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Abstract: Loop closure detection is a key module for visual simultaneous localization and mapping 
(SLAM). Most previous methods for this module have not made full use of the information provided 
by images, i.e., they have only used the visual appearance or have only considered the spatial 
relationships of landmarks; the visual, spatial and semantic information have not been fully 
integrated. In this paper, a robust loop closure detection approach integrating visual–spatial–
semantic information is proposed by employing topological graphs and convolutional neural 
network (CNN) features. Firstly, to reduce mismatches under different viewpoints, semantic 
topological graphs are introduced to encode the spatial relationships of landmarks, and random 
walk descriptors are employed to characterize the topological graphs for graph matching. Secondly, 
dynamic landmarks are eliminated by using semantic information, and distinctive landmarks are 
selected for loop closure detection, thus alleviating the impact of dynamic scenes. Finally, to ease 
the effect of appearance changes, the appearance-invariant descriptor of the landmark region is 
extracted by a pre-trained CNN without the specially designed manual features. The proposed 
approach weakens the influence of viewpoint changes and dynamic scenes, and extensive 
experiments conducted on open datasets and a mobile robot demonstrated that the proposed 
method has more satisfactory performance compared to state-of-the-art methods. 

Keywords: loop closure detection; visual SLAM; semantic topology graph; graph matching; CNN 
features; deep learning 

 

1. Introduction 

Simultaneous localization and mapping (SLAM) [1] is of great importance in autonomous robots 
and has become a hotspot in robotics research [2,3]. SLAM mainly solves the problem of robot 
localization and map establishment in an unknown environment, relying on external sensors to work. 
Since the camera can capture a wealth of information, it is currently widely used in visual SLAM 
systems. Loop closure detection is an important module of visual SLAM, because its role is to 
determine whether the robot returns to its previous environment [4] and then to correct the 
localization errors accumulated over time to construct an accurate and global-consistent map. In 
addition, loop closure detection can create new edge constraints between revisited pose nodes [5–7] 
for visual SLAM based on pose graphs. These additional constraints are optimized by bundle 
adjustment [8] in the backend of a visual SLAM to get more accurate estimation results [9]. 

Traditional appearance-based methods have nothing to do with the frontend and backend of 
visual SLAM, as they only detect loops based on the similarity of image pairs. They are mostly based 
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on the bag of words (BoW) model [10], which clusters visual features such as SIFT and SURT to 
generate words and then construct a dictionary. In that way, images can be characterized by word 
vectors according to the dictionary, and the loops can be detected according to the vector difference 
between the images. They can effectively work in different scenarios and have become the 
mainstream method in visual SLAM [11]. Among them, the loop closure detection methods based on 
local features utilize SIFT [12], SURF [13], and ORB [14] to describe an image. For example, Angeli et 
al. [15] used SIFT features for loop closure detection, FAB-MAP [10] employed SURF features, RTAB-
Map SLAM [16] utilized SIFT and SURF features, and ORBSLAM [17] exploited ORB features. These 
works have yielded gratifying results. In addition, there have been many methods based on global 
features. Sünderhauf et al. [18] applied GIST [19] to place recognition, encoding the response of the 
image in different directions and scales as a global description through Gabor filters. Additionally, 
Naseer et al. [20] used HOG descriptors to characterize the holistic environment for image 
recognition. However, in the above-mentioned methods, the features are artificially designed and can 
only cope with limited scene changes. Moreover, they only contain low-level information and cannot 
express complex structural information, so it is difficult to deal with drastic appearance changes. 

The sequence-based approach has achieved great success in dealing with appearance changes. 
SeqSLAM [21] considers a short image sequence instead of a single image to solve perceptual aliasing. 
It uses correlation matching to find the local best match for each query image in all short image 
sequences. Abdollahyan et al. [22] proposed a sequence-based method for visual localization that 
employed a directed acyclic graph to model an image sequence to form a string, and then they 
exploited the partial order kernel to compare strings. Naseer et al. [20] modeled image matching as a 
minimum cost flow problem in a data association graph and used the HOG descriptor of the image 
to match the image pair. SMART [23] applied a query image sequence to match a dataset image 
sequence by calculating the similarity in the downsampled and patch-normalized image sequences. 
Hansen et al. [24] used the Hidden Markov Model to retrieve the image sequence of a dataset 
matching the query image sequence by calculating an image similarity probability value matrix. 
However, these methods do not consider the spatial geometric relationship of the objects in the 
image, and they are difficult to use in the face of changes in the viewpoint. 

With the rise of deep learning in computer vision fields such as image recognition and 
classification, researchers have begun to apply the deep convolutional neural networks (CNNs) for 
loop closure detection. A multi-layer neural network automatically learns inherent feature expression 
directly from raw data and expresses an image as a global feature [25]. This has become an effective 
way to solve the loop closure detection problem of visual SLAM. Hou et al. [26] used the output of 
the intermediate layer of a pre-trained CNN to construct feature descriptions for loop closure 
detection, and it was proved that the output effects of the third convolutional layer and the fifth 
pooling layer were better than those of other layers. Sünderhauf et al. [27] comprehensively evaluated 
the application of three advanced CNNs in loop closure detection and found that the output of the 
low-level network was robust to appearance changes. Moreover, the output of the high-level network 
was found to contain more semantic information that was robust to changes in viewpoint. Arroyo et 
al. [28] combined the output of each layer of a CNN and expressed it as a separate feature vector. It 
was found that this vector had strong appearance and viewpoint robustness. Gao et al. [29] adopted 
the stacked denoising auto-encoder method to automatically learn the compressed representation of 
an image in an unsupervised learning manner. Sünderhauf et al. [30] proposed a method based on 
CNN landmarks that effectively integrated global and local features. However, deep learning 
automatically learns the global features of an image while ignoring local features, so it cannot cope 
with drastic changes in viewpoint. 

In order to achieve strong robustness to viewpoint changes, many spatial-based methods have 
been proposed in recent years. Cascianelli et al. [31] proposed a method based on a co-visibility 
graph—that is, if the underlying landmark was co-observed in the image, the two nodes were 
connected and the image was modeled as a graph structure of nodes and edges for place recognition. 
Finman et al. [32] performed a convolution operation on an RGB-D-dense map to detect an object and 
then connected the objects to construct a sparse object graph for place recognition. Oh et al. [33] 
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represented an object-based place recognition method that characterized the objects by the center of 
the position and connected them by edges. Then, the objects and the edges were used to measure the 
similarity for loop closure detection. Pepperell et al. [34] used roads as directed edges connecting 
intersections, which promoted the sequence matching of locations. Stumm et al. [35] applied an 
adjacency matrix to encode the spatial relationship of landmarks. Gawel et al. [36] utilized a graph 
structure to encode the spatial relationship of landmark regions, and their model had strong 
robustness against viewpoint changes. Furthermore, some techniques have been used to encode 
graph structure information into a vector space for similarity calculation. Graph kernels were used 
to calculate the similarity between a query and candidate image for pace recognition [37]. Han et al. 
[38] proposed an unsupervised learning method to learn a projection from landmarks in a scene to 
low-dimensional space that preserved the local consistency, i.e., the distance information between 
the landmarks of the original data was retained in the projection space. A random walk descriptor 
was applied to describe graph structure [36]. Chen et al. [39] employed a feature-encoding method 
based on convolutional layer activations to handle viewpoint changes. Schönberger et al. [40] 
obtained three-dimensional descriptors for visual localization by encoding spatial and semantic 
information. In addition to vector-based descriptors, Gao et al. [41] proposed a multi-order graph 
matching method for loop closure detection. Though these methods have achieved good results, they 
have not effectively integrated visual, spatial, and semantic information, so they are difficult to use 
in drastic viewpoint changes and dynamic scenes. 

In this paper, a robust loop closure detection approach integrating visual–spatial–semantic 
information is proposed by using topological graphs and CNN features; this approach makes 
effective use of appearance-invariant CNN features and viewpoint-invariant landmark regions to 
improve robustness in the face of viewpoint changes and dynamic scenes. The approach consists of 
two parts: the construction of the semantic topology graphs and loop closure detection. Firstly, the 
algorithm of semantic topological graph performs semantic segmentation on the image to extract 
landmark regions. At the same time, the distinctive landmarks are selected for loop closure detection 
after eliminating dynamic landmarks. Then, acquired landmarks are input into a pre-trained AlexNet 
network, and the third convolution layer output is used as the global feature of landmarks. Finally, 
the image is constructed as a semantic topology graph of nodes and edges to represent the spatial 
relationship of landmarks, and a random walk descriptor is used to represent the graph structure. 
The algorithm of loop closure detection first quickly retrieves candidate images based on the semantic 
information of landmarks by using shared nodes of the same category. Furthermore, the appearance 
similarity of the landmark pair is calculated according to the CNN and contour features, and the 
random walk descriptor is used to calculate the geometric similarity between images. Then, loop 
closure detection is organized according to the overall similarity of the appearance and spatial 
information. Experiments conducted on public datasets demonstrated the superiority of the 
proposed method over other state-of-the-art methods. To verify the robustness of the approach in 
viewpoint changes and dynamic scenes, further experiments were performed on a mobile robot in 
outdoor scenes, and satisfactory results were obtained. 

In short, the main contributions of this work are as follows: 

• A robust loop closure detection approach that combines visual, spatial, and semantic 
information to improve the robustness for changes in viewpoint and dynamic scenes is 
proposed. 

• A pre-trained semantic segmentation model is used to segment landmarks and a pre-trained 
AlexNet network is employed to extract CNN features that can be used without specific scene 
training. In addition, the semantic segmentation model and feature extraction network can be 
replaced by other models. 

The remainder of this paper is organized as follows: Section 2 describes the proposed loop 
closure detection method. Section 3 gives experimental details and comparison results. Finally, 
conclusions are presented in Section 4. 
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2. Materials and Methods 

As shown in Figure 1, the algorithm of loop closure detection proposed in this paper includes 
the following key modules: 

 
Figure 1. Overview of the semantic loop closure detection algorithm based on topology graphs and 
convolutional neural network (CNN) features. 

(1) The extraction of the semantic landmarks. 
(2) The elimination of the dynamic landmarks and selection of the distinctive landmarks. 
(3) The calculation of the CNN features in landmark regions and dimensionality reduction 

processing on CNN features. 



Remote Sens. 2020, 12, 3890 5 of 27 

 

(4) The construction of the semantic topological graphs and expression of random walk descriptors. 
(5) The calculation of geometric similarity with random walk descriptors. 
(6) The calculation overall similarity for loop closure detection. 

Among the key steps, steps 1)–4) are algorithms for constructing semantic topological graphs, 
which are given in Section 2.1, and steps 5) and 6) are loop closure detection algorithms, which are 
provided in Section 2.2. 

The method presented in this paper is different from previous methods as follows: 

• The extraction of the landmarks uses a pre-trained semantic segmentation network. 
• It utilizes semantic information to eliminate dynamic landmarks and select of the distinctive 

landmarks. 
• It adopts random walk descriptors to represent the topological graphs for graph matching. 
• It adds geometric constraints on the basis of appearance similarity. 

2.1. Semantic Topology Graph 

The construction of the semantic topology graphs is the basis of loop closure detection, so this 
section first introduces the construction process of the semantic topology graphs (see Figure 2). 

 
Figure 2. Flow chart for constructing semantic topology graph. 

For each obtained image, semantic segmentation is performed to extract landmarks. After 
preprocessing, the image is divided into landmark regions and contours. The obtained landmarks 
are selected and sent to AlexNet to extract third convolutional layer (Conv3) features. Then, Gaussian 
random projection is used to reduce the dimensionality of the feature vectors, and low-dimensional 
feature vectors are output. In addition, the Hu moment is calculated according to the obtained 
contours. At the same time, the preprocessed semantic segmentation images are used to extract the 
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center of the landmark region as a node, and the landmarks seen from the same viewpoint are 
connected by undirected edges to establish a semantic topology graph according to the co-visibility 
information. Finally, a random walk descriptor is exploited to describe the topological graph 
structure. Here, the images obtained before the loop closure detection are called dataset images. 

2.1.1. Landmark Extraction 

Previous methods [30,31] have employed object proposal [42] to extract landmark regions even 
though it contains a lot of irrelevant feature information. In particular, the proposed method adopts 
semantic segmentation to extract landmarks, and this can accurately obtain the range of landmark 
regions. 

DeepLabV3 + [43] is one of the most influential semantic segmentation models. It is better than 
FCN [44], U-Net [45], and SegNet [46] for some datasets, and it is widely used in the field of 
engineering technology. The ADE20K dataset [47,48] covers a wide range of scenes and object 
categories. Furthermore, it provides dense annotations, so it is used to train the DeepLabV3 +. The 
pre-trained DeepLabV3 + model can be applied for extracting landmarks. 

Here, DeepLabV3 + was used to fuse the shallow features outputted by the encoder with the 
deep features generated from the ASPP module so that it could produce high-precision semantic 
segmentation results. 

2.1.2. Landmark Selection 

Due to the effects of illumination and dynamic disturbance in the images obtained by the robot, 
as well as the inherent defects of the semantic segmentation model, there was a lot of noise, as well 
as dynamic and secondary landmarks, in the semantic segmentation image that was obtained via the 
model discussed in Section 2.1.1. To overcome these problems, the landmarks were preprocessed to 
obtain significant landmark regions. Then, the dynamic regions from the landmarks obtained by 
preprocessing were removed, and the distinctive patches were selected. 

As shown in Figure 3, the semantic segmentation image (see Figure 3b) was filtered to remove 
the regions; its area was less than the specified threshold (the threshold was 100 in this paper). Figure 
3c was obtained by merging region filtered out with the surrounding area. Through the above-
discussed procedures, the secondary landmarks and holes were filtered out to obtain the obvious 
landmark region with clear boundaries. 

In order to overcome the impact of dynamic scenes, the semantic information of landmarks was 
then used to eliminate the pedestrian dynamic landmarks. At the same time, the pedestrians and 
long-term parking car region were merged, and the merged area could be used as car landmarks in 
subsequent work. Figure 3d was obtained by the above-mentioned operations. After excluding 
dynamic landmarks, in the follow-up loop closure detection, the dynamic landmarks were no longer 
matched. Furthermore, the number of pixels could be calculated for the landmark region. The 
distinctive landmarks were selected according to the number of landmark pixels and semantic 
information combined with experimental scenes for loop closure detection. In addition, dynamic 
landmarks were determined by scene content and landmark semantic information. In other words, 
according to the movement status of the landmarks in each experimental scene, we removed the 
moving landmarks in the dataset images and prevented them from participating in subsequent 
experiments. Formally, we denoted t as the number of distinctive landmarks selected in the image. (t 
was 5 or 10 in this work). 
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(a) (b) 

  
(c) (d) 

Figure 3. Selection of the landmarks: (a) raw image, (b) semantic segmentation image, (c) the result of 
filtering, and (d) the result of eliminating pedestrian dynamic landmarks. 

2.1.3. CNN Features 

CNN features have appearance invariance, so they far surpass manual features in the field of 
image retrieval and classification. AlexNet [49] won the 2012 ImageNet competition champion, and 
the network was pre-trained for object recognition tasks on the ILSVRC dataset [50]. 

The AlexNet network architecture had 8 layers, of which the first 5 layers were convolutional 
layers and the last 3 layers were fully connected layers. There was a pooling layer after the 1st, 2nd, 
and 5th convolutional layers, but there was none after the 3rd and 4th convolutional layers. Each 
convolutional layer had activation function ReLU and normalization. The input of the network was 
a 227 × 227 3-channel image, and the output feature of the third convolutional layer was 13 × 13 × 384 
= 64.896. According to the research of [27], the output features of the third convolutional layer of 
AlexNet perform best under appearance changes. We found that the output features of the fully 
connected layer had strong semantic information that was robust to viewpoint changes but poor for 
appearance changes. At the same time, it was proved that the AlexNex obtained by pre-training in 
the object recognition task was better than the CNN model based on place recognition training when 
considering the characteristics of the entire image under the viewpoint changes. Other advanced 
networks such as VGG, ResNet, and DenseNet have complex architectures, as well as a lack of 
research and utilization in the field of loop closure detection. Therefore, this article used the relatively 
lightweight and mature AlexNet in the loop closure detection field to extract CNN features. Based 
on the above research, the proposed method employed the output of the Conv3 of the AlexNet as the 
global feature in the landmark region. 

The landmark proposal extracted by the object proposal method contained a large amount of 
irrelevant feature information. This led to a certain amount of noise influence in the CNN feature 
description. However, the landmark area extracted by semantic segmentation in this paper only 
contained the landmark feature and no other unrelated features. Figure 4a–c is introduced in Section 
2.1.2, this section explains the landmark area and contour extraction. The landmarks from the filtering 
result (see Figure 4c) were selected to get Figure 4d, and the contour binary (Figure 4e) of the 
corresponding landmark was obtained by a Canny operator. Then, the landmarks (see Figure 4d) 
were resized to 227 × 227 pixels and input to the pre-trained AlexNet to extract features. As a result, 
the features of each landmark could be represented by a 64.896-dimensional vector. In order to keep 
the original size information of the landmark, this paper added the Hu moment of the contour (see 
Figure 4e) to the CNN feature to describe the landmark. 
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(a). (b) (c) 

 
(d) 

 
(e) 

Figure 4. Extraction of landmark regions and contours: (a) raw image, (b) semantic segmentation 
image, (c) the result of filtering, (d) the selected landmark regions, and (e) the contours of the selected 
landmarks. 

The obtained high-dimensional vector contained redundant landmark feature information, and 
a large amount of computational cost was required to calculate landmark similarity. Due to the real-
time requirements of visual SLAM, the Gaussian random projection method [51] utilized in [30] was 
employed to reduce the dimensionality of the feature vector to 2048 dimensions. 

2.1.4. Graph Representation 

In order to preserve the spatial relationship of the scene, a semantic topology graph was 
constructed from a single image obtained by the robot. When the robot was initialized, the camera 
captured the first image and started to create the semantic topology graph. In this paper, each 
landmark was abstracted as a node containing category and pixel number information. Additionally, 
the node was located at the center of the landmark region. 

The truncated random walk proposed by Perozzi et al. [52] was used to describe the semantic 
topological graph and represented each node as a fixed-length embedding vector. In order to enrich 
the feature expression, the node index and the number of pixels were adopted to describe the nodes. 
The node index was obtained according to the 150 semantic categories of the ADE20K dataset, and 
the number of pixels was acquired from the landmark region. 

Then, the random walk descriptor of each node was calculated, and each node was used as the 
target node. In the semantic topological graph, the next adjacent node was randomly selected until 
the walking depth 𝑛  was reached and a random walking path was obtained. In this paper, 𝑚 
random walks were performed on each node to obtain 𝑚 random walk paths. Finally, each target 
node could be expressed as a matrix  𝑀 = ൛𝑚௜௝ൟ ∈ ℝ௠×௡ . Since each node contained information 
about the index and the number of pixels, a matrix  𝑀 = ൛𝑚௜௝ൟ ∈ ℝ௠×ଶ௡  was finally obtained. In 
addition, the random walks followed certain rules, i.e., they would not repeat the same path and 
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would not return to the previous nodes during each walk. The selection of 𝑚 and 𝑛 was related to 
the number of nodes in the graph structure. Based on the research of Gawel et al. [36] and the number 
of landmarks selected in Section 2.1.2, m was selected as 10, 20, or 50, and  𝑛  was 3 or 5 for 
experiments. 

Figure 5 shows an example of a constructing descriptor. After the image in Figure 5a was 
obtained by the robot, the landmark nodes were extracted to obtain Figure 5b. Then, the nodes in 
Figure 5b were connected by undirected edges according to the co-visibility information to get Figure 
5c. The semantic topology graph (see Figure 5d) was used to describe the geometric connection of the 
nodes in Figure 5a. Furthermore, a random walk graph descriptor (see Figure 5e) was constructed 
according to the semantic topology graph (see Figure 5d). The blue node (car) was used here to 
construct a descriptor for the target node. For the purpose of illustration, a graph description 
matrix 𝑀 ∈ ℝହ×଺ was made to represent the geometric characteristics of the image by five random 
walks with a depth of 3 each time. The last row of Figure 5e corresponds to the random walk path 
shown by the black arrow in Figure 5d. Figure 5f used a matrix to quantify the description of Figure 
5e, where the red box represents the index of nodes and the number of pixels. The index of the target 
node car was 21, and 68,192 was the number of pixels contained in the car landmark. In the same 
way, 2 and 112,918 were the index and pixel number of the building node, respectively; 3 and 13,488 
were the index and pixel number of the sky node, respectively; 5 and 10,697 were the index and pixel 
number of the tree node, respectively; and 7 and 101,572 were the index and pixel number of the road 
node, respectively. For visualization, some node information was omitted. 

 
Figure 5. Construction of the topology graph and extraction of the descriptor: (a) raw image, (b) 
creation of nodes, (c) connection of undirected edges, (d) construction of topology graph, (e) random 
walk descriptor, and (f) descriptor matrix. 

2.2. Loop Closure Detection 

This section introduces the algorithm of loop closure detection, and its flowchart is shown in 
Figure 6. Firstly, dataset images (candidate images) that matched the current image (query image) 
were retrieved. Then, the appearance similarity was calculated according to the CNN and contour 
features between images. In addition, geometric similarity was obtained by using the random walk 
descriptor. Finally, loop closure detection was performed according to the overall similarity. 
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Figure 6. Flow chart of loop closure detection. 

2.2.1. Obtain Candidate Images 

When the robot enters a previous environment again, it needs to retrieve the candidate images 
from the dataset images. In this article, by controlling the number of landmarks that shared the same 
label between the query image and each image in the dataset, candidate images of the current query 
image were obtained. The smaller the number of shared nodes, the more candidate images and the 
longer the retrieval time, and vice versa. A reasonable setting of the number of shared nodes can 
improve the speed and accuracy of loop closure detection, so the number of shared nodes was set as 
1 to obtain candidate images. In other words, when both the query image and an image in the dataset 
images have a landmark with the same label, the dataset image is considered to be one candidate 
image. According to the same principle, each query image can obtain a candidate image set, and each 
image in the candidate image set has at least one landmark (node) with the same label as the query 
image. 

2.2.2. Appearance Similarity 

To calculate the appearance similarity between the candidate image and the current query 
image, it is necessary to match the landmark of the query image with all landmarks of the candidate 
image. By using the semantic information of landmarks, we employed the nearest neighbor search 
based on the cosine distance (see Equation (1)) of CNN features to match the landmark pairs of the 
same label in the two images so that only the landmarks of the same category were matched to speed 
up the matching process. In the matching process, we used a bidirectional matching method, i.e., 
landmark pairs were accepted only if they were mutual matches. 𝑑௜௝cosine = 12 ቆ1 − 𝑣௜௤ ⋅ 𝑣௝௖∥ 𝑣௜௤ ∥ଶ∥ 𝑣௝௖ ∥ଶቇ (1) 
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where 𝑣௜௤ denotes the feature vector of the 𝑖-th landmark of the query image and 𝑣௝௖ describes the 
feature vector of the 𝑗-th landmark of the candidate image. 

While calculating the similarity of the CNN features, the geometric shape of the landmark was 
introduced as a penalty factor to eliminate the false positive phenomenon, i.e., the CNN features were 
similar but the contours were different. The references [30,31,53] used the difference between the long 
side and the wide side of the region proposal of the landmark pair to measure the shape difference. 
However, because they only used the long side and wide side difference of the bounding box, the 
influences of the scale and rotation was omitted. When the viewpoint changed drastically, the 
rotation of the landmark caused a large change in the aspect ratio of the bounding box. In the end, 
the shape penalty factor was too large, resulting in a low appearance similarity. 

In order to solve the above problems, Hu moments [54] were used to describe the irregular 
contour features of landmarks, which possessed invariance about rotation, translation, and scale. Due 
to the wide range of Hu moments, the logarithm method was used for data compression in order to 
facilitate comparison. At the same time, considering that the Hu moment may have a negative value, 
absolute value was taken before the logarithm, as shown in Equation (2): 𝑐௜ = 𝑠𝑖𝑔𝑛(ℎ𝑢௜) 𝑙𝑜𝑔|ℎ𝑢௜|  𝑖 = 1,2, ⋯ ,7 (2) 

Where  𝑠𝑖𝑔𝑛(𝑥) is the sign function. 
Hu [54] constructed seven invariant moments to describe geometric shape. Therefore, each 

landmark contour could be expressed as a feature vector by seven Hu moment values through 
Equation (3): 𝐶 = (𝑐ଵ, 𝑐ଶ, 𝑐ଷ, 𝑐ସ, 𝑐ହ, 𝑐଺, 𝑐଻) (3) 

Through the contour feature vector, the shape difference of landmark contour between query 
image and candidate image could be calculated by Equation (4): 

𝛾௜௝ = 𝑒𝑥𝑝 ቆ 𝑚𝑎𝑥௠ୀଵ...଻ ห𝑐௠௤௜ − 𝑐௠௖௝หห𝑐௠௤௜ห ቇ (4) 

where 𝑐௠௤௜ and 𝑐௠௖௝ denote the 𝑚-th Hu moment of the 𝑖-th landmark contour in query image and 
the 𝑚-th Hu moment of the 𝑗-th landmark contour in candidate image, respectively. 

According to cosine distance of the CNN feature and shape similarity obtained by the above 
calculation, the appearance similarity of the landmark pair between the query and the candidate 
images could be obtained by Equation (5): 𝑑௜௝ = 1 − 𝑑௜௝Cosine ⋅ 𝛾௜௝ (5) 

In Equation (5), when the contour shape of the landmark is close,  𝛾௜௝ is close to 1. If 𝛾௜௝ is larger, 
it indicates that the contour difference of the landmark is large. In addition, when 𝑑௜௝  is close to 1, it 
means that the landmarks both have similar CNN features and geometric shapes. Furthermore, when 𝑑௜௝  is a negative number, it indicates that the geometric shapes of the landmarks differ greatly. If 𝑑௜௝  
is small, it reveals that there may be differences in the CNN features or geometric shapes. 

2.2.3. Geometric Similarity 

In visual SLAM, the accuracy of loop closure detection is particularly important. Therefore, it is 
necessary to consider both appearance similarity and geometric similarity during loop closure 
detection. Thus, the random walk graph descriptor proposed in Section 2.1.4 was used to calculate 
geometric similarity for graph matching. Denote that the vectorized form of the descriptor matrix 𝑀 = ൛𝑚௜௝ൟ ∈ ℝ௠×ଶ௡  using 𝐺 ∈ ℝଶ௠௡ is a concatenation of the columns of 𝑀  into a vector. 

In Section 2.1.4, we obtained the random walk descriptor of the dataset images and only needed 
to construct the semantic topology graph to extract the descriptor for the query image. Since the 
number of pixels was much larger than the node index in value, the absolute size of the feature vector 
of the description changed greatly. Therefore, it was more appropriate to use cosine similarity to 
express the relative difference of graph descriptors by Equation (6): 
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𝑆௚൫𝐺௤, 𝐺௖൯ = 𝐺௤ ⋅ 𝐺௖ฮ𝐺௤ฮଶ ⋅ ‖𝐺௖‖ଶ (6) 

where 𝐺௤  and 𝐺௖  denote the feature vector of the random walk descriptor in query image and 
candidate image, respectively. The denominator is the product of the corresponding vector modulus 
length. After getting a similarity score, it needed to be normalized with Equation (7): 𝑆௚ = 12 + 12 𝑆௚൫𝐺௤, 𝐺௖൯ (7) 

Through Equation (7), the similarity score in the range of ሾ0,1ሿ could be obtained. 

2.2.4. Overall Similarity 

This section discusses the calculation of the overall similarity between the query image and the 
candidate image. We not only considered the appearance characteristics of the image but also added 
geometric constraints. Sections 2.2.2 and 2.2.3 obtained the appearance and geometric similarities of 
a single landmark pair. Through Equations (8) and (9), we scored each best matched landmark pair ൫𝐼௤௜ , 𝐼௖௝൯  between the query image 𝐼௤ and the candidate image 𝐼௖. The similarity score between each 
landmark 𝑖 in the query image and the most similar landmark 𝑗  selected by the nearest neighbor 
search method in the candidate image was first computed, and then the scores were assigned to the 
candidate image as the mean value of individual scores of its landmarks. Finally, through Equation 
(10), the overall similarity score of each candidate image was obtained. 𝑆መ௤,௖ = 1𝑡 ෍௜,௝ 𝑑௜௝ (8) 

𝑆መ௚ = 1𝑡 ෍௜,௝ 𝑆௚ (9) 

where 𝑡  denotes the number of the landmarks in the candidate image 𝐼௖  (including unmatched 
landmarks), 𝑖  represents the 𝑖-th landmark of the current query image, and 𝑗  is the most similar 
landmark selected by the nearest neighbor search method in the candidate image. Moreover, the sum 
is done only on the best matched landmark pairs selected by the nearest neighbor search method. 𝑆௔௟௟ = 𝑆መ௚ ⋅ 𝑆መ௤,௖ (10) 

In Equation (10), geometric similarity 𝑆መ௚ is used as a penalty factor for appearance similarity 
score to filter candidate images with similar local features but large differences in geometric 
information. In the experiments, it was normalized to ሾ0,1ሿ. We normalized a set of overall similarity 
scores between the current query image and all candidate images (in Section 2.2.1). When the overall 
similarity score set of the current query image be 𝑋 = ሼ𝑥ଵ, 𝑥ଶ, … , 𝑥௠ሽ,  𝑚 denotes the number of 
candidate images retrieved from the current query image. In addition, 𝑥௜ (1 <= 𝑖 <= 𝑚) denotes 
the overall similarity score between the current query image and the 𝑖-th candidate image. Through 
Equation (11), each value in 𝑋  can be normalized to ሾ0,1ሿ: 𝑦௜ = 𝑥௜ − 𝑚𝑖𝑛( 𝑋)𝑚𝑎𝑥( 𝑋) − 𝑚𝑖𝑛( 𝑋) (11) 

where 𝑌 = ሼ𝑦ଵ, 𝑦ଶ, … , 𝑦௠ሽ is the normalized score set and 𝑦௜   
is one of the score values. 

After obtaining the normalized similarity score for loop closure detection, it is often necessary 
to perform time and space consistency verification. In this article, the geometry check was not added. 
Nevertheless, the proposed method that integrates visual, spatial, and semantic information was still 
found to improve performance. 
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3. Results 

This section mainly introduces the experimental process and result analysis. In order to evaluate 
the performance of different components of the proposed method and to compare the performance 
of the proposed method with other state-of-the-art methods, the following methods were considered: 

(1) A state-of-the-art BoW-based method (named ‘DBoW2′) that did not need to recreate the 
vocabulary in different scenarios [11].  

(2) A CNN approach (named ‘Conv3′) that applied the global Conv3 feature to describe images [27].  
(3) A technique (named ‘CNNWL’) that combined global and local CNN features but ignored the 

spatial relationship of landmarks [30].  
(4) An approach (named ‘GOCCE’) that was based on local features and semi-semantic information 

[31]. It was closer to the proposed algorithm.  
(5) The proposed complete method (named ‘VSSTC’) that integrated visual, spatial, and semantic 

information through topological graphs and CNN features.  
(6) Two simplified versions of the random walk graph descriptor of our method. One version 

included only label information (named ‘VSSTC-Label’), and the other used only pixel number 
information (named ‘VSSTC-Pixel’). 

(7) A modified version of our method of landmark segmentation method (named ‘VSSTC-OP’) 
a. that used object proposal instead of semantic segmentation to extract landmark regions, while 

using the size of the bounding box instead of Hu moments.  
(8) Another reduced version of our method (named ‘VSSTC-LS’) that did not construct topological 

graphs and lacks spatial information. In order to compare the performance of the proposed 
method with that of the above methods, comparative experiments were carried out on the 
datasets and a mobile robot. Based on the experimental results, the proposed method was fully 
evaluated. 

In the experiments, a precision–recall curve (P–R curve) [55] was used as a quantitative 
evaluation metric, as it is a standard metric for loop closure detection results. By changing the 
similarity threshold, the P–R curve could be obtained. In order to further observe the experimental 
results, the maximum recall rate under the precision of 100% and the area (the value in ሾ0,1ሿ) under 
the P–R curve (AUC) were used as auxiliary evaluation metrics. The larger the recall rate and the 
area, the better the performance. 

The experiments were carried out on a desktop equipped with GTX 1080Ti GPU. We used a pre-
trained DeepLabV3 + based on the TensorFlow [56] for semantic segmentation and AlexNet based on 
Caffe [57] to extract CNN features. 

3.1. Dataset Experiments 

3.1.1. Datasets 

The performance evaluation was performed through the following four public datasets, which 
are widely used in the field of loop closure detection and place recognition. 

City Centre dataset: This dataset [10] contains 1237 pairs of images in outdoor urban 
environments. The resolution of each image is 640 × 480. It contains dynamic scenes of pedestrians 
and vehicles. In addition, there are a lot of scenes with changes in viewpoint caused by lateral 
displacement and reverse movement. It also includes shadows and spots caused by lighting. Ground 
truth data are included in the dataset. In the experiment, six types of landmarks were selected: tree, 
road, sky, building, car, and grass. Furthermore, person and bicycle dynamic landmarks were 
excluded. The dataset scenario is listed in Figure 7a. 

New College dataset: This dataset [10] contains 1073 pairs of images of a university campus, 
which contains a small number of dynamic scenes of pedestrians and vehicles. Additionally, it 
includes the scenes of viewpoint changes caused by lateral displacement. Furthermore, there are 
many indoor repetitive structures, such as walls, chairs, and windows. The resolution of each image 
is 640 × 480. Ground truth data are included in the dataset. In the experiments, eight types of 
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landmarks—sky, wall, chair, building, road, grass, tree, and car—were selected and the person 
landmark was excluded. The scenes of the dataset images are shown in Figure 7b. 

Gardens Point dataset: This dataset [27] contains two traversals on the university campus during 
the day, one route on the left-hand side of the road and the other on the right-hand side of the road 
on the same day. In addition, the dataset includes 200 pairs of images, with the left and right sides of 
the road each containing 200 images. It contains the viewpoint changes caused by walking on the left 
and right sides of the road, and there are many pedestrian dynamic objects. Ground truth data are 
included in the dataset. In the experiment, we selected eight types of landmarks: wall, building, sky, 
road, flooring, door, tree, and ceiling. The person landmark was excluded. The scenes within dataset 
images are shown in Figure 7c. 

Mapillary dataset: The Mapillary datasets were first introduced by [30], and they have street-
level imagery and map data from all over the world. We downloaded the Berlin August–Bebel–Straße 
sequence, as well as ground truth data, to get 318 images. The dataset exhibits significant changes in 
viewpoints and severe changes in appearance. In addition, it contains a large number of moving 
vehicle dynamic objects. We selected six types of landmarks—building, road, sky, tree, pole, and 
signal—and excluded car landmarks. Some images in the dataset are shown in Figure 7d. 
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Figure 7. The example scenes from the used datasets. The query images are placed in the first row, 
and the matching images are placed in the second row. (a) The images in the City Centre dataset. (b) 
The images in the New College dataset. (c) The images in the Gardens Point dataset. (d) The images 
in the Mapillary dataset. 

3.1.2. Experimental Results and Analysis 

The experiments not only illustrated the experimental effects of the proposed approach under 
different parameter settings but also provided comparison results with other advanced methods. In 
order to test the topological graph descriptor of the proposed method, the experiments (Figure 8a,b) 
were conducted by extracting the number of different landmarks (𝑡 = 5  or 10), using different 
random walks (𝑚 = 10, 20, or 50) and walk depth (𝑛 = 3 or 5) to change the size of the graph 
representation. In addition, the proposed complete method was fully compared with other methods 
(Figures 8 and 11). Moreover, we conducted ablation studies (Figures 8c,d and 11) on the components 
of the proposed system to analyze the performance of each component. Among them, we analyzed 
the influence of the composition factors of the topological graph descriptors in the proposed method 
(Figure 8c). The VSSTC-Label method only considered the landmark label, and the VSSTC-Pixel 
approach only used the number of pixels. These two methods and the proposed VSSTC method were 
tested on the Gardens Point dataset. In addition, to verify the proposed landmark region extraction 
method (VSSTC), we replaced the landmark segmentation method with the object proposal method 
(VSSTC-OP) instead of semantic segmentation to obtain bounding boxes (Figure 8d). At the same 
time, this experiment verified the effectiveness of Hu moments relative to the size of the bounding 
box on the Mapillary dataset. Furthermore, to consider the impact of the semantic topology graph on 
the performance of the proposed method, the removed topology graphs (VSSTC-LS) and the 
complete method (VSSTC) were analyzed in the mobile robot experiment (see Section 3.2). Figure 8 
shows the P–R curves of the experimental results, and Tables 1 and 2 list the maximum recall rate 
under the precision of 100% and the area under the P–R curve. 

 
(a) 
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(d) 

Figure 8. Experimental results for the datasets: (a) the precision–recall (P–R) curves of City Centre 
dataset, (b) the P–R curves of New College dataset, (c) the P–R curves of Gardens Point dataset, and 
(d) the P–R curves of Mapillary dataset. 

From the P–R curves in Figure 8, we can see that in the case of graph descriptor size  𝑚 = 10 
and  𝑛 = 3, the maximum recall rate of  𝑡 = 5 was larger than that of 𝑡 = 10. This shows that blindly 
increasing the number of landmarks can entrain many minor landmarks to participate in loop closure 
detection, thereby weakening performance. In addition, whether in the case of  𝑡 = 5,  𝑚 = 10, or 𝑡 =10,  𝑚 = 50, the maximum recall rate at  𝑛 = 3 exceeded that at 𝑛 = 5. This indicates that when the 
walk depth 𝑛 reached the graph size limit, continuing to increase the walk depth 𝑛 made the model 
visit the nodes that had been visited before. This reduced the ability to express the graph descriptor 
and diminished the loop closure detection performance. Furthermore, in the case of  𝑡 = 5 and  𝑛 =3, the maximum recall rate when  𝑚 = 10 was larger than that when  𝑚 = 20. However, in the case 
of  𝑡 = 10 and  𝑛 = 3, the maximum recall rate when  𝑚 = 50 was larger than that when  𝑚 = 10. 
This demonstrates that the number of random walks  𝑚 was determined by the size of the semantic 
topology graph. When the size of the semantic topology graph was small, too large a number of walks 
reduced the performance of the graph descriptor. When the size of the semantic topology graph was 
small, a large number of random walk times caused the model to access repeated paths, thereby 
reducing performance. However, appropriately increasing the number of random walk times 
according to the size of the semantic topology graph improved the expressive ability of the graph 
descriptor. In summary, when 𝑡 = 5 ,  𝑚 = 10, and  𝑛 = 3 , the effect of loop closure detection 
achieved a good compromise between accuracy and complexity. In order to further clarify the 
experimental results, it can be observed from Table 1 that the maximum recall rate and AUC value 
in the City Centre and New College datasets also conformed to the above conclusions. 

Table 1. Experimental results on the City Centre and New College datasets. AUC: area under the 
curve. Conv3: third convolutional layer. 

Methods 
City Centre New College 

Recall（%） AUC Recall（%） AUC 
VSSTC (t = 5 m = 10 n = 3) 29.81 0.8707  20.51 0.9042 
VSSTC (t = 5 m = 10 n = 5) 22.44 0.8085 13.14 0.8492 
VSSTC (t = 5 m = 20 n = 3) 24.68 0.8512 18.27 0.8848 
VSSTC (t = 10 m = 10 n = 3) 21.47 0.8459 15.39 0.8923 
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VSSTC (t =1 0 m = 50 n = 3) 29.17 0.8636 22.76 0.9109 
VSSTC (t = 10 m = 50 n = 5) 25.00 0.8186 14.42 0.8699 

GOCCE [31]  19.23 0.7769 8.98 0.8284 
CNNWL [30] 6.81 0.4882 5.09 0.5051 

Conv3 [27] 5.72 0.3938 3.22 0.4258 
DBoW2 [11] 7.36 0.3187 8.04 0.2975 

From the experimental results on the City Centre and New College datasets, it can be seen that 
the performance of the DBoW2 method was the worst. Moreover, this method was inferior to other 
methods based on CNN features. This shows that the traditional BoW method based on manual 
features was poor in robustness and could only deal with limited scenarios. In addition, the CNNWL 
method was better than the Conv3 one. This shows that the CNNWL method that combined global 
and local CNN features had better graph description capabilities than that of the global CNN feature 
method. Furthermore, the performance of the proposed VSSTC method significantly exceeded that 
of the CNNWL method. This demonstrates that the proposed method with added spatial constraints 
had better performance. This also proves that the random walk descriptor based on the semantic 
topological graph proposed in this paper had an excellent graph description ability. Importantly, our 
method outperformed the GOCCE one, which shows the advantages of the proposed semantic 
topology graph in the face of viewpoint changes and dynamic scenes. 

The authors of this article conducted three groups of ablation studies to analyze the impact of 
each component of the proposed method on the overall performance. From Figure 8c and Table 2, we 
can see that the VSSTC-Label method had better performance than the VSSTC-Pixel approach, which 
underlines the importance of landmark label information in the topology graph descriptor. In 
addition, it could be seen that the performance of VSSTC-Pixel method was inferior to that of the 
GOCCE method, which shows that the performance of graph descriptors lacking semantic 
information dropped sharply. Furthermore, the VSSTC method had the best performance, which also 
reflects that the performance of the proposed complete method was greatly improved by integrating 
the landmark label and pixel number information. 

From Figure 8d and Table 2, we can understand that the performance of the VSSTC-OP method 
was inferior to that of the VSSTC method, which reveals the superiority of using semantic 
segmentation to extract landmark regions and employing Hu moments to represent region shape 
information. As expected, the bounding box extracted by region proposal extracted interference 
features when facing the presence of a complex background, resulting in performance degradation. 
The remaining ablation research is given when discussing the mobile robot experiment. 

Table 2. Experimental results on the other datasets. 

Methods 
Gardens Point Mapillary Robot 

Recall（%） AUC Recall（%） AUC Recall（%） AUC 
VSSTC 84.33 0.9906 30.32 0.8796 30.25 0.7628 

VSSTC-Label  82.96 0.9871 - 1 - - - 
VSSTC-Pixel 39.52 0.9528 - - - - 
VSSTC-OP - - 24.36 0.8395 - - 
VSSTC-LS - - - - 18.14 0.6229 

GOCCE [31] 60.99 0.9792 19.59 0.8260 23.49 0.7132 
CNNWL [30]  49.57 0.9700 9.37 0.7397 20.09 0.5909 

Conv3 [27] 30.15 0.9268 4.43 0.3544 8.35 0.3823 
DBoW2 [11] 12.10 0.8730 0 0.3643 0 0.3249 

1 The symbol ‘-’ indicates that the experiment of the method (row) is not performed under the 
corresponding dataset (column). 
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3.2. Mobile Robot Experiment 

In order to further verify the robustness of the proposed method to viewpoint changes and 
dynamic scenes, experiments were carried out in outdoor scenes using the mobile robot of our team. 

3.2.1. Experimental Platform 

As shown in Figure 9, we used a wheel–leg hybrid hexapod robot with a length of 2 m, a width 
of 1.7 m, and a height of 1 m as the experimental platform. Moreover, the robot was equipped with 
an Intel Braswell processor and a centimeter-level integrated navigation system. We used a controller 
to remotely control the robot and drive 1.5 km in the campus of Xidian University. The data were 
captured by the front YAMAKO camera (see Figure 9b) for the experiment. In the mobile robot 
experiment, with a focal length of 10 mm and a working distance of 15 m, a field of view of 
approximately 9600 × 7200 mm could be obtained. The detailed parameters of the YAMAKO camera 
are shown in Table 3. Finally, 108,000 frames of images were collected at a video frame rate of 30 Hz. 
By setting the distance threshold of the obtained image sequence to 2 m, 720 key frames could be 
obtained. In addition, the obtained frames were perfectly aligned by the GPS information, which 
could be used as the ground truth of loop closure detection. 

 
(a) 

 
(b) 
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Figure 9. The experimental platform of the mobile robot: (a) wheel–leg hybrid hexapod robot and (b) 
the YAMAKO camera used by the mobile robot. 

Table 3. Detailed parameters of the used YAMAKO camera. 

Product name Network Integrated Movement 
Model YM86 × 10M2N 
Sensor 1/2″ 

Focal length 10~860 mm 
FOV 42°~0.44° 

Resolution 1920 × 1080 
Aperture F2.0~6.8 

As seen in Figure 10, the trajectory of the robot was recorded by the GNSS and INS integrated 
positioning system. The robot drove two laps; the first lap was obtained by driving along the left side 
of the road, and the second lap was acquired by driving along the right side of the road in the same 
direction as the first lap. The experimental scene contained changes in viewpoint caused by the lateral 
displacement and also included a lot of dynamic scenes. In addition, it included a lot of shadows and 
bright spots caused by light. The experiment selected four types of landmarks: road, building, tree, 
and sky. Furthermore, the dynamic landmarks of person, bicycle, and car were excluded. 

 

Figure 10. The trajectory of the robot. 

3.2.2. Experimental Results and Analysis 

Figure 11 shows the P–R curves of the mobile robot, and Table 2 lists the maximum recall rate 
under the precision of 100% and the area under the P–R curve. According to Section 3.1.2,  𝑡 =5,  𝑚 =10, and  𝑛 = 3 were used as the random walk descriptor parameters of the proposed method. In 
Figure 11 and Table 2, it can be seen that the DBoW2 method performed the worst. A possible reason 
for this performance is that the experimental scene contained a large number of viewpoint changes 
and dynamic scenes. Moreover, the CNNWL method had better performance than the Conv3 one, 
which shows that the CNNWL method was more robust for expressing the image by considering 
both global and local features in the viewpoint changes and dynamic scenes. Furthermore, the 
proposed VSSTC method performed better than the CNNWL and GOCCE methods, thus 
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demonstrating that the spatial and semantic information played an important role in improving the 
loop closure detection performance of changing viewpoint and dynamic scenes. 

 
Figure 11. The P–R curves of the mobile robot experiment. 

More importantly, from Figure 11 and Table 2, it can be seen from the experimental results that 
the VSSTC-LS method had a much poorer performance than the VSSTC method that considered 
spatial information. This shows that the spatial geometric information had a greater impact on loop 
closure detection performance. In addition, we can see that the performance of the VSSTC-LS method 
was slightly better than that of the CNNWL method, which reflects that the visual and semantic 
modules used in the proposed method were superior when there was no geometric information. 

Figure 12 shows a loop closure detection result obtained by the proposed method. The blue 
points are the selected 720 key-frames, and the key-frames connected by the red line indicate the 
correct loop closure. It can be seen from the figure that the proposed method could still detect a large 
number of loop closures under the influence of viewpoint changes and dynamic scenes. Figure 13a,b 
shows the true positive image pairs detected by loop closure detection at 1 and 2 in Figure 12, 
respectively. Figure 13a,b contains viewpoint changes and pedestrian dynamic scenes, as well as the 
shadows caused by the changes in illumination. This shows that the proposed method had a better 
graph description ability in the above-mentioned drastically changing scenes. 

 
Figure 12. Example of loop closure detection. 
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(a) 

  
(b) 

Figure 13. Examples of correct matches obtained using our method: (a) the true positive image pair 
at 1 in Figure 12 and (b) the true positive image pair at 2 in Figure 12. 

4. Conclusions 

This paper studied the loop closure detection in visual SLAM and proposed a robust loop closure 
detection method that integrated visual–spatial–semantic information to deal with viewpoint 
changes and dynamic scenes. Firstly, semantic topological graphs were employed to represent the 
spatial geometric relationships of landmarks, and random walk descriptors were applied to represent 
topological graphs. By adding geometric constraints, the mismatch problem caused by changes in 
viewpoint was improved. Then, semantic information was utilized to eliminate dynamic landmarks, 
and distinctive landmarks were selected for loop closure detection, which effectively alleviated the 
impact of dynamic scenes. Finally, semantic segmentation was used of accurately obtain the 
landmark region. At the same time, deep learning was adopted to automatically learn the complex 
internal features of landmarks without the need to manually design features. As a result, it eased the 
effect of appearance changes. According to the experimental results of the datasets and a mobile 
robot, the proposed method can effectively cope with changes in viewpoint and dynamic scenes. 

However, the proposed method has certain limitations. Firstly, the pros and cons of using 
semantic segmentation to extract landmark regions depend on the selection of the semantic 
segmentation model and pre-training datasets. When using this approach, the users need to select a 
semantic segmentation model according to experimental scenes. At the same time, the model was 
trained by fine-tuning and transfer learning. Second, this work was offline. It takes a certain amount 
of time to extract landmark regions and obtain CNN features. In future research, we will try other 
segmentation models to extract semantic landmarks and use more comprehensive and complete 
datasets to train the segmentation network so that the model can cope with changing experimental 
scenarios. Furthermore, this paper used a single image to construct a semantic topology graph. In the 
future, we will construct a topology graph for sequence images to improve loop closure detection 
performance. In addition, the proposed strategy for selecting representative landmarks still has room 
for improvement. To further explore more suitable representative landmark selection strategies, we 
plan to divide landmarks into the four categories of dynamic, static, unreliable segmentation, and 
ubiquitous landmarks based on indoor and outdoor scenes while considering the differences between 
urban and rural scenes. Then, we will assign weights to each type of landmark according to different 
dataset scenarios to improve our work. Furthermore, in the experimental part, in order to conduct 
ablation studies, we designed different combinations of the proposed methods, and there is still room 
for the optimization of these combinations. To further explore the effect of each component of the 
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proposed method on overall performance, we will design more diversified and rigorous ways of 
measurements to improve the work of this article. 
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