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Abstract: This study introduces a first assessment of the capabilities of PRISMA (PRecursore
IperSpettrale della Missione Applicativa)—the new hyperspectral satellite sensor of the Italian Space
Agency (ASI)—for Non-Photosynthetic Vegetation (NPV) monitoring, a topic which is becoming very
relevant in the field of sustainable agriculture, being an indicator of crop residue (CR) presence in the
field. Data-sets collected during the mission validation phase in croplands are used for mapping the
NPV presence and for modelling the diagnostic absorption band of cellulose around 2.1 pm with an
Exponential Gaussian Optimization approach, in the perspective of the prediction of the abundance
of crop residues. Results proved that PRISMA data are suitable for these tasks, and call for further
investigation to achieve quantitative estimates of specific biophysical variables, also in the framework
of other hyperspectral missions.
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1. Introduction

Non-photosynthetic vegetation (NPV) refers to vegetation that cannot perform a photosynthetic
function, thus including standing dead vegetation, surface plant litter and crop residues. The presence
of NPV on land plays an important role in the cycling of carbon, nutrients and water in both natural and
anthropic environments [1,2]. In the framework of sustainable agriculture, the practice of low-intensity
tillage and the application of crop residues after harvest on agricultural fields contributes to soil
conservation [3], through the interaction of physical, biophysical and chemical processes.

The presence of a layer of dead vegetation on topsoils inhibits moisture evaporation from soil,
provides protection against wind and water erosion [4], reduces soil compaction due to agricultural
machinery and improves the soil structure. Such practise also allows to increase the nutrients content
in soil (organic carbon and nitrogen), control the carbon uptake (including CO; fixing), and regulate
water flows (infiltration, evaporation, runoff) [5-7]. Keeping crop residues is therefore a fundamental
aspect for preserving soil-related agri-ecological conservation functions, based on low-intensity tillage,
permanent soil cover and crop rotation.

The accurate identification of NPV to assess crop residue presence at the scale of single parcels
is crucial for monitoring and verification actions on the implementation of conservation agriculture,
in agreement with the sustainable agriculture pillar of the forthcoming EU Common Agriculture
Policy [8]. This task can improve crop and environmental monitoring only if a correct and timely
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detection and estimation of crop residue (CR) against bare soil (BS) and green vegetation (GV) cover is
achieved [9].

Remote Sensing can provide valuable techniques to assess the presence of NPV over large areas
through the analysis of aerial and satellite data [6,10,11]. Hyperspectral Narrow Bands (HNB) data
proved to be more efficient and reliable than multispectral broadband (MSBB) data [1,12-14] for
two main reasons: (i) hyperspectral sensors allow for the recognition of even subtle absorption
features, as those diagnostic of carbon-based constituents (CBC) of Crop Residues, such as cellulose,
lignin, hemicellulose and starch [15,16]; (ii) CBCs exhibit diagnostic absorption features mainly in
the short-wave infrared (SWIR), a spectral region where most multispectral sensors provide limited
information, having few and coarse resolution bands. Since crop residues show many diagnostic
features in the range 1.6-2.3 um to be distinguished from soils [17], high spectral resolution in the
SWIR is desirable. In particular, cellulose and lignin exhibit well-known diagnostic absorption features
at approximately 2.1 and 2.3 pm [12,15,17].

New opportunities to provide quantitative estimates of NPV may arise from next-generation
HNB space data, either from already availble satellite sensors as ASI-PRISMA or planned for launch,
as the DLR Environmental Mapping and Analysis Program (EnMAP), or under study, such the NASA
Surface Biology and Geology (SBG) observing system and the Copernicus Hyperspectral Imaging
Mission (CHIME). In this framework the scientific community is called to address two specific issues:
(i) CR detection through classification of HNB data in order to provide tools for monitoring and
verification of conservation agricultural practices and (ii) CR quantification through the estimate of
biophysical parameters (cellulose and lignine) as indicators of environmental processes.

In order to address these questions we first made an exploratory analysis comparing PRISMA
data with in situ spectra to verify the presence of the 2.1 um feature diagnostic of cellulose, then we
processed PRISMA data across a series of field surveys in two Italian regions with two main objectives:
(1) NPV detection at the scale of single parcels through object-based classification and (2) spectral
characterisation of the 2.1 um absorption feature in NPV as a first step towards quantitative approaches.

2. Materials and Methods

2.1. PRISMA Satellite Data

PRISMA (PRecursore IperSpettrale della Missione Applicativa) is an hyperspectral satellite system
launched on 22 March 2019 by the Italian Space Agency (ASI) on a low-Earth, Sun-synchronous orbit at
615 km altitude. The mission takes advantage of the combination of: (i) two hyperspectral sensors in the
spectral range 400-2500 nm (around 240 channels, overlapping between 920 and 1010 nm) with a GSD
(Ground Sampling Distance) of 30 m and average spectral resolution less than 10 nm; (ii) a panchromatic
camera working in the spectral range 400-700 nm with a GSD of 5 m (Table 1). The mission program is
mainly addressed to research entities and government agencies to fulfil the requirements of selected EO
applications related to environmental monitoring and protection, and sustainable development [18].
The system is important for the manifold applications requiring HNB data, and as a forerunner
(the meaning of Italian Precursore) for similar forecoming or in-progress missions.

Figure 1 shows the areas of investigation that correspond to two large farms located in northern
Italy (Jolanda di Savoia—]DS, 3800 ha) and in Sardinia (Arborea—ARB, 1000 ha). They show
complex agricultural landscapes with different crops and varieties, as reported in the crop maps
also shown in Figure 1. Two cloud-free PRISMA scenes were successfully acquired in 2019 at ARB
estate (on 24-25 August, hereafter referred as images Al and A2, respectively), and one at JDS on
14 July 2020 (image J1).
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Table 1. Main features of PRISMA hyperspectral mission.

Feature Description
Orbit altitude reference 615 km
Field of View (FOV) 2.77°
Instantaneous FOV 48 mrad
Swath 30 km
Ground Sampling Distance Hyperspectral camera: 30 m; Panchromatic camera: 5 m
Spectral range VNIR: 400-1100 nm (66 bands); SWIR: 920-2500 nm (173 bands)
Signal-to-noise ratio VNIR: >160 (450 at 650 nm); SWIR: >100 (>360 at 1550 nm); PAN: >240
Spectral Width <14 nm
Spectral Calibration Accuracy +0.1 nm
Radiometric quantization 12 bits
Repeat cycle 29 days (450 orbits)
Relook time <7 days
Lifetime 5 years
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Figure 1. Study areas of the PRISCAV project: their geographic framework, crop maps and false colour
composite PRISMA data used in this study.

2.2. PRISCAV Fiducial Reference Measurements

Within the PRISMA mission framework, the project PRISCAV (PRISMA mission cal/val
scientific activities) is aimed at evaluating sensor performance, products and processor by the
use of Fiducial Reference Measurements (FRM) collected at the same time of satellite overpasses.
FRM are spectroradiometric observations of Elementary Sampling Units (ESUs) placed at selected sites.
Field measurements procedure has been specifically designed for PRISCAV, according to the protocols
of Quality Assurance framework for Earth Observation (QA4EQO) endorsed by the Committee on
Earth Observation Satellites, and the ESA project FRM4VEG (Fiducial Reference Measurements for
Vegetation, originally designed for Sentinel-2, -3, and PROBA-V). This protocol at agricultural sites
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consisted in measuring reflectance (obtained as the ratio of the radiance reflected from a Spectralon
reference panel and from the target in a hemispherical/conical configuration, according to [19]) over
13 to 17 points distributed as in Figure 2. Measurements were made with a portable Spectral Evolution
SM-3500 spectroradiometer operating in the wavelength interval 350-2500 nm, with spectral resolution
ranging from 3.5 to 10 nm, equipped with 25° foreoptic. 10 instrument scans per point were acquired
with nadiral view at 1.5 m distance from the target surface. Measurements were collected in 2 h time
spanning each satellite overpass. Contemporary to PRISMA overpasses, 9 ESUs were measured and
archived at ARB test site, while 5 ESUs were collected in the field at JDS.

60m
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© Y @ least 50mfrom
o o) field edges
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Figure 2. PRISCAV Elementary Sampling Unit setup: each dot is a measurement point (sequence reference
panel—target), green dots are the mandatory, while yellow ones are optional.

2.3. Data Processing

The different data sets exploited in this study-field FRM data and PRISMA imagery-with their
characteristics and analysis are summarized in Table 2. PRISMA data were downloaded as L1 products
(top-of-atmosphere calibrated radiance), then converted to ENVI format and re-projected with a
geographic lookup table (GLT) Bowtie Correction through prismaread, an R-based open-source software
properly developed by [20]. Prismaread also extracts ancillary information related to atmospheric
correction (band centers and FWHM, Sun and View angles, etc.), which has been performed with
ATCOR radiative transfer code (version 9.3.0).

As preliminary analysis, the FRMs of different targets (ESU) were averaged and compared to
bottom-of-atmosphere PRISMA spectra in the pixels corresponding to the position of each ESU
in the field, to assess the relevance of PRISMA signal between 2.0 and 2.2 pm. Subsequently,
reflectance spectra in the selected interval were modelled as uni-variate quadratic functions of the
wavelength: F(A) = aA? + bA + ¢, where A is the wavelength. If the absorption is present, a coefficient
(Coeff—a hereafter) is positive, otherwise it is negative.

Table 2. Characteristics of data set and analysis. Meaning of abbreviations: (FRM) in situ
spectroradiometric Fiducial Reference Measurements, (SAT) contemporary acquisition of PRISMA data,
(FA) Feature Analysis on cellulose absorption band, (DET) mapping category (i.e., NPV), and (CHA)
characterisation by application of the Gaussian spectral optimization modelling.

Site/Date Type Land Cover FRM SAT FA DET CHA
VEG alfalfa X - X - -
2AOI}I93 04 July NPV harvested durum wheat X - X - X
SOIL  seedbed (secondary tillage) X - X - -
VEG alfalfa, bean X X X - -
QRB 2%_220519 NPV  harvested wheat, unc. land X X X X X
ugus SOIL  bare soil (primary tillage) - X X - -
VEG alfalfa X X X - -
]21325014 July NPV  harvested wheat and barley X X X X X
SOIL  bare soil (primary tillage) X X X - -
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This approach proved to be effective also for NPV detection on PRISMA imagery (first objective of
the study). Based on this algorithm, each parcel has been classified as “NPV covered” if the Coeff—a was
positive, otherwise “OTHER”. Since the relevant information for monitoring conservation agri-practices
is requested at the scale of single parcels, the classification approach was object-based and the known
field boundaries were used to extract average spectral signatures per parcel. To avoid border and
adjacency effects an internal buffer of 30 m was applied per parcel. Figure 3 shows how the approach
works on the mean spectral signatures of three fields presenting different crop conditions in PRISMA
J1image: CR(panel a), BS (panel b) and GV (panel c).

Coeff-a > 0 Coeff-a < 0 Coeff-a < 0

140 a) 60 | 100- |
130 50 90-
120 40 80-

2.0 2.1 2.2 2.0 2.1 2.2 2.0 2.1 2.2

Wavelength (um)

Figure 3. Examples of quadratic fitting of reflectance spectra of (a) crop residues CR, (b) bare soil BS,
and (c) green vegetation GV.

To perform spectroscopic characterisation of cellulose absorption band (second objective),
the Exponential Gaussian Optimization (EGO) approach [21,22] was applied. For this analysis, we used
a dataset composed of PRISMA spectra extracted from 4 parcels of ARB estate in Al and A2 images,
and 3 parcels of JDS estate, in J1 image, where CR conditions were observed at the time of the survey.
15 spectra per parcel were selected and EGO modelling applied in the wavelength interval 2.0-2.2 pm.

EGO models the logarithmic reflectance of absorption features as a function of wavenumbers,
as shown in Figure 4b. As part of the exponential Gaussians family, each EGO profile is fully described
with its: centre position, width, and depth (as a basic Gaussian function), together with two additional
parameters which account for typical non-Gaussian behaviours of absorption bands in the reflectance
domain, interpreted as asymmetry or saturation effects. When the EGO extra parameters approximate
zero, the absorption band can be modelled as a single Gaussian superimposed on a proper background.
Continuum is modelled as a linear function of wavenumber, and thus includes slope and intercept as
additional parameters. The analytical EGO routine has been implemented in R, and a Graphical User
Interface is also provided for running the optimization, which is based on a Levenberg—-Marquardt
approach. The goodness of fit (GOF) was evaluated through several metrics, such as the standard
error of the estimate (SEE), the coefficient of determination and adjusted coefficient of determination
(R? and Radj?, respectively) for multiple regressions, the computation of the Hessian matrix, and the
Akaike’s Information Criterion (AIC). In this study the target absorption band, as obtained from Al,
A2 and J1 images, has been modelled with a basic Gaussian and a linear continuum.
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Figure 4. Evidences of absorption feature at 2.1 pm in field spectra collected on July 4th at ARB test
site: as shown in panel (a) the feature is absent for alfalfa and seedbed soil, while it is present for crop
residues. (b) The 2.1 pm feature modelled with EGO and results shown.

3. Results

3.1. Exploratory Analyses on Cellulose Absorption Band on PRISMA Data

In order to accomplish the first objective of the present study, the spectra collected in the field at
both target sites were analysed to identify spectral features diagnostic of crop residues. One of the
features clearly recognized as a candidate for detection of NPVs is the absorption band centered at
2.1 pm [6]. This feature only appears in CR targets, while it is absent in GV and BS targets, as shown in
Figure 4a.

Comparison of PRISMA data with in situ measurements on match-ups proved overall a very
good agreement on different targets, and this general behaviour is respected also in the band of interest
for NPV (Figure 5). Therefore, that particular absorption band has been further investigated to allow
NPV detection from PRISMA data and in the perspective of a quantitative analysis of CR.
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Figure 5. Comparison of PRISMA (Al image on the left and J1 image on the right) and FRM reflectance
spectra acquired on different targets: (a) bean, (b) bare soil, (c,d) NPV. Average field measurements are
displayed with solid coloured lines, their standard deviations as shaded areas, and PRISMA spectra
are in solid black lines.
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3.2. NPV Detection at Field Level from Satellite Data

On the base of the spectral behaviour in the 2.0-2.2 um interval, PRISMA images A1l and ]J1 have
been classified at the scale of parcel, as described in Section 2.3, and the results evaluated by comparison
with crop maps, used as reference ground truth. Source images are shown in Figure 1 in CIR composite
(R band 52-855 nm, G band 32-650 nm and B band 20-546 nm). Since data were acquired in full
summer, fields highlight the condition where winter crops (mainly cereals) present either senescent
vegetation, crop residues after harvest or bare soil due to land preparation (i.e., first tillage) for the
following crop season.

Figure 6 shows statistics of (Coeff—a) for images Al (left panel) and J1 (right panel).
Positive Coeff—a values reflecting the presence of cellulose absorption at 2.1 pm are achieved for
parcels where winter cereals (durum wheat, soft wheat and barley) were already harvested and CR cover
was present in summer, at the moment of PRISMA overpass. The remaining parcels were in vegetative
stage or in bare soil conditions, as shown by negative Coeff—a values. In image Al (left panel) also
farm areas set aside with natural herbaceous vegetation and ryegrass show positive Coeff—a values.
Direct observations during field surveys confirmed that these areas actually presented NPV cover:
ryegrass was already mowed leaving dry vegetation, while uncultivated parcels showed a majority of
senescent vegetation.

Figure 7a shows the results of object-based classification of PRISMA Al image, according to
Coeff—a values, as calculated from average PRISMA spectra per parcel. Parcels achieving positive
Coeff—a are labelled as NPV and shown in red colour, otherwise in blue. Figure 7b shows a false
color composite of PRISMA A1 image overlaid with parcel boundaries (black lines). The parcels with
Durum wheat growings (highlighted in yellow) were already harvested and thus covered with CR.
By looking at the Coeff—a values computed for those parcels (panel c), four of them show negative
values and thus cannot be classified as NPV cover. Nevertheless, those parcels were already ploughed
at the time of satellite overpass and therefore were bare soil surfaces, as directly observed during
field survey.
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Figure 6. Distribution of Coeff—a by crop categories in the two farms. On each target site,

boxplots represent the distribution of Coeff—a values, as computed on average spectra per parcel

and aggregated by crop types. Different colours represent major crop categories.
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Figure 7. (a) Parcel-based NPV map; (b) Pseudocolor CIR composite of PRISMA Al image, with parcel
boundaries of Durum wheat growings highlighted in yellow; (c) Coeff—a values computed by modelling
the average spectra per parcel only for Durum wheat growings. Parcel IDs are shown in (b) and as
X-axis in (c).

3.3. Spectroscopic Characterisation of Cellulose Band in PRISMA Data

The potential of PRISMA data to provide indicators of NPV presence was evaluated through

modelling the cellulose absorption band with the EGO approach, as described in Section 2.3 and shown

in Figure 4b.

Figure 8 displays the results of EGO modelling, at both test sites for winter cereal harvested fields

(IDs on X-axis). The different species/varieties in the two sites are highlighted with different gray
tones background: Durum wheat is present in IDs: 704, 705, 706, 711 and 358, Barley in ID 331 and
Soft wheat in ID 45. The results are very consistent and summarized below:

feature centres are slightly variable within each site, while they are consistent in images Al
and A2. This evidence could be related to the chemical composition of the residues in the two
farms or to the influence of the soil background on the spectra, and therefore is worth of further
investigation;

variations of feature widths appear related to the investigated species: the feature is broader for
Barley and Soft wheat with respect to Durum wheat, in spectra belonging to both sites;

as expected, a large variabilty is observed in feature depth, because it is generally related to the
abundance of the molecule responsible of the observed spectral feature (cellulose in this case).
Thus, feature depth shows to be sensitive to the CR forerunner (Barley and Soft wheat have deeper
bands than Durum wheat), and likely to the crop primary productivity (variations within the
Durum wheat species). In case of Durum wheat growings, the lowest feature depth observed in
parcel ID711, could be related to the different soil composition of that field which has a higher
amount of sand over loam and clay than the other parcels.

continua slopes vary with species (as for J1 data), while when analysed on the same target in two
consecutive days (i.e., Durum wheat in A1 and A2) they show a sensitivity to the viewing geometry
(Al and A2 images have been acquired with opposite view angles: —17.6 and +13.5, respectively).
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Figure 8. Results of EGO modelling of PRISMA spectra on ARB and JDS test sites. The different panels
in clockwise order show the distribution of the EGO parameters: band centre position, band width,
continuum slope and band depth; on X-axis are the field IDs; orange, blue and yellow boxes refer to
the A1, A2 and J1 images, respectively. Red dots indicate outliers.

4. Discussion

The approaches generally used for NPV detection from optical remote sensing can be grouped
into two main types: segmentation of empirical spectral indices, and exploitation of linear spectral
unmixing [4,7,9-12]. Both methods have advantages and drawbacks, which have been extensively
discussed in [6]. The spectral indices developed so far for NPV estimation in hyperspectral remote
sensing are red-edge based or related to the absorption features of cellulose and lignin in the SWIR
domain. The latters, which are of interest for the present study, are focused on the computation of
band depths, via band ratios or continuum removal techniques [6].

Although functional to the purpose of NPV detection, these approaches use only few channels,
and thus do not fully exploit the potential of HNB sensors. The present work demonstrates that (1) the
presence of NPV cover can be detected through the modelling of the spectral shape in the 2.0-2.2 um
range of PRISMA data, and (2) the whole informative content of the cellulose diagnostic absorption
feature in the SWIR region can be evaluated through EGO modelling.

As shown in Figure 7, the shape of spectra in the wavelength range of interest, when properly
modelled, can be used to detect the presence of NPV on ground. In particular, the Coeff—a has
demonstrated to be a reliable index for object-based classification of single parcels in croplands.
The technique of image segmentation used here is based on physical boundaries (which are known
from available crop maps in the study areas) and on the assumption that each parcel is a relatively
homogeneous region. However, known techniques of object-based image segmentation (as listed
in [23]) could be applied in areas where such information is not provided. The main advantages of
object-based classification over per-pixel approaches in croplands are the faster computation that
reduce time costs and the availability of unique information per parcel, which is the main spatial
segmentation unit for implementation of CAP policies [24].

The second point is the retrieval of descriptive parameters of diagnostic features (including the
continuum shape) with EGO modelling. As shown in Figure 8, it has the potential to discriminate
different covers originating NPVs, to provide information on the soil properties, and to overcome the
effects of the viewing geometry.
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Indeed the approach adopted here allows to distinguish NPV from bare soil and green vegetation
cover at the scale of the single parcel. In the framework of monitoring agronomic practices,
further investigations are required to assess spectral differences between senescent vegetation, not yet
harvested, and crop residues. Multitemporal approaches can also be used to highligth diagnostic
changes of NPV on the same spatial target. Moreover, the influence of soil and weed/vegetation
regrowth are aspects to be fully evaluated in order to quantify omission errors of classification,
in particular for object-based approaches. More sophisticated machine learning classification
techniques will be tested to compare performance and exportability with respect to the physically
rule-based one tested here. In our view EGO modelling of absorption region is a way to extract
higher level spectroscopic parameters to be used as input variables in machine learning regressive
approaches [25]. In order to accomplish quantitative estimates, more extensive field work to qualify
absolute crop residue presence and its fractional cover with respect to soil background and vegetation
is needed.

5. Conclusions and Perspectives

The analysis presented here is the first attempt to perform the retrieval and the spectral
characterization of NPV from PRISMA hyperspectral satellite data, demonstrating their suitability for
NPV detection and classification. By modelling the absorption band diagnostic of cellulose in NPVs,
we retrieved a number of parameters which fully characterize the spectral feature and potentially
can be used to estimate cellulose content for quantitative purposes. Such capabilities are particularly
important in the framework of new and forthcoming HNB missions, since PRISMA is the first of a series
of hyperspectral satellites that will permit the estimation and prediction of NPV abundance overcoming
the limitations of actual MSBB missions in NPV mapping and quantification. Further research should be
now directed to developing retrieval methods capable of quantifying cellulose abundance, evaluating
the differences among species, and separating the effects of factors such as soil moisture and soil
background. The deployment of large scale field experiments, with associated extensive soil and
biomass sampling, will permit to build robust linkages between specific biophysical and biochemical
variables and spectral features, within inference-based or machine learning frameworks.

Author Contributions: Conceptualization, M.P,, L.P. and M.B.; methodology, M.P,, L.P,, B.G., M.B.; software, L.P,,
B.G., L.B.; data collection, M.P,, L.P,, B.G., L.B., M.B.; investigation, M.P,, L.P,, B.G., L.B., M.B.; writing—original
draft preparation, M.P,; writing—review and editing, M.P,, L.P,, B.G., L.B., M.B. All authors have read and agreed
to the published version of the manuscript.

Funding: This study was supported by the Italian Space Agency (ASI) in the framework of PRISCAV project
(grant nr. 2019-5-HH.0).

Acknowledgments: The Authors would like to thank Lorenzo Genesio and Franco Miglietta (CNR-IBE),
and Roberta Falone and Fabrizio Tempesta (Telespazio) for their support for satellite data procurement,
and Francesca Sanfilippo (CNR-IBE) for field data collection; we thank also Ettore Lopinto, Rosa Loizzo and
Rino Lorusso from ASI for valuable discussions on PRISMA products. We are also very grateful to Giuseppe
Ledda, Enrico Costa, Lorenzo Monopoli and Donato Cillis from Bonifiche Ferraresi S.p.A for their support in the
supervision of field campaigns.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

ARB Arborea

BS Bare Soil

CBC Carbon-Based Constituents
CR Crop Residues

GV Green Vegetation

JDS Jolanda di Savoia

HNB Hyperspectral Narrow Bands

MSBB Multispectral Broadband
PRISMA  PRecursore IperSpettrale della Missione Applicativa
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