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Abstract: Our society’s growing need for mineral resources brings with it the associated risk of
degrading our natural environment as well as impacting on neighboring communities. To better
manage this risk, especially for open-pit mine (OM) operations, new earth observation tools are
required for more accurate baseline mapping and subsequent monitoring. The purpose of this
paper is to propose an object-oriented open-pit mine mapping (OOMM) framework from Gaofen-2
(GF-2) high-spatial resolution satellite image (HSRSI), based on convolutional neural networks
(CNNs). To better present the different land use categories (LUCs) in the OM area, a minimum
heterogeneity criterion-based multi-scale segmentation method was used, while a mean area ratio
method was applied to optimize the segmentation scale of each LUC. After image segmentation,
three object-feature domains were obtained based on the GF-2 HSRSI: spectral, texture, and geometric
features. Then, the gradient boosting decision tree and Pearson correlation coefficient were used as
an object feature information reduction (FIR) method to recognize the distinguishing feature that
describe open-pit mines (OMs). Finally, the CNN was used by combing the significant features
to map the OM. In total, 105 OM sites were extracted from the interpretation of GF-2 HSRSIs and
the boundary of each OM was validated by field work and used as inputs to evaluate the open-pit
mine mapping (OMM) accuracy. The results revealed that: (1) the FIR tool made a positive impact
on effective OMM; (2) by splitting the segmented objects into two groups, training and testing sets
which are composed of 70% of the objects, and validation sets which are formed by the remaining 30%
of the objects, then combing the selected feature subsets for training to achieve an overall accuracy
(OA) of 90.13% and a Kappa coefficient (KC) of 0.88 of the whole datasets; (3) comparing the results
of the state-of-the-art method, support vector machine (SVM), in OMM, the proposed framework
outperformed SVM by more than 7.28% in OA, 8.64% in KC, 6.15% in producer accuracy of OM and
by 9.31% in user accuracy of OM. To the best of our knowledge, it is the first time that OM information
has been used through the integration of multiscale segmentation of HSRSI with the CNN to get OMM
results. The proposed framework can not only provide reliable technical support for the scientific
management and environmental monitoring of open pit mining areas, but also be of wide generality
and be applicable to other kinds of land use mapping in mining areas using HSR images.
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1. Introduction

Open-pit mining can damage the natural environment, and is prone to cause water pollution,
air pollution, solid waste pollution, and geological disasters [1–5]. Mine environmental monitoring,
mainly open-pit mine (OM) monitoring, has always been the top priority of mine governance and
reclamation. Currently, China is speeding up green mine construction and strengthening the mine area
ecological protection. Obtaining detailed information of OM is essential for the national project.

Traditional remote sensing methods addressing OM problems were mainly based on combining
visual interpretation and field surveys. The results provided by the analysts are commonly subjective,
time-consuming, and costly, even if the results are reliable [6]. Nowadays, with the development of
high spatial resolution satellite imagery (HSRSI) and machine learning methods, many researchers
have applied machine learning methods to classify the land cover in OM areas [7–9] and most of
the algorithms are pixel-based [10–15].

Although the pixel-based open-pit mine mapping (OMM) approaches have achieved satisfactory
OMM results, they usually ignore geometric and contextual information in multi-source image data,
especially by using HSRSI [16]. Recently, some researchers have applied object-oriented methods
where the units are objects of image, which are composed of pixels with similar spectral characteristics,
to map the OM area [17–20]. Effective object-oriented open-pit mine mapping (OOMM) needs to
define object-features from remote sensing and thematic data, e.g., information of image band, texture,
and geometric features, and the number ranges from several to dozens. Nonetheless, for feature
selection, there is no general rule that will affect the OOMM accuracy. When many features are available,
it is a complicated process to extract appropriate features for different research areas, and a variety of
OOMM methods can also be utilized [21].

Recently, one of the newest hot topics in machine learning and pattern recognition is deep learning.
In deep learning, the most discriminative and representative features can be hierarchically learnt in
end-to-end fashion [22]. This breakthrough was due to the interest in modeling advanced feature
representations using multilayer neural networks without the need to manually design features or
rules. A popular deep learning method, convolutional neural networks (CNNs), has achieved the latest
results in multiple fields, e.g., visual recognition [23], image retrieval [24], and scene annotation [25].
Due to its advantages in advanced scene understanding and feature representation, CNN shows great
potential in several remote sensing tasks, such as vehicle detection [26,27], road network extraction [28],
remotely sensed scene classification [25,29], and semantic segmentation [30].

In this paper, a new effective OOMM framework for Gaofen-2 (GF-2) HSRSI based on CNNs
is proposed. First, a multi-scale segmentation (MSS) method is used to extract three object-feature
domains from the GF-2 HSRSI: spectral, texture, and geometric features. Then, gradient boosting
decision tree (GBDT) and the Pearson correlation coefficient are used as an object feature information
reduction (FIR) tool to recognize the important features that describe OMs. Finally, the CNN was used
by combing the significant features to map the OM, and the mapping results were compared with
that of the support vector machine. In total, 105 OM sites were extracted from the interpretation of
GF-2 HSRSI and the boundary of each OM was validated by field work and used as inputs to evaluate
the OMM accuracy. This research aims to explore the applicability of FIR methods and CNN algorithm
under an object-oriented framework for OMM using ‘GF-2’ HSRSI.

The remainder of the paper is organized as follows: Section 2 describes the study area, the data
used in this study, and introduces the detailed OOMM framework; Section 3 presents the experimental
results; discussions are given in Section 4, followed by conclusions in the last section.

2. Materials and Methods

2.1. Study Area

The study area is located in the north of Yuzhou City, Henan Province, between 113.375◦E to
113.561◦E and 34.256◦N to 34.352◦N with an area of 102.59 km2 (Figure 1). The terrain types in this area
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are mainly mountains and hills. The elevation of this area ranges from 128 to 779 m with an average
of 454 m. The area has a warm temperate monsoon climate in the north, with four distinct seasons.
The study area is sited in the transitional zone between the Yudong Plain and the Funiu Mountain
Range. It is Songying platform uprise, with Baisha and Yuzhou city syncline, Huishan, Fenghouling
anticline, and Jiaozishan anticline. Yuzhou City is rich in mineral resources, while the main mineral
deposits are coal, bauxite, iron, ceramic clay, limestone, sulfur, and so on, and most of them are open-pit
mining. Due to many mountains and hills, rich precipitation, and open-pit mining activities, it may
cause a lot of problems to the environment, which conflicts with the green mining policy of the Chinese
government. The mapping of the OM is necessary for strengthening the ecological construction of
mines in the future studies and government decision makers.

Figure 1. Location of study area (R: Band4, G: Band3, B: Band2 of GF-2 image).

2.2. Data Sources

A GF-2 HSRSI captured on 16/04/2018 was employed in this study, which has four multispectral
bands (Red, Green, Blue, and Near Infrared) with a spatial resolution of 4 m. Land use categories
(LUCs) of the study area were classified into seven dominating groups, including OM, waste-dump area
(WDA), buildings (BUI), vegetation (VEG), road (ROA), water (WAT), and bare soil (BAS), according to
the land use map provided by the Geological Environmental Monitoring Institute of Henan Province.

OM areas in this study area were visually identified on GF-2 images. Then, a series of field surveys
were carried out from 27 August to 26 September 2018, with the help of Geological Environmental
Monitoring Institute of Henan Province. After the field surveys, 105 Oms, which covered a total area
of 9.36 km2, were mapped, accounting for 9.12% of the area of the study area. The largest area of OM is
0.65 km2 while the smallest is 1161 m2. Finally, all the mapped OMs were subsequently digitized and
rasterized into the same resolution (4 × 4 m) as the HSRSI used for the study in Environmental Systems
Research Institute’s ArcGIS software (Version 10.3.0). Figure 2 shows the open-pit visual interpretation
key and field photo of the field work in the study area of this paper.
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Figure 2. Visual interpretation key and field photo of open-pit mine. (a) Visual interpretation key of
open-pit mine; (b) field photo of open-pit mine.

2.3. Methodology

The proposed OOMM framework (see Figure 3) is composed of three steps: image segmentation,
feature selection, and open-pit mine mapping. In the first step, image objects were obtained from GF-2
HSRSI by using the MSS method based on an optimal segmentation scale selection algorithm. Then,
a sample set was created, and the objects in the sample set were labeled by using the centroid inclusion
principle, in which their centroids belong to a certain LUC, by combing the objects with the existing
OMs and land use vectors.

In the second step, a FIR method based on the GBDT and Pearson correlation coefficient was utilized
to reduce the feature sample data size. The importance of features was computed, and the features
with the least importance values were dropped. Then, the relationship among these remaining features
were analyzed and the most relevant features were used in the OMM procedure.

In the final OMM progress, after reducing the feature sets, two thirds of the objects were assigned
as training and testing sets (TTS) and the remaining one third as validation sets (VS). Then, a CNN
model was applied to classify the study area, and finally, the accuracies of classification were assessed.

2.3.1. Image Segmentation

For object-oriented methods, the necessary and first pre-condition is image segmentation, because
the contour quality (such as shape and size) of the target object directly affects the subsequent image
classification accuracy [31]. There are several segmentation approaches, but multi-scale segmentation
(MSS), which can overcome the limitation that a single segmentation scale cannot, by extracting all
types of the target object and considering the characteristics of multiple layers and multiple patterns
on the actual surface [32], is selected in this study.

A bottom-up region-merging technique is used to form an object in the MSS procedure,
where the smallest object contains one pixel. Based on the chosen scale (ScP), shape (ShP), and color
(CP) parameters, which define the growth in heterogeneity between adjacent image objects, smaller
image objects are merged into larger ones. It is known that a larger ScP leads to a larger image
object, which may cause over-segmentation, while a smaller ScP results in a small size image object,
which may lead to under-segmentation [33,34]. ScP is an abstract term that determines the maximum
allowable heterogeneity in the resulting image object [35]. The other two important parameters are
CP (representing the uniformity of the spectrum) and ShP (used to define the texture uniformity of
the resulting image object). The weights of CP and ShP range from 0 to 1 and their weights are sum to
1 in the eCognition® software (Version 9.0.1). ShP is generally split into two categories: smoothness,
which is employed to optimize resulting image objects by considering the smoothness of their borders
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within the ShP; and compactness, which is employed to optimize the resulting image objects in regard
to the overall compactness within the ShP. Besides these three parameters, we have to set a threshold t
for the bottom-up merge process. The increase in heterogeneity has been calculated before fusing two
adjacent objects. If the result goes beyond the threshold t, the segmentation stops.

Figure 3. Flowchart of the proposed open-pit mine mapping framework.

In order to obtain good segmentation results, the segmented image objects can completely
represent the contour information of a target ground object, and at the same time, the interior of
the target ground object will not be segmented too “fragmented”. The optimal segmentation scale of
the object is calculated. In this study, a mean area ratio (MAR) method was used to calculate the best
ScP by using Equation (1). This method usually selects several targets in a certain type of ground
objects to replace all the ground objects of the type, and then calculates the MAR of each type according
to the Equation (1) to determine the optimal segmentation scale.

R =
1
m

∑m

i=1

STi
√

niSOi

, (1)
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where R is the mean area ratio, m is the total number of LUC of the same type in the entire image, ni is
the number of objects generated by the i-th target feature segmentation, and its value is greater than
or equal to 1, STi indicates the actual area of the i-th target LUC while SOi is the total area of the i-th
garget objects generated by the image segmentation.

2.3.2. Object Features Calculation

In this study, a total of 58 features, which was composed of three object-feature domains (OFDs),
which were layer features (LFs), texture features (TFs), and geometry features (GFs) were extracted
from the GF-2 HSRSI by utilizing the eCognition® software (Version 9.0.1) (see Table 1) [36,37].

Table 1. Object features employed in this research. OFDs: object-feature domains; LFs: layer features;
TFs: texture features; GFs: geometry features.

OFDs (No.) Features Names

LFs (32)

Stdv_(1,2,3,4), Mean_(1,2,3,4), Ratio_(1,2,3,4), Brightness, MaxDiff,
Shadow vegetation index, Normalized difference vegetation index,
Normalized difference water index, Soil brightness index, Soil adjust
vegetation index, Ratio vegetation index, Mean Diff.
to Neighbors_(1,2,3,4), Mean Diff. to brighter Neighbors_(1,2,3,4),
Mean Diff. to darker Neighbors_(1,2,3,4)

TFs (12)
GLCMall dir. (Angular second moment, Entropy, Stdv, Contrast,
Dissimilarity, Homogeneity, Mean, Correlation)
GLDVall dir. (Angular second moment, Entropy, Contrast, Mean)

GFs (14)
Area, Border length, Border index, Length, Width, Length-width
ratio, Shape index, Roundness, Elliptic fit, Rectangular fit,
Compactness, Main direction, Asymmetry, Density

The stdv value is the standard deviation of all pixels’ intensity values that form an image object.
The Ratio value is the average value of the image object layer divided by the sum of the average value
of all layers. The MaxDiff value is the absolute value of the difference between the maximum object
average value (max(Oi(v))) and the minimum object average value (min(Oi(v))) in each layer, divided

by the object brightness B, which is defined as the sum of the object averages in the same layer (Oi(v))

divided by the corresponding number of layers (nv).

MaxDi f f =

∣∣∣max(Oi(v)) −min(Oi(v))
∣∣∣

B
, (2)

B =
1
nv

∑nv

i=1
(Oi(v)). (3)

Shadow vegetation index (SVI), normalized difference vegetation index (NDVI), normalized
difference water index (NDWI), soil brightness index (SBI), soil adjust vegetation index (SAVI), and ratio
vegetation index (RVI), is calculated by using Equations (4)–(9):

SVI = NDVI× ρNIR, (4)

NDVI =
ρNIR − ρR

ρNIR + ρR
, (5)

NDWI =
ρG − ρNIR

ρG + ρNIR
, (6)

SBI =
√(
ρR

2 + ρG
2 + ρNIR

2
)
/3, (7)
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SAVI =
ρNIR − ρR

ρNIR + ρR + L
(1 + L), (8)

RVI =
ρNIR

ρR
, (9)

where ρNIR, ρR, ρG is the reflectance of near-infrared, red, and green band, respectively.
Mean Diff. to Neighbors is the mean difference between the feature value of an image object

and its neighbors of a selected class. Mean Diff. to brighter/lower neighbors is the mean difference
between the feature value of an image object and the feature values of its neighbors of a selected class,
which have brighter/lower values than the image object itself.

The gray level co-occurrence matrix (GLCM) and gray level co-occurrence vector (GLCV) formed
the texture features in this study. Eight- and four-connected textures were calculated from GLCM and
GLCV, respectively [38]. In this research, we calculated only the grey-level’s co-occurrence frequencies
for all directions of neighboring pixels in symmetric matrices, and a sum of all directional GLCMs
(GLCMall dir.) and GLCVs (GLCVall dir.) were used to directly calculate eight and four rotation-invariant
texture measures of each band per image object using eCognition® software [39].

The geometrical features used in this study were area, border length, border index, length, width,
length-width ratio, shape index, roundness, elliptic fit, rectangular fit, compactness, main direction,
asymmetry, and density. The border length of an image object is defined as the sum of the image
object edges shared with other image objects or located at the edge of the entire scene. The border
index feature is calculated as the ratio between the border lengths of the image object and the smallest
enclosing rectangle. The length-width ratio is the ratio of length and width of an object. The shape
index is calculated by dividing the boundary length feature of the image object by four times the square
root of its area. The roundness feature is calculated by the difference of the enclosing ellipse and
the enclosed ellipse. The calculation of elliptic fit is based on an ellipse with the same area as the selected
image object. The calculation of the rectangular fit feature is based on a rectangle with the same area as
the image object. The compactness feature of an image object is the product of the length and the width,
divided by the number of pixels. The definition of the main direction feature of an image object is
the direction of the eigenvector that belongs to the larger of the two eigenvalues. The asymmetry
feature describes the relative length of an image object, compared to a regular polygon. The density
feature is calculated by dividing the number of pixels forming the image object by its approximate
radius according to the covariance matrix.

2.3.3. Feature Selection

Large feature sets may cause numerous problems in the classification process, such as inefficiency
due to the large number of resources [40], the accuracy loss when the feature number is significantly
larger than the optimal feature number [41], and unrelated inputs features that may cause the model to
over-fit. Thus, eliminating the redundancy or relevance of features in the input layer is very crucial to
improve the classification accuracy of a specific research area.

In this study, the GBDT based on the LightGBM library in Python language was used to calculate
the importance value of each feature [42,43]. The GBDT method is a combination of decision tree and
ensemble learning techniques and was designed to improve the performance of a single predictive
model by combining many models [44]. It is a linear training process that trains multiple trees in series.
Each tree in the model learns the classification results and residuals of all previous trees. The final
result is a weighted accumulation of the node values of all decision trees. Then, the importance
values of all features are normalized and are converted into importance percentages. The features
with an importance value of 0 indicate that they have no contribution to the classification prediction
process and need to be removed. In addition, according to specific research needs and accuracy
requirements, the cumulative importance threshold can be artificially set by using the trial-and-error
method, and the features beyond the threshold range can be removed. After that, a collinearity analysis
of the remaining features was carried out by using the Pearson correlation coefficient, because even
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though features play an important role in classification, there will still be cases where some features
are strongly related.

2.3.4. Convolutional Neural Network (CNN)

A CNN is a multilayer feedforward neural network specifically intended for handle large-scale
image or sensory data in the multiple arrays formation by taking global and local stationary
characteristics into consideration [45]. The main components of a CNN usually consist of multiple
layers interconnected with each other via a group of learnable weights and biases [46]. Each layer is
filled with small patches of images that survey the entire image to acquire distinct local and global scale
features. These image patches are generalized by other convolutional layers and pooling/sub-sampling
layers within the CNN framework until advanced features are obtained and fully connected and
classified [47]. In addition, there may be several feature maps after each convolution, and convolution
kernels weights in the same feature map are shared. With this setting, the network can learn different
functions while keeping the parameters number controllable. In addition, non-linear activations
(such as sigmoid, hyperbolic tangent, linear element correction) functions were utilized outside
the convolutional layer to enhance non-linearity [48]. In this paper, the Keras library in the Python
language was applied to develop the CNN algorithm [49].

2.3.5. Support Vector Machine (SVM)

SVM is a multi-variable non-linear machine learning method with advantages of quick training
converge, high training efficiency and good generalization performance [50]. SVMs are mainly
constructed based on the structured risk minimization principle and statistical learning theory.
Generally, the input variables are mapped from a relatively low feature space to a higher-dimensional
feature space through the kernel function of the SVM model to solve the problems of linear inseparability
and data dimension calculation. The radial basis function (RBF) is selected as the kernel function of
the SVM in this study, because of its high efficiency of nonlinear mapping [10]. Besides the selection
of the kernel function, two other parameters need to be set appropriately in the SVM; the penalty
term C and the kernel function parameter gamma. A cross-validation stage method, which was
proposed by [51], is recommended for the optimal combination of these three parameters. In this paper,
the Sklearn library in Python language was used to develop the SVM algorithm [52].

2.3.6. Accuracy Assessment

To assess the performance of the proposed CNN-based OMM (CNNOMM) method, four standard
evaluation metrics based on the confusion matrix are used. These evaluation metrics are overall
accuracy (OA), Kappa coefficient (KC), producer accuracy (PA), and user accuracy (UA), and the values
of these evaluation metrics were compared with that of SVM. OA indicates the overall performance of
the models. KC was used to evaluate the reliability of the models. PA shows how often real ground
samples are correctly shown on the classified map while UA indicates how often the class on the map
will actually be present on the ground. Moreover, the McNemar’s test is also used to test whether there
is a statistical significant difference between the CNNOMM method and the SVM-based OMM method.
The McNemar’s test is a renowned statistical test for testing if the proportions of two dichotomous
variables are equal [53].

3. Results

3.1. Results of Image Segmentation

The trial-and-error method is used to find the suitable CP, ShP, smoothness, and compactness
parameters for the implementation of MSS using eCognition® software. In order to keep the segmented
image objects representing the contour information of a target ground object, the CP, ShP, smoothness,
and compactness values were set to 0.9, 0.1, 0.5 and 0.5, respectively (Table 2).
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Table 2. Parameters utilized in multi-scale segmentation (MSS). ScP: scale parameter; CP: color parameter;
ShP: shape parameter; OM: open-pit mine; WDA: waste-dump area; BUI: buildings; VEG: vegetation;
ROA: road; WAT: water; BAS: bare soil.

Segmentation Level Objects ScP CP/ShP Smoothness/Compactness

Level-1 BUI, ROA 50 0.7/0.3 0.5/0.5
Level-2 OM, WDA 90 0.7/0.3 0.5/0.5
Level-3 WAT, VEG, BAS 120 0.7/0.3 0.5/0.5

The optimal ScP parameter of each LUC was determined by using the MAR method. The map of
MAR values vary with the ScP was shown in Figure 4.

Figure 4. Map of mean area ratio (MAR) values vary with the Scale parameter (ScP).

Figure 4 indicates that the optimal ScP values of the seven LUCs are almost different, but they are
clustered around three values, which are 120 of ScP value (WAT, VEG, and BAS), 90 of ScP value for
OM and WDA, and 50 for the BUI and ROA. These seven LUCs can be segmented in three different
levels, and the parameters used in the image segmentation are shown in Table 2.

Then, the GF-2 image of the study area was segmented into 48,277 objects by using eCognition®

software. Finally, a sample set with 8326 sample objects was created based on the centroid inclusion
principle by combing the segmented objects with the existing OMs and land use vectors. All the sample
objects were divided into two parts in the ratio of 2:1, one is TTS, and the remaining is VS. The TTS is
used to train and test the model, while the VS is used to validate the results. Then, the sample objects
in TTS were split into two groups; training set and testing set, at the ration of 7:3. The details of sample
set are listed in Table 3.

Table 3. Sample set utilized in this study. LUCs: land use categories.

LUCs Training Set Test Set Validation Set Sum

OM 731 313 522 1566
WDA 654 280 467 1401
BUI 601 258 429 1288
VEG 698 299 499 1496
ROA 542 232 387 1161
WAT 120 51 86 257
BAS 540 231 386 1157

total 3886 1664 2776 8326
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3.2. Results of Feature Selection

The importance value was set as the average value of the 10 times training of GBDT to reduce
the random error. Since there is no universal guideline for determining the threshold of cumulative
importance value without a trial-and-error method, we set the threshold to set to 0.99 after several
trial-and-error attempts to keep the most important features. Features that do not contribute to achieving
99% total importance value were eliminated. Figure 5 shows the overall cumulative importance
curve. From Figure 4, we can see that 51 out of all 58 features have a cumulative importance of 99%.
The cumulative importance of the remaining seven features is only 1%, which can be eliminated.
These seven eliminated features are Brightness, GLCMall dir. (Dissimilarity), GLCMall dir. (Entropy),
GLCMall dir. (Contrast), GLCMall dir. (Mean), Border index, and Elliptic fit.

Figure 5. Overall cumulative importance curve.

After the elimination of the least important features, the collinearity among the 51 remaining
features was analyzed by using the Pearson correlation coefficient. Then, the feature pair whose
correlation absolute value is greater than the threshold value was selected, and one feature from
the feature pair was removed. The trial-and-error method was also used to determine the threshold
value of the Pearson correlation coefficient, which was set to 0.98 in this study to avoid eliminating
too many features, and five features were removed. The thermodynamic chart of these 51 features
and eliminated five features are shown in Figures 6 and 7. The five eliminated features are Mean_2,
Ratio_2, Ratio vegetation index, and Mean Diff. to Neighbors_(1,3). In total, the features employed in
the final OMM were decreased from 58 to 46 (see Table 4).

Table 4. Selected features employed in this study.

OFDs (No.) Features Names

LFs (26)

Stdv_(1,2,3,4), Mean_(1,3,4), Ratio_(1,3,4), MaxDiff, Shadow vegetation index,
Normalized difference vegetation index, Normalized difference water index,
Soil brightness index, Soil adjust vegetation index, Mean Diff. to Neighbors_(2,4),
Mean Diff. to brighter Neighbors_(1,2,3,4), Mean Diff. to darker
Neighbors_(1,2,3,4)

TFs (8)
GLCMall dir. (Angular second moment, Entropy, Stdv, Contrast, Homogeneity,
Mean, Correlation)
GLDVall dir. (Angular second moment)

GFs (12) Area, Border length, Length, Width, Length-width ratio, Shape index, Roundness,
Rectangular fit, Compactness, Main direction, Asymmetry, Density
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Figure 6. Thermodynamic chart of the remaining 51 features.

Figure 7. Thermodynamic chart of the five eliminated features.

3.3. Results of Open-Pit Mine Mapping

3.3.1. CNN-Based Open-Pit Mine Mapping (CNNOMM)

A CNN network structure, including two convolutional layers, two pooling layers, two fully
connected layers, and one dropout layer, is constructed by using the sequential model in Keras.
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The form of convolution uses one-dimensional convolution, and the network structure is shown in
Figure 8.

Figure 8. The network structure of CNN used in this study.

The number of convolution kernels (CKs) of the convolution layer C1 and C2 is set to 32 and 64,
respectively, after several trial-and-error attempts. The size of CKs in C1 is set to 6 × 1, and the step
size is set to 1, while the CKs in C2 is set to 3 × 1, and the step size is set to 1. The pooling layer P1 and
P2 adopts the maximum pooling method to perform feature compression and extract retained features.
The size of the P1 and P2 both are 2 × 1, and the step size for both are 2. The result of convolution
and pooling is flattened and linearly mapped to the new feature space through the fully connected
layer F1. The parameter of the Dropout layer is set to 0.5, which means that the connection between all
the nods will be randomly cut off by 50%. There are seven neurons in the Fully connected layer F2
corresponding to the seven LUCs in this study, which are connected to the softmax classifier to achieve
classification and serve as the output layer.

After the CNN is constructed, the TTS is employed to train the model and verify the learning
effect. The Cross-Entropy Loss function [54] is selected to judge the differences between the predicted
result and the reference value, while the Adam was applied as the optimization function. Figure 9
shows the Convergence curves of TTS of CNN.

From Figure 9 we can see that when the epoch reached the 35th time the accuracy of the test
samples of the model finally reaches an accuracy of 0.89. At the same time, the loss rate of the test
samples also tends to be stable. Then, the well-trained CNN was applied into the total 48,227 objects,
Figure 10 shows the CNN-based OMM results.

The red color area in the figure is the OM extracted by the CNN-based open-pit mine mapping
model. The black dashed area shows the verified open-pit mine. In Figure 8 we can see that the extracted
OM results are in good agreement with the verified OM. However, there are still some OMs that are
not identified by the proposed CNN-based open-pit mine mapping model, which are misclassified to
WDA. Further discussion will be presented in Section 4.1.
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Figure 9. Convergence curves of accuracy and loss of CNN based on training and testing set.

Figure 10. Results of CNN-based open-pit mine mapping.

3.3.2. SVM-Based Open-Pit Mine Mapping (SVMOMM)

We used the same TTS as we used in CNN model, to train and validate the SVM model. Then,
the 10-fold cross-validation method [50] was applied to identify the appropriate SVM model parameters.
It is suggested that the cost constant C and the kernel function parameter gamma are set to 10 and
0.045, respectively. Finally, the SVM-based OMM results are obtained (Figure 11).

Figure 11 shows nearly the same performance as Figure 8, which means the SVMOMM model can
also achieve satisfied results. However, the omission phenomenon (misclassified OM into WDA) still
exists and is more serious than CNNOMM model. We discuss this further in Section 4.1.
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Figure 11. Results of SVM-based open-pit mine mapping.

3.3.3. Assessment of Mapping Results

The assessment of OMM results are based on VS. The confusion matrix and the accuracy assessment
of these two methods are listed in Tables 5 and 6, respectively.

Table 5. Confusion matrix of OMM results of CNN/SVM.

LUCs OM WDA BUI VEG ROA WAT BAS Sum

OM 466/439 6/5 0/2 2/4 11/13 29/43 8/16 522/522
WDA 5/5 361/355 0/0 2/3 10/14 2/5 7/5 387/387
BUI 1/3 0/0 81/77 2/3 1/2 1/1 0/0 86/86
VEG 7/15 3/4 1/0 455/421 8/13 15/21 10/25 499/499
ROA 10/12 16/28 2/2 2/2 393/368 4/11 2/6 429/429
WAT 37/59 10/17 1/3 7/11 15/19 391/349 6/9 467/467
BAS 11/20 0/3 0/0 7/7 0/2 13/31 355/323 386/386

Sum 537/553 396/412 85/84 477/451 438/431 455/461 388/384 2776/2776

Table 6. Accuracy assessment of OMM results of CNN/SVM.

LUCs Total Samples Mapped Samples Correct Samples UA (%) PA (%)

OM 522/522 537/553 466/439 86.78/79.39 89.27/84.10
WDA 387/387 396/412 361/355 91.16/86.17 93.28/91.73
BUI 86/86 85/84 81/77 95.29/91.67 94.19/89.53
VEG 499/499 477/451 455/421 95.39/93.35 91.18/84.37
ROA 429/429 438/431 393/368 89.73/85.38 91.61/85.78
WAT 467/467 455/461 391/349 85.93/75.70 83.73/74.73
BAS 386/386 388/384 355/323 91.49/84.11 91.97/83.68

OA (%) 90.13/84.01
KC 0.88/0.81

In general, CNNOMM was more effective in classifying all the seven LUCs, with higher PA and
UA values, which means the CNNOMM mapped a greater number of correct samples than that of
the SVMOMM classified. Among these seven LUCs, the PA values are higher than UA values in OM,
WDA, ROA, both in CNNOMM and SVMOMM, and a higher PA in BAS in CNNOMM but a lower PA
in SVMOMM. For the other three LUCs, which are BUI, VEG, and WAT, both two methods obtained
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a high UA. A higher PA means that more objects were misclassified into other LUCs, and a higher UA
means the number of mapped samples were less than that of total samples.

Figures 12 and 13 shows the incorrect mapping results of CNNOMM and SVMOMM, respectively.
The incorrect mapping results shown in Figures 12 and 13 are consistent with that shown in Table 6,
as most of the wrongly mapped LUCs are around the mining area. Figure 14 shows the results of
the incorrect identification of CNNOMM and SVMOMM together. The yellow color represents the LUC,
which is incorrectly mapped by both CNNOMM and SVMOMM. Most of them were WAT or OM LUC
category, which indicates that these two LUC categories are easily misclassified between each other;
the main reason is discussed in Section 4.1.

Figure 12. Results of LUCs identification and incorrect identifications of CNNOMM.

Figure 13. Results of LUCs identification and incorrect identifications of SVMOMM.
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Figure 14. Results of incorrect identifications of CNNOMM and SVMOMM. CCIS: correct mapping
results of CNNOMM while incorrectly mapped by SVMOMM; ICCS: incorrect mapping results of
CNNOMM while correctly mapped by SVMOMM; ICIS: incorrect mapping results both by CNNOMM
and SVMOMM.

3.3.4. McNemar’s Test

The McNemar’s test is performed on the pair of CNNOMM and SVMOMM models. Table 7
shows the paired classification models, the number of objects correctly classified by one model but
misclassified by another model, as well as the corresponding chi-square value and p-value.

Table 7. McNemar’s test results for OMM. fij: the numbers of objects that were correctly classified by
classifier i but misclassified by j (i, j = 1, 2); χ2: chi-square; ρ: probability value.

Pair of Classifications f12 f21 χ2 ρ

CNNOMM vs. SVMOMM 458 262 53.36 <0.0001

It can be concluded that: (1) the CNNOMM significantly outperformed SVMOMM based on
the chi-square value, which was larger than 3.84 and the p values smaller than 0.05. It is indicated that
the mapping performance of the CNNOMM method is significantly improved; (2) CNNOMM and
SVMOMM are significantly different.

4. Discussion

4.1. Affecting Factors of Mapping Accuracy

It is significant that CNNOMM improve the mapping accuracy of all the seven LUCs of the open-pit
mine area. The accuracy of the five LUCs for non-mining activities such as WAT, VEG, BUI, BAS,
and ROA is generally higher than the overall accuracy. The main reason is that these five types of
features are common objects of land use types, and their image features, texture features, etc., are more
obvious, which is easy to distinguish. There are certain similarities in the land use types which are
caused by mining activities (OM and WDA). Sometimes these two LUCs are not easily distinguished
because the materials which formed the WDA are extracted from the OM. There are differences caused
by the influence of the topography, landforms, and human activities within these two LUCs. This also
reflects the difficulty and importance of mining information extraction from one aspect.
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There are some misclassifications between OM and WDA. There are two main reasons for these
phenomena: one is that the OM and WDA are closely related in the process of their formation.
The waste gravel piles and dumps in the OM and WDA are all formed with the formation of the OM.
There are natural similarities in spectrum and texture. Another reason is that, as the country vigorously
manages the mining environment in recent years, a large number of OMs have been shut down and
governed. The lack of human mining activities may result in muck piles of rocks inside the pits.
This part of the OM darkens in the spectrum, and the texture begins to appear patchy, which will
appear similar to the mine wastes over time, which is easy to be confused (Figure 15). Figure 15b
shows the mapping results of CNNOMM. From Figure 15a, it is hard to accurately determine its type
by visual interpretation. According to the field validation of the mapping results in 2018, it can be
determined that the area is an open pit and has been abandoned for many years, resulting in confusion
in type.

Figure 15. Abandoned OM in the study area. (a) GF-2 image; (b) CNNOMM results.

4.2. Uncertainties in OMM

Although the CNNOMM model achieves reasonable and promising results in the study area,
there are still some uncertainties. Firstly, in the image segmentation progress, uncertainties will be
introduced in OMM, because the OMs and land use references cannot be subdivided into exact objects.
Although the MAR method can optimize the scale values, which improves the segmentation results,
errors are inevitable and will cause a decrease in the OMM accuracy [21]. Secondly, uncertainties may
be introduced in the process of selecting features, because the importance of such features with the two
methods is not the same. These will also decrease the mapping accuracy of OM, even though their
importance can be calculated [22]. Last but not the least, the complete and consistent OM inventory in
the study area were insufficient. This insufficiency may also lead to uncertainties, because some newly
OM in the research area may not have been recognized in the existing OM inventory datasets.

5. Conclusions

In this paper, we proposed a hybrid framework of object-oriented open-pit mine mapping to
classify the open-pit mines in Yuzhou City from ‘GF-2’ HSRSIs. The framework utilizes the greater
generalization performance of CNN and the effective elimination of redundant features by a FIR tool.

In total, 58 features were extracted from GF-2 HSRSI from three object-feature domains. By using
the FIR tools, which were GBDT and Pearson correlation coefficient, 46 features were selected to form
the features subset. The final mapping results demonstrate that the proposed FIR tools can provide
valid information for OOMM.

A sample set with 8326 sample objects was created by combing the segmented objects with
the existing OMs and land use vectors based on a centroid inclusion principle method. Two thirds of
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the sample set formed the TTS, while the remaining one third was used as VS. The TTS (combined with
the features subset) were used to train and test the CNN and SVM model, and the OA, and KC of
the remaining VS were found to be 90.13%, and 0.88 for CNN, 84.01% and 0.81 for SVM, respectively.
It indicated that the CNN outperformed the SVM in the proposed OOMM framework. Thus, it can be
concluded that, based on the features obtained from ‘GF-2’ HSRSI, our feature information reduction
method (combined with CNN) can provide an effective way for OOMM in Yuzhou City.
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