
(1) splitting mesh into blocks; (2) automatic segmentation of all planes in each block; and (3) merging
of planes that are on the same plane between adjacent blocks. Finally, the plane structure information
of the model is integrated into the MRF energy function. The graph cut is used to minimize the energy
function to obtain the texture charts, and the boundary of the texture chart is smoothed.

In general, we proposed a novel OpenMVS-based texture reconstruction method based on the
fully automatic plane segmentation algorithm using the improved variational shape approximation
framework for 3D mesh models. Our method solves the problem of the existing MRF energy function,
wherein it only considers the selection of the image label of the adjacent triangle face for the smoothness

Remote Sens. 2020, 12, 3908 19 of 21

term and ignores the planar-structure information of the model. Compared with the original OpenMVS
texture chart generation method, this study’s method achieved the following three goals: (1) improving
the operating efficiency of the OpenMVS texture chart generation method to a certain extent; (2) reducing
the number of texture charts (it helps ameliorate the problem by miscuts and large color discontinuity
between texture charts); (3) to a certain extent, minimizing the sampling error of the boundary seam-line
of texture charts.

Author Contributions: S.L., X.X., and B.G. proposed the idea and wrote the manuscript; S.L., X.X., and L.Z.
designed and performed experiments; X.X. and S.L. revised the manuscript and added several experiments to
improve the quality of the manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (Grant Nos. 91638203,
91738302), Fundamental Research Funds for the Central Universities of China (Grant No. 2042019kf0002), China
Scholarship Council (Grant No. 201606270125), the Science and Technology Program of Southwest China Research
Institute of Electronic Equipment (Grant No. JS20200500114), the Key Laboratory of Urban Land Resources
Monitoring and Simulation, Ministry of Land and Resources (Grant No. KF-2018-03-052), the Science and
Technology Program of Guangzhou, China (Grant No. 2017010160173) and LIESMARS Special Research Funding.

Acknowledgments: We would like to thank the reviewers for their detailed comments and nice suggestions,
which greatly improved the manuscript. We also thank Zhe Peng for conceiving and designing the experiments.
This work is partly supported by Wuhan Xuntu Technology Co. Ltd. We are thankful for Stephen C. McClure for
providing us English editing of the manuscript freely.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Xie, H.; Yao, H.; Sun, X.; Zhou, S.; Zhang, S. Pix2vox: Context-aware 3d reconstruction from single and
multi-view images. In Proceedings of the IEEE International Conference on Computer Vision, Seoul, Korea,
27 October–2 November 2019; pp. 2690–2698.

2. Jing-Xue, Y.; Qiang, Z.; Wei-Xi, Y. A dense matching algorithm of multi-view image based on the integrated
multiple matching primitives. Acta Geod. Cartogr. Sin. 2013, 42, 691.

3. Seitz, S.M.; Curless, B.; Diebel, J.; Scharstein, D.; Szeliski, R. A comparison and evaluation of multi-view stereo
reconstruction algorithms. In Proceedings of the 2006 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’06), New York, NY, USA, 17–22 June 2006; pp. 519–528.

4. Rouhani, M.; Lafarge, F.; Alliez, P. Semantic segmentation of 3D textured meshes for urban scene analysis.
ISPRS J. Photogramm. Remote Sens. 2017, 123, 124–139. [CrossRef]

5. Pepe, M.; Fregonese, L.; Crocetto, N. Use of SfM-MVS approach to nadir and oblique images generated
throught aerial cameras to build 2.5 D map and 3D models in urban areas. Geocarto Int. 2019, 1–22. [CrossRef]

6. Purnomo, B.; Cohen, J.D.; Kumar, S. Seamless texture atlases. In Proceedings of the 2004 Eurographics/ACM
SIGGRAPH Symposium on Geometry Processing, Nice, France, 8–10 July 2004; pp. 65–74.

7. Bi, S.; Kalantari, N.K.; Ramamoorthi, R. Patch-based optimization for image-based texture mapping.
ACM Trans. Graph. 2017, 36, 106:1–106:11. [CrossRef]

8. Inzerillo, L.; Di Paola, F.; Alogna, Y. High quality texture mapping process aimed at the optimization of 3d
structured light models. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 389–396. [CrossRef]

9. Lai, J.-Y.; Wu, T.-C.; Phothong, W.; Wang, D.W.; Liao, C.-Y.; Lee, J.-Y. A high-resolution texture mapping
technique for 3D textured model. Appl. Sci. 2018, 8, 2228. [CrossRef]

10. Xu, L.; Li, E.; Li, J.; Chen, Y.; Zhang, Y. A general texture mapping framework for image-based 3D
modeling. In Proceedings of the 2010 IEEE International Conference on Image Processing, Hong Kong,
China, 12–15 September 2010; pp. 2713–2716.

11. Schönberger, J.L.; Zheng, E.; Frahm, J.-M.; Pollefeys, M. Pixelwise view selection for unstructured
multi-view stereo. In Proceedings of the European Conference on Computer Vision, Amsterdam,
The Netherlands, 11–14 October 2016; pp. 501–518.

12. Fuhrmann, S.; Langguth, F.; Moehrle, N.; Waechter, M.; Goesele, M. MVE—An image-based reconstruction
environment. Comput. Graph. 2015, 53, 44–53. [CrossRef]

13. Hepp, B.; Nießner, M.; Hilliges, O. Plan3d: Viewpoint and trajectory optimization for aerial multi-view
stereo reconstruction. ACM Trans. Graph. TOG 2018, 38, 1–17. [CrossRef]

http://dx.doi.org/10.1016/j.isprsjprs.2016.12.001
http://dx.doi.org/10.1080/10106049.2019.1700558
http://dx.doi.org/10.1145/3072959.3073610
http://dx.doi.org/10.5194/isprs-archives-XLII-2-W9-389-2019
http://dx.doi.org/10.3390/app8112228
http://dx.doi.org/10.1016/j.cag.2015.09.003
http://dx.doi.org/10.1145/3233794

Remote Sens. 2020, 12, 3908 20 of 21

14. Iizuka, S.; Simo-Serra, E.; Ishikawa, H. Let there be color! Joint end-to-end learning of global and local
image priors for automatic image colorization with simultaneous classification. ACM Trans. Graph. ToG 2016,
35, 1–11. [CrossRef]

15. Yeo, D.; Lee, C.-O. Variational shape prior segmentation with an initial curve based on image registration
technique. Image Vis. Comput. 2020, 94, 103865. [CrossRef]

16. Cohen-Steiner, D.; Alliez, P.; Desbrun, M. Variational shape approximation. In ACM SIGGRAPH 2004 Papers;
Association for Computing Machinery: New York, NY, USA, 2004; pp. 905–914.

17. Yan, D.-M.; Wang, W.; Liu, Y.; Yang, Z. Variational mesh segmentation via quadric surface fitting.
Comput. Aided Des. 2012, 44, 1072–1082. [CrossRef]

18. Wu, N.; Zhang, D.; Deng, Z.; Jin, X. Variational Mannequin Approximation Using Spheres and Capsules.
IEEE Access 2018, 6, 25921–25929. [CrossRef]

19. Morigi, S.; Huska, M. Sparsity-inducing variational shape partitioning. Electron. Trans. Numer. Anal. 2017,
46, 36–54.

20. Cernea, D. OpenMVS: Open Multiple View Stereovision. Available online: https://github.com/cdcseacave/

openMVS/ (accessed on 18 November 2020).
21. Callieri, M.; Cignoni, P.; Corsini, M.; Scopigno, R. Masked photo blending: Mapping dense photographic

data set on high-resolution sampled 3D models. Comput. Graph. 2008, 32, 464–473. [CrossRef]
22. Hoegner, L.; Stilla, U. Automatic 3D reconstruction and texture extraction for 3D building models from

thermal infrared image sequences. Quant. InfraRed Thermogr. 2016. [CrossRef]
23. Liu, L.; Ye, C.; Ni, R.; Fu, X.-M. Progressive parameterizations. ACM Trans. Graph. TOG 2018, 37, 1–12. [CrossRef]
24. Li, S.; Luo, Z.; Zhen, M.; Yao, Y.; Shen, T.; Fang, T.; Quan, L. Cross-atlas convolution for parameterization

invariant learning on textured mesh surface. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, Long Beach, CA, USA, 15–21 June 2019; pp. 6143–6152.

25. Zhao, H.; Li, X.; Ge, H.; Lei, N.; Zhang, M.; Wang, X.; Gu, X. Conformal mesh parameterization using discrete
Calabi flow. Comput. Aided Geom. Des. 2018, 63, 96–108. [CrossRef]

26. Lee, J.; Yang, B. Developing an optimized texture mapping for photorealistic 3D buildings. Trans. GIS 2019,
23, 1–21. [CrossRef]

27. Yin, Y.; Chen, H.; Meng, X.; Yang, X.; Peng, X. Texture mapping based on photogrammetric reconstruction of
the coded markers. Appl. Opt. 2019, 58, A48–A54. [CrossRef]

28. Lempitsky, V.; Ivanov, D. Seamless mosaicing of image-based texture maps. In Proceedings of the 2007 IEEE
Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, USA, 17–22 June 2007; pp. 1–6.

29. Fu, Y.; Yan, Q.; Yang, L.; Liao, J.; Xiao, C. Texture mapping for 3d reconstruction with rgb-d sensor.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT,
USA, 18–22 June 2018; pp. 4645–4653.

30. Li, W.; Gong, H.; Yang, R. Fast texture mapping adjustment via local/global optimization. IEEE Trans. Vis.
Comput. Graph. 2018, 25, 2296–2303. [CrossRef]

31. Yang, Y.; Zhang, Y. A high-realistic texture mapping algorithm based on image sequences. In Proceedings of
the 2018 26th International Conference on Geoinformatics, Kunming, China, 28–30 June 2018; pp. 1–8.

32. Jagannathan, A.; Miller, E.L. Three-dimensional surface mesh segmentation using curvedness-based region
growing approach. IEEE Trans. Pattern Anal. Mach. Intell. 2007, 29, 2195–2204. [CrossRef] [PubMed]

33. Vieira, M.; Shimada, K. Surface mesh segmentation and smooth surface extraction through region growing.
Comput. Aided Geom. Des. 2005, 22, 771–792. [CrossRef]

34. Liu, S.; Ferguson, Z.; Jacobson, A.; Gingold, Y.I. Seamless: Seam erasure and seam-aware decoupling of
shape from mesh resolution. ACM Trans. Graph. 2017, 36, 216:1–216:15. [CrossRef]

35. Jiao, X.; Wu, T.; Qin, X. Mesh segmentation by combining mesh saliency with spectral clustering. J. Comput.
Appl. Math. 2018, 329, 134–146. [CrossRef]

36. Lee, J.; Kim, S.; Kim, S.-J. Mesh segmentation based on curvatures using the GPU. Multimed. Tools Appl. 2015,
74, 3401–3412. [CrossRef]

37. He, C.; Wang, C. A survey on segmentation of 3D models. Wirel. Pers. Commun. 2018, 102, 3835–3842. [CrossRef]
38. Attene, M.; Falcidieno, B.; Spagnuolo, M. Hierarchical mesh segmentation based on fitting primitives.

Vis. Comput. 2006, 22, 181–193. [CrossRef]
39. Marinov, M.; Kobbelt, L. Automatic generation of structure preserving multiresolution models. In Proceedings

of the Computer Graphics Forum, Amsterdam, The Netherlands, 18–20 May 2005; pp. 479–486.

http://dx.doi.org/10.1145/2897824.2925974
http://dx.doi.org/10.1016/j.imavis.2019.103865
http://dx.doi.org/10.1016/j.cad.2012.04.005
http://dx.doi.org/10.1109/ACCESS.2018.2837013
https://github.com/cdcseacave/openMVS/
https://github.com/cdcseacave/openMVS/
http://dx.doi.org/10.1016/j.cag.2008.05.004
http://dx.doi.org/10.21611/qirt.2016.042
http://dx.doi.org/10.1145/3197517.3201331
http://dx.doi.org/10.1016/j.cagd.2018.03.001
http://dx.doi.org/10.1111/tgis.12494
http://dx.doi.org/10.1364/AO.58.000A48
http://dx.doi.org/10.1109/TVCG.2018.2831220
http://dx.doi.org/10.1109/TPAMI.2007.1125
http://www.ncbi.nlm.nih.gov/pubmed/17934228
http://dx.doi.org/10.1016/j.cagd.2005.03.006
http://dx.doi.org/10.1145/3130800.3130897
http://dx.doi.org/10.1016/j.cam.2017.05.007
http://dx.doi.org/10.1007/s11042-014-2104-1
http://dx.doi.org/10.1007/s11277-018-5414-1
http://dx.doi.org/10.1007/s00371-006-0375-x

Remote Sens. 2020, 12, 3908 21 of 21

40. Khattab, D.; Ebeid, H.M.; Hussein, A.S.; Tolba, M.F. 3D Mesh Segmentation Based on Unsupervised
Clustering. In Proceedings of the International Conference on Advanced Intelligent Systems and Informatics,
Cairo, Egypt, 24–26 October 2016; pp. 598–607.

41. Garland, M.; Willmott, A.; Heckbert, P.S. Hierarchical face clustering on polygonal surfaces. In Proceedings
of the 2001 Symposium on Interactive 3D Graphics, Chapel Hill, NC, USA, 26–29 March 2001; pp. 49–58.

42. Wang, H.; Lu, T.; Au, O.K.-C.; Tai, C.-L. Spectral 3D mesh segmentation with a novel single segmentation
field. Graph. Models 2014, 76, 440–456. [CrossRef]

43. Cheng, S.-C.; Kuo, C.-T.; Wu, D.-C. A novel 3D mesh compression using mesh segmentation with multiple
principal plane analysis. Pattern Recognit. 2010, 43, 267–279. [CrossRef]

44. Kaiser, A.; Ybanez Zepeda, J.A.; Boubekeur, T. A survey of simple geometric primitives detection methods
for captured 3d data. In Proceedings of the Computer Graphics Forum, Brno, Czech Republic, 4–8 June 2018;
pp. 167–196.

45. Yi, B.; Liu, Z.; Tan, J.; Cheng, F.; Duan, G.; Liu, L. Shape recognition of CAD models via iterative slippage
analysis. Comput. Aided Des. 2014, 55, 13–25. [CrossRef]

46. Wang, J.; Yu, Z. Surface feature based mesh segmentation. Comput. Graph. 2011, 35, 661–667. [CrossRef]
47. Sun, C.-Y.; Zou, Q.-F.; Tong, X.; Liu, Y. Learning adaptive hierarchical cuboid abstractions of 3d shape

collections. ACM Trans. Graph. TOG 2019, 38, 1–13. [CrossRef]
48. Quan, W.; Guo, J.; Zhang, X.; Dongming, Y.; Yan, D. Improved quadric surfaces recognition from scanned

mechanical models. CADDM 2016, 26, 9–19.
49. Simari, P.D.; Singh, K. Extraction and remeshing of ellipsoidal representations from mesh data. In Proceedings

of the Graphics Interface, Victoria, BC, Canada, 9–11 May 2005; pp. 161–168.
50. Wu, J.; Kobbelt, L. Structure Recovery via Hybrid Variational Surface Approximation. In Proceedings of the

Comput. Graph. Forum, Amsterdam, The Netherlands, 18–20 May 2005; pp. 277–284.
51. Thul, D.; Ladický, L.U.; Jeong, S.; Pollefeys, M. Approximate convex decomposition and transfer for animated

meshes. ACM Trans. Graph. TOG 2018, 37, 1–10. [CrossRef]
52. Waechter, M.; Moehrle, N.; Goesele, M. Let there be color! Large-scale texturing of 3D reconstructions.

In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014;
pp. 836–850.

53. Salinas, D.; Lafarge, F.; Alliez, P. Structure-aware mesh decimation. In Proceedings of the Computer Graphics
Forum, Graz, Austria, 6–8 July 2015; pp. 211–227.

54. Liu, L.; Sheng, Y.; Zhang, G.; Ugail, H. Graph cut based mesh segmentation using feature points and
geodesic distance. In Proceedings of the 2015 International Conference on Cyberworlds (CW), Visby, Sweden,
7–9 October 2015; pp. 115–120.

55. Schmidt, M.; Alahari, K. Generalized fast approximate energy minimization via graph cuts: Alpha-expansion
beta-shrink moves. arXiv 2011, arXiv:Preprint/1108.5710.

56. Cignoni, P.; Callieri, M.; Corsini, M.; Dellepiane, M.; Ganovelli, F.; Ranzuglia, G. Meshlab: An open-source
mesh processing tool. In Proceedings of the Eurographics Italian Chapter Conference, Salerno, Italy,
2–4 July 2008; pp. 129–136.

57. Schuster, K.; Trettner, P.; Schmitz, P.; Kobbelt, L. A Three-Level Approach to Texture Mapping and Synthesis
on 3D Surfaces. Proc. ACM Comput. Graph. Interact. Tech. 2020, 3, 1–19.

58. Velho, L.; Sossai, J., Jr. Projective texture atlas construction for 3D photography. Vis. Comput. 2007, 23, 621–629.
[CrossRef]

59. Shan, Q.; Adams, R.; Curless, B.; Furukawa, Y.; Seitz, S.M. The visual turing test for scene reconstruction.
In Proceedings of the 2013 International Conference on 3D Vision-3DV 2013, Seattle, WA, USA, 29 June–1 July
2013; pp. 25–32.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.gmod.2014.04.009
http://dx.doi.org/10.1016/j.patcog.2009.05.016
http://dx.doi.org/10.1016/j.cad.2014.04.008
http://dx.doi.org/10.1016/j.cag.2011.03.016
http://dx.doi.org/10.1145/3355089.3356529
http://dx.doi.org/10.1145/3272127.3275029
http://dx.doi.org/10.1007/s00371-007-0150-7
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	3D Texture Reconstruction
	Plane Structure Feature Segmentation

	OpenMVS Texture Reconstruction Method
	Improved Texture Reconstruction Method Based on the Fully automatic Plane Segmentation
	A Fully Automatic VSA-Based Plane Segmentation Algorithm for Blocked 3D Mesh Models
	The VSA Framework
	Fully Automatic Plane Segmentation Algorithm Based on the VSA Framework
	A Fast VSA Plane Segmentation Method Suitable for Multi-Threaded Parallel Processing

	Texture Chart Generation Method with the Mesh Planar-Structure Information
	Texture Charts Boundary Smoothing

	Experiments and Analysis
	Qualitative Assessment Experiments
	Qualitative Comparison of the Number of Texture Charts
	Qualitative Comparison of Texture Reconstruction Results

	Quantitative Evaluation Experiments
	Efficiency Comparison with OpenMVS Texture Reconstruction Algorithm
	Quantitative Comparison of the Number of Texture Charts
	Quantitative Comparison of the Total Length of Texture Seam-Line
	Quantitative Comparison of Texture Clarity

	Discussion

	Conclusions
	References

