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Abstract: Image-based three-dimensional (3D) reconstruction is a process of extracting 3D information
from an object or entire scene while using low-cost vision sensors. A structure-from-motion coupled
with multi-view stereo (SFM-MVS) pipeline is a widely used technique that allows 3D reconstruction
from a collection of unordered images. The SFM-MVS pipeline typically comprises different
processing steps, including feature extraction and feature matching, which provide the basis for
automatic 3D reconstruction. However, surfaces with poor visual texture (repetitive, monotone, etc.)
challenge the feature extraction and matching stage and affect the quality of reconstruction.
The projection of image patterns while using a video projector during the image acquisition process
is a well-known technique that has been shown to be successful for such surfaces. In this study,
we evaluate the performance of different feature extraction methods on texture-less surfaces with
the application of synthetically generated noise patterns (images). Seven state-of-the-art feature
extraction methods (HARRIS, Shi-Tomasi, MSER, SIFT, SURF, KAZE, and BRISK) are evaluated on
problematic surfaces in two experimental phases. In the first phase, the 3D reconstruction of real and
virtual planar surfaces evaluates image patterns while using all feature extraction methods, where the
patterns with uniform histograms have the most suitable morphological features. The best performing
pattern from Phase One is used in Phase Two experiments in order to recreate a polygonal model of
a 3D printed object using all of the feature extraction methods. The KAZE algorithm achieved the
lowest standard deviation and mean distance values of 0.0635 mm and −0.00921 mm, respectively.

Keywords: structure-from-motion; multi-view stereovision; textures-less photogrammetry; pattern
recognition; 3D surface comparison

1. Introduction

In recent years, structure-from-motion coupled with multi-view stereo (SFM-MVS) techniques
has been a focus of research in the fields of photogrammetry (image-based three-dimensional
reconstruction) and computer vision, owing to the availability of low-cost vision sensors and methods
for automated image processing [1,2]. SFM-MVS has influenced various areas, such as medicine
(e.g., to examine changes in muscle tissue [3]), cultural heritage (e.g., to document digital museum
archives [4], and visualization of museums in a virtual environment [5,6]), criminal investigation
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(e.g., forensic infography [7], and inspection for concealed weapons [8]), reverse engineering
(e.g., investigation of industrial components [9]), forestry and ecology [10,11], virtual and augmented
reality [12–14], applications in the entertainment and gaming industries [15,16], as well as other fields.

SFM is a non-contact measuring technique that is used to find a set of feature points that appear
in different images. The feature points can be used in order to retrieve the captured scene and
estimate the position and orientation of the camera stations. By utilizing the orientation parameters,
the three-dimensional (3D) coordinates of the camera stations and sparse point cloud can be estimated
in 3D space. MVS techniques can then be employed to group the images that share common viewpoints
and add more points to the SFM cloud [17]. However, surfaces with poor visual texture (uniform,
monotone, repetitive textures, etc.) pose a problem that is related to the extraction of feature points
required for the correspondence search (tie point detection) between different images. The lack of
visual features results in empty holes appearing in the point clouds. Typically, features are identified
using a feature detector-descriptor algorithm. Surfaces that possess strong morphological features
together with high-frequency color changes enable easy and clear identification of feature points that
are considered to be SFM-MVS friendly. Conversely, surfaces with uniform and monotone visual
textures pose problems and affect the quality of 3D reconstruction. Therefore, texture analysis has
been widely investigated in computer vision and pattern recognition applications because of its ability
to extract discriminative features [18].

Accuracy, time, and cost are important factors when choosing a 3D scanning approach.
When compared to other 3D scanning techniques (e.g., laser scanning and time-of-flight),
photogrammetry is time efficient and cheaper, but it lacks the accuracy that is needed for a range
of applications. Specifically, objects with a texture-less surface pose a challenge to the SFM-MVS
pipelines due to the lack of visual features. The problem of extracting features on texture-less surfaces
is often dealt with by artificially enriching surfaces with image patterns. In [3], Chang et al. proposed
a multi-view image capturing system with projectors in order to monitor the deformity of a human
spine to diagnose scoliosis. Because the torso surface is uniform and texture-less, synthetic image
patterns were added to the surface while using video projectors before the image acquisition process.
Ahmadabadian et al. implemented an automatic portable system for image acquisition with a novel
projection system [19,20]. A total of 60 colored LED lights were located around a turntable to project
a pattern on the object placed on the turntable. The structural resolution evaluation of the complex
object resulted in an error of 0.3 mm for the system. With the application of noise function-based
patterns (NFBPs), Koutsoudis et al. [21] presented a data collection variant in order to improve the
reconstruction quality using a commercial software package. The performance of the NFBPs was
verified on a Cycladic figurine, where the wavelet noise pattern achieved a minimum root mean square
(RMS) error of 0.24 mm. Recently, Santosi et al. [22] introduced the idea of noise patterns generated
from irrational numbers and random numbers of various hues. The performance evaluation of the
noise patterns involved the reconstruction of an aluminum test model. The accuracy achieved for the
highest-ranked pattern was 0.173 mm std. distance, and a mean distance of 0.016 mm. In our previous
research [23–25], we have shown that the structural resolution and elements in a pattern affect the
quality of reconstruction. A random dense mesh of artificial elements on a texture-less surface results
in a higher accuracy when compared with a uniform and repetitive texture.

In this study, we evaluate the performance of feature extraction methods on texture-less surfaces by
applying synthetic noise patterns. The patterns (images) are generated from three known sources that
have been proven to be effective, namely, noise functions, irrational numbers, and random numbers.
Based on the related literature previously reviewed, we assume that the arrangement and intensity
values (pixels) of the pattern images have an impact on the ability of the feature extraction methods
to detect and identify the feature points. The aim is to evaluate the noise patterns with different
feature extraction methods while using the results of real and virtual planar surface 3D reconstruction.
Additionally, the aim is to find a combination of a noise pattern and a feature extraction method that
gives the highest accuracy by evaluating the reconstructed polygonal models of a texture-less object.
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Furthermore, we develop a MATLAB-based plug-in that encompasses state-of-the-art methods for
feature extraction (HARRIS, Shi-Tomasi, MSER, SIFT, SURF, KAZE, and BRISK) and feature matching.

The remainder of this paper is organized, as follows. In Section 2, we present a brief overview
of the SFM-MVS pipeline and different feature extraction methods. In Section 3, the generation of
noise patterns, outline data collection, and a feature extraction and matching plug-in are described.
In Section 4, we present and explain the evaluation results. We conclude the paper in Section 6 by
outlining important findings.

2. Structure-from-Motion Multi-View Stereo Pipeline

2.1. Feature Extraction—Feature Detection and Description

The feature point (also called the interest point or keypoint) detection constitutes a crucial phase
and it significantly affects the underlying SFM-MVS pipeline. For each image given as input to the
pipeline, features are typically detected in the form of lines, edges, corners, junctions, blobs, etc. while
using a so-called feature detector algorithm. Ideally, a feature detector needs to be robust and it
should detect the same features across the image sequence, regardless of lighting conditions, image
rotation, scale, or affine changes. For the feature detection phase in SFM pipelines, different algorithms
can be used. In this paper, we present a comprehensive overview of HARRIS [26], Shi-Tomasi [27],
and BRISK [28] in order to detect corner features, and SIFT [29], SURF [30], KAZE [31], and MSER [32]
algorithms to detect blob features, utilizing the MATLAB Computer Vision Toolbox [33].

The feature points that were detected by feature detector algorithms (in the previous phase) are
subsequently described in a process, called feature description. In this process, features are described
by assigning them a distinctive identity while using logically different techniques that are based on
the unique patterns possessed by their neighboring pixels. SIFT, SURF, KAZE, and BRISK feature
detectors come with their designated feature descriptors, while HARRIS, Shi-Tomasi, and MSER
exist individually. However, the individual feature detectors may be combined with various types of
appropriate feature descriptors. Once feature points and their description are obtained, the conjugate
points between different images are searched in the next step.

In the following, a brief introduction of the feature detection methods used in the experiments
is presented.

2.1.1. HARRIS Corner Detector

In 1988, Harris et al. introduced a combined corner and edge detector [26] in order to improve
Moravec’s corner detector. Similar to Moravec’s algorithm, the Harris Corner Detector is based
on the autocorrelation, which is the sum of squared differences (SSD). Moravec’s SSD, as given by
Equation (1), calculates the difference in intensities of the window shift, where E(u, v) is the weighted
SSD between two patches.

E(u, v) = ΣxΣy[w(x, y)[I(x + u, y + v)− I(x, y)]2] (1)

A lower value indicates a flat region in the image, while a higher value indicates that a corner is
present. When compared to Moravec’s method, the Harris Corner Detector has the advantage that
instead of shifting patches for every 45-degree angle, it directly considers the differential of the corner
score with respect to the direction, which has been proved to distinguish between edges and corners
more accurately. Hence, the term I(x + u, y + v) is approximated using the Taylor expansion truncated
to the first order. After some calculation, Equation (1) can be written as

E(u, v) ≈ ΣxΣy[w(x, y)[I(x, y) + uIx + vIy − I(x, y)]2] (2)
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where Ix and Iy are partial derivatives of I in terms of the x- and y- axis, respectively. This approximation
also greatly reduces the calculation complexity. Further, Harris reformulated the algorithm to benefit from
the variation of E(x,y) with respect to the direction of the shift. Therefore, Equation (2) can be rewritten as

E(u, v) =
[
u v

]
M

[
u
v

]
(3)

where the Harris matrix M is

M = ∑
x

∑
y

w (x, y)

[
Ix Ix Ix Iy

Ix Iy Iy Iy

]
(4)

Next, a score, R, which is based on the eigenvalues of the Harris matrix M, is introduced
in Equation (5), where the magnitudes determine whether a window contains a corner, and the
eigenvalues are replaced by a matrix determinant and trace.

R = 12 − κ(1 + 2)
2 = det(M)− κtrace2(M) (5)

2.1.2. Shi-Tomasi Method

In [27,34], Tomasi et al. proposed a method that is very similar to the Harris Corner Detector for
tracking corners between consecutive frames of a video. The mathematical foundation is very similar
to the formerly discussed method, except for the score criteria (R is the Harris score), which has been
proved to be better than the original method. In Equation (6), the smallest eigenvalues of the Harris
matrix M determine a corner.

R = min(λ1, λ2) (6)

If R is greater than a certain threshold, then it can be marked as a corner.

2.1.3. MSER

In [32], Mates et al. proposed the concept of maximally stable extremal regions (MSER), which can
be distinguished in an image by the extremal property of the intensity function in the region and on
its outer boundary. These extremal regions possess highly desirable properties, including continuous
geometric transformation, and they are invariant to affine intensity changes, forming a stable local
detector. MSERs are also detected at different scale levels and, since no smoothing is applied, large
structures can be easily detected.

2.1.4. SIFT

The scale-invariant feature transform (SIFT) was first introduced by Lowe in 2004 [29]. Since then,
many variations have been presented, such as SiftGPU [35]. The SIFT feature detector operates by
finding the difference of Gaussians (DoG), which is an approximation of the Laplacian of the Gaussian
(LoG). Once the DoG is found, the feature points are detected by searching the local extrema at various
scale levels of the image. This property causes the detector to find the maximum number of features.
Next, a refinement process eliminates some features if their intensity level is below a certain threshold.
The SIFT descriptor works by taking a 16 × 16 neighborhood around the detected features and it
further divides the region into 16 sub-blocks. The SIFT descriptor contains 128 bin values and it is
represented as a vector. Equation (7) shows the convolution of the difference between two Gaussians
that were computed at different scales with image I(x, y).

D (x, y, σ) = (G (x, y, kσ)− G (x, y, σ) ∗ I(x, y)) (7)

where G represents a Gaussian function.
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2.1.5. SURF

The speeded up robust features (SURF) algorithm was introduced by Bay et al. in 2008 [30],
which also relies upon Gaussian approximation of an image at many scales. The SURF detector uses an
approximation of the determinant of the Hessian matrix with integral images in order to improve the
feature detection speed. The SURF descriptor is based on the distribution of Haar wavelet responses
around each detected feature point. A standard SURF descriptor contains 64 bin values; however,
it can be extended to 128 bin values to cater to larger viewport changes. The Hessian matrix “H” is
assembled, as expressed in Equation (8) at point P = (x, y) and scale σ

H (x, σ) =

[
Lxx(P , σ) Lxy(P , σ)

Lxy(P , σ) Lyy(P , σ)

]
(8)

where Lxx(P, σ) is the convolution of the Gaussian second-order derivative with image I at point P ,
and similarly for Lxy(P , σ) and Lyy(P , σ).

2.1.6. BRISK

Leutenegger et al. introduced the binary robust invariant scalable keypoint (BRISK) method
primarily for real-time applications [28]. The BRISK algorithm works by creating a scale-space pyramid,
which is referred to as octaves and intra-octaves, and it finds corners using the AGAST algorithm.
Next, it computes the FAST score for each scale-space while searching for maxima to reduce redundancy.
The BRISK descriptor archives rotation and orientation invariance by identifying the local gradient for
each corner. For the illumination invariance, it compares the pixel-to-pixel intensity, obtains the results
by testing the brightness, and a binary string of the descriptor is constructed.

2.1.7. KAZE

In 2012, Alcantarilla et al. proposed the KAZE feature detector based on a nonlinear scale-space
through nonlinear diffusion filtering [31]. In this way, blurring in an image becomes locally adaptive,
which reduces noise but retains the boundaries of the objects in the image data. The KAZE algorithm
is based on the scale-normalized determinant of the Hessian matrix computed through nonlinear
scale-space at multiple levels. The maxima of the Hessian response are found as features of interest.
The KAZE descriptor achieves rotation invariance by finding the dominant orientation in a circular
region that is centered at the location of the feature point. Equation (9) shows the standard nonlinear
diffusion formula.

∂L
∂t

= div(c (x, y, t) .∇L) (9)

where c is the conductivity function, “div” is divergence, ∇ is the gradient operator, and L is
image luminance.

2.2. Feature Matching

The feature points obtained through the feature extraction process are used in order to find image
regions that share common parts of the scene. If an image pair finds a set of feature points that are
present in both images, then it is possible to state that those images share a common part of the scene.
In a similar fashion, images in a sequence are matched with all other images in order to find a set
of correspondences. Different matching methods (FLANN and Brute-Force) and strategies (nearest
neighbor distance ratio and threshold-based matching) can be adopted to find matches between
images [36].

Because matches found can be contaminated by outliers, it is mandatory to use robust estimation
techniques for accurate fitting of the transformation model. Depending on the configuration of the
device used in the image acquisition process, different probabilistic methods, such as random sample
consensus (RANSAC) [37] and progressive sample consensus (PROSAC) [38], are used to remove
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outliers from the matched features. These methods provide a transformation function (homography
or fundamental matrix) that acts as a relative orientation backbone and gives perspective transforms
between image pairs of a scene.

2.3. Bundle Adjustment

The position and rotation of the camera stations in 3D space are estimated after finding the
set of correspondences between image pairs. The associated process needs to calculate the external
orientation or extrinsic parameters of the camera [39]. The bundle adjustment (BA) technique estimates
the external orientation parameters with the help of the image coordinates and collinearity equations.
Mathematically speaking, BA is a process of optimizing the sum of the reprojection error through
nonlinear least squares and estimating the 3D coordinates of the points on the image and camera
parameters (potentially both intrinsic and extrinsic parameters). Therefore, BA is sometimes referred
to as “auto-calibration” or “self-calibration”. Given a vector of camera parameters, x, and reprojection
errors, f (x) = [ f1 (x) , . . . , fk (x)], the nonlinear least squares optimization problem can be expressed as

x∗ = argminx

k

∑
i=1

∥∥∥ fi(x)
∥∥∥2

(10)

The Levenberg–Marquardt (LM) algorithm, which is also known as damped least-squares, is the
most renowned algorithm used for BA. It operates by solving the least-squares method for the nonlinear
case. The output of the BA is a sparse cloud of points with the pose of the camera stations.

2.4. Dense Cloud Reconstruction

Using the location of camera stations and sparse point clouds as initial information from the
SFM, MVS vision techniques produce additional points in the SFM cloud. Clustering views for MVS
(CMVS) [40] and patch-based MVS (PMVS) [41] are popular techniques for MVS vision. In dense
reconstruction, camera stations that observe common parts of the scene are first clustered by CMVS in
order to improve computing efficiency, and then PMVS contributes more points to the sparse cloud
through the process of feature matching, patch expansion, and patch filtering.

2.5. Mesh Reconstruction

Once the dense cloud of the object is reconstructed, the 3D points can be connected as a mesh
to form a more complete model of the object, which is known as a polygonal model. Poisson surface
reconstruction is a common approach that can build a smooth 3D polygonal model by efficiently
removing noise on the surface and flexibly determining the mesh dimensions [42].

3. Proposed Methodology

As explained above, the morphological features of the object surfaces to be reconstructed are
very important. Poorly textured and repetitive structures may lead to an erroneous or incomplete
representation of the original scene due to a lack of visual features. The problem is that, to function
properly, a feature detector requires a number of distinct features; if there is nothing on the surface,
then it does not work. In order to avoid this dilemma, the examined surface must be, in an artificial
way, enriched by projecting synthetic image patterns, adding a very dense network of the interest
points. Therefore, in this study, we investigate which feature detection method is the most suitable,
where algorithms must operate under very specific conditions.

3.1. Pattern Generation

For the purpose of this research, we have chosen seven different types of noise patterns
that are generated from three different sources, including noise functions, irrational numbers,
and random number generators. The first three patterns (Salt & Pepper, Gauss, and Speckle)
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categorized as NFBPs were produced while using the imnoise MATLAB function. NFBPs are generated
through deterministic algorithms that are known for their pseudo-randomness and ability to provide
irregularities. The second category of patterns is based on the digits of the irrational numbers
π = 3.14. . . , the golden ratio φ = 1.61. . . , and Euler’s number e = 2.71...; hence, they are known as
irrational number patterns (INPs). The digits for the INPs were obtained while using “y-cruncher”
software, which is a number-crunching program. These numbers were chosen because of their unique
feature, the randomness of digits after the decimal. The last two patterns (Random and Random
Eq) are categorized as random number patterns (RNPs) because of the same generation method.
The random numbers for these patterns were generated while using the MATLAB function randi,
which is a pseudo-random number generator.

For the INPs, the strings of digits obtained from the y-cruncher software consist of numbers
ranging from 0 to 9, where the digits from 1 to 8 represent particular levels of gray. Digits 0 and 9
represent black and white colors, respectively. The strings of digits of each INP were equalized in
the range of 0–255, resulting in a uniform intensity histogram. Similarly, the Random Eq pattern was
produced by applying the histogram equalization to the random pattern in order to form a uniform
intensity histogram. The number of digits required for both INPs and RNPs depends on the resolution
of the projecting device. Therefore, a total of 786,432 digits were generated to match the resolution
(1024 × 768 pixels) of the native projection system. Once a sufficient number of digits were calculated,
the bitmap representation (synthetic images) of the patterns was generated while using MATLAB.
Figure 1 shows the partial bitmaps and intensity histograms of the generated synthetic images.

Figure 1. Partial bitmap representation of the synthetic noise patterns and their intensity histograms.

3.2. Experiment Setup and 3D Reconstruction Outline

The experiment was performed in two phases. In the first phase, the 3D digitization of a planar
surface was accomplished in order to examine the performance of noise patterns using various feature
extraction methods. The planar surface reconstruction assessment led to the selection of the best
performing pattern that was used for the reconstruction of a complex featureless 3D object in the
second phase of the experiment.

3.2.1. Phase One: Planar Surface Data Collection

A monochromatic planar surface is a worst-case scenario for an SFM-MVS pipeline, because
it contains no distinctive morphological features required by the feature extraction process.
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This characteristic makes it useful for the evaluation of synthetically generated images (patterns)
as well as feature extraction methods with several other benefits. First, the experimental setup is easy
to adjust, and no special equipment is required. Second, there is no occlusion problem during the
image acquisition process and noise patterns are visible in all images. Third, only a minimum number
of images are required, thus reducing the time for 3D reconstruction. Finally, for a planar surface 3D
reconstruction, experiments can be performed while using two approaches, real and virtual.

For real planar surface 3D reconstruction, a Sony VPL-DX120 video projector (resolution of
1024 × 768 pixels) along with a Canon PowerShot G11 digital camera (10 megapixels, 6–30 mm lens)
were used. A plane white wall surface was considered to be the sample material (Figure 2 (left)).
During the image capturing process, the projector was positioned on a table at a throw distance of 3 m,
providing the size of the projected image of 2.02 m × 1.51 m. Next to the projector, a camera that was
mounted on a tripod was positioned in such a way that the optical axis of the camera and projector
remained convergent. For all of the projections of noise patterns, a total of eight image sequences
were captured at a low camera resolution of 1600 × 1200 pixels in order to avoid time-consuming
proceedings. Each sequence contained five images that were captured at vertical camera motion
while maintaining convergence between the camera-projector optical axis. The angle between two
consecutive camera stations was approximately 10 degrees.

A virtual image data collection environment (scene) was created in order to examine the pattern
behavior under ideal and perfect conditions. To realize the virtual environment, Blender (3D computer
graphics software) [43] was used (Figure 2 (right)). A virtual plane surface was created with the same
size as the projected image patterns in the real environment. The virtual scene was organized in
the same way as the real environment in terms of the number and position of the camera stations,
resolution of the rendered images, and the focal length of the camera. Eventually, image data were
obtained from the virtual camera stations for each image pattern.

Figure 2. Experimental setup for image acquisition in (left) real (right) virtual environments.

3.2.2. Phase Two: Complex Surface Image Acquisition

In phase two, the best performing pattern from the phase one experiments was used to reconstruct
a polygonal 3D model of a test object using all of the feature extraction methods. The test object was
produced based on a CAD model using a 3D printer in white color. The dimensions of the printed
object were 260 × 150 × 60 mm and contained plane, arc, cylindrical, and spherical shapes, as shown
in Figure 3. Owing to its unicolor visual texture, the printed test object is considered to be a very
undesirable object for 3D reconstructions by means of SFM-MVS pipelines.
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Figure 3. The test object used for the evaluation of feature extraction methods.

For SFM-MVS pipelines to work, the subject should remain fixed in relation to the capturing device
(or vice versa) during the image acquisition process. However, the image acquisition process becomes
difficult when the subject has to be artificially enriched with image texture patterns. Two strategies can
be adopted to overcome this dilemma: (i) the subject is partially enriched by projecting a pattern using
a single projector; or, (ii) the subject is fully enriched with patterns while using multiple projectors,
and collect the image data. The first approach is cumbersome, because it requires post-processing
steps, including scale and partial scan alignment to merge into a single mesh, which makes it difficult
for nonprofessionals. In addition, during the alignment of partial scans, errors can be introduced that
affect the quality of the 3D reconstructed model. For these reasons, we selected the second strategy
during the image acquisition process, and the camera was only moved in relation to the test object and
the video projector that remained fixed during the entire process (Figure 4).

Figure 4. Image acquisition scheme for the test object using two projectors and one camera.
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The test object was placed on a static surface throughout the image acquisition process in order to
capture the images. Two video projectors were used to completely enrich the test object with the best
performing noise pattern (Random Eq) from the phase one experiments that was always projected
from the same static position. Both of the projectors were positioned at a distance of 1 m and at
an angle of ≈45◦ to the object, but opposite in the direction. The images were shot at two levels to
cover the entire surface of the test object at all possible angles. At the first level, 36 images were
captured by rotating the camera manually around the object, while 30 images were captured at the
second level. Thus, a total of 66 images were taken, ensuring an overlap of more than 60% between
images. In addition, the test object was also captured under daylight conditions without any pattern
being applied. The image resolution was set to a maximum of 3648 × 2736 pixels supported by the
camera. Following some preliminary tests, the focal length was set to 14 mm with an f-stop of f /3.5,
shutter speed 1/80 s, and ISO 200 in order to support the lighting conditions.

3.3. 3D Reconstruction Using Feature Extraction and Matching Plug-In

The SFM-MVS-based 3D reconstruction pipeline allows for the generation of 3D models starting
from a set of images captured from multiple viewpoints. The SFM-MVS is a sequential pipeline that
consists of an initial stage of feature extraction from the images, as discussed in Section 2. The overall
performance of the pipeline strongly depends on the quality of the initial feature extraction stage.
In computer vision, there are various feature extraction methods for detecting and describing feature
points in an image. Therefore, determining which feature extraction method (Section 2.1) delivers the
most discriminative power and robustness is significant. However, the SFM-MVS pipelines that are
offered by different research groups only include popular methods, such as SIFT or SURF [2]. On the
other hand, black-box SFM-MVS-based software such as Agisoft Metashape [44] do not provide any
information about the methods. To this end, we developed a MATLAB-based plug-in that includes
state-of-the-art algorithms for feature extraction, feature matching, and the generation of SIFT files
written in D.G. Lowe’s ASCII format for further proceedings in the pipeline.

The SFM-MVS pipeline is implemented in two segments, as shown in Figure 5. In the first segment,
feature detection and description algorithms identify the potential keypoints and localize their position
in 2D images while using all methods described in Section 2.1 (except SIFT). Next, the extracted feature
points are saved in SIFT files (feature descriptor) while using Lowe’s ASCII format. The header of the
SIFT files is composed of the number of detected points and the size of the descriptor. The subsequent
lines describe the 2D position and descriptor vector of each feature point identified in the images.
For SIFT, SURF, KAZE, and BRISK feature detection methods, their designated feature descriptors are
used, while a SURF descriptor is employed for the HARRIS, Shi-Tomasi, and MSER feature detectors.
The parameters that are used for feature detection and description for each method are indicated
in Appendix A. Subsequently, the extracted feature points are matched between image pairs in the
sequence using one of the methods described in Section 2.2. In this work, we used an approximate
method of nearest neighbor search to match large sets of image features with threshold-based strategy.
The match threshold value was set to 5 for binary (BRISK) and 1 for nonbinary (SURF, KAZE, and SIFT)
feature vectors (descriptor) to return only strong matches. Two feature vectors are only matched when
the distance between them is less than the threshold value which represents a percent of the distance
from the perfect match. The matched feature points are then saved in a text file. The feature matches
text file consists of the names of the image pairs, and the total number and indices of the matched
features between all of the image pairs. SIFT and feature matching files are written in this way as a
VisualSfM prerequisite for the BA process. VisualSfM is an academic program that offers a complete
SFM-MVS pipeline [45]. For the SIFT feature extraction method, the entire SFM-MVS pipeline is
implemented in VisualSfM for all image sets.

In the second part of the SFM-MVS pipeline, image sets along with the respective SIFT files
are imported into VisualSfM for further processing. The text files that comprise the feature matches
between image pairs in an image set are also imported. The imported feature matches are filtered
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while using the RANSAC algorithm to remove the outliers and also to find a transformation function
in terms of Homography Matrix. This matrix provides the perspective transform of the second image
with respect to the first. The location and orientation of the camera stations and 3D coordinates of tie
points on the images in 3D space are estimated, and sparse point clouds are obtained as a result of
the bundle adjustment. Finally, using the CMVS-PMVS methods on the sparse cloud of points, dense
reconstruction of the model cloud is obtained, which can be transformed into a polygonal 3D model.

Figure 5. Workflow diagram of three-dimensional (3D) reconstruction using structure-from-motion
coupled with multi-view stereo (SFM-MVS) pipeline.

4. Results

The dense point clouds that are reconstructed from the image sets collected through real and
virtual experiments in phase one (Figure 6) are quantitatively and qualitatively analyzed. The quality
of dense point clouds can be evaluated while using different criteria, including the number of vertices
(Table 1) and RMS reprojection error, also known as the standard deviation (Table 2). A reprojection
error is the distance between a keypoint detected in an image, and a corresponding 3D point reprojected
into the same image. This distance is usually calculated while using the best fit method, and it
represents surface deviations in the point clouds. The number of vertices provides a quantitative
measure and directly reflects the quality of 3D point clouds. Although the reprojection error calculated
for a point cloud provides a qualitative measure, it cannot be directly compared with other point
clouds. This is due to the varying number of vertices in the point clouds that are input data for the
calculation of reprojection errors. Therefore, observing each criterion separately cannot lead to a valid
conclusion regarding the quality of 3D reconstruction. The ratio of the number of vertices to the
standard deviation is introduced in order to compare the RMS (standard deviation) for each point
cloud generated with different feature extraction methods and evaluate the performance of image
patterns. The ratio RSD between the number of Vertices and the standard deviation (SD) expressed in
pixels is calculated while using Equation (11).

RSD =
Vertices

SD
(11)

The obtained ratio values are then normalized in Equation (12), where maxRSD is the highest
calculated value of a feature extraction method for each image pattern. Finally, a quality score, Q,
for each image pattern, is calculated as the average value of the normalized percentage values of all
feature extraction methods (a total of seven methods) through Equation (13).

RSD% =
RSD

maxRSD
× 100 (12)

Q =
∑7

i=1 RSD%(i)
7

(13)

The quality score, Q, only provides a relative comparison of the synthetically generated image
patterns with employed feature extraction methods from the aspect of 3D reconstruction quality of
point clouds. The highest quality score, Q, for an image pattern makes it the best performing among
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all other image patterns with the assumption that it performed best, on average, with all feature
extraction methods.

While using Equations (11)–(13), the 3D reconstruction quality score, Q, for each synthetic image
pattern was calculated. Figure 7 provides a graphical representation of the quality score measured
for each pattern using the values in Tables 1 and 2. From the graph, it is evident that the Random Eq
pattern obtained the highest quality score in the real experiments. It can be noted that the quality score
Q is smaller for the image sets that were collected in the virtual environment, and this behavior can be
explained by the lack of noise in virtual images.

Figure 6. Dense point clouds generated by image data collected in (left) real and (right) virtual
environments.

In the second phase of the experiments, the true accuracy of the synthetic image pattern is
challenged on a texture-less 3D object to find the best feature extraction method. The test object was
captured under the projection of the Random Eq pattern, the highest-ranked pattern in Phase One,
and polygonal 3D models of the test object were generated while using all of the feature extraction
methods. Without any post-processing, the raw 3D polygonal models were evaluated. In order to
evaluate the reconstruction quality, the surface deviation comparison between polygonal models
and the CAD model (reference model) was carried out while using CloudCompare [46] software.
For the evaluation, the polygonal models were registered with the reference model using the ICP
algorithm [47], which attempts to minimize the alignment error between the two meshes. As a result
of the comparison, the mean distance and standard deviation are calculated. Figure 8 shows the
heatmap representation of the calculated distances, where the color-schemes of red, blue, and green
represent the positive, negative, and no deviations, respectively, while other deviations are presented
in the range of ±0.5 mm. The gray color in the scale bar reflects values that are outside the range.
In addition, the Gaussian distribution of the signed distances for all ploygonal 3D models is shown in
Figure 9. Furthermore, the 3D reconstruction without the use of any pattern proved to be problematic
as the SFM-MVS failed in the spatial alignment of the images due to lack of features. Table 3 indicates
the quantitative measures for each polygonal model of the test object while using different feature
extraction methods. The Shi-Tomasi method achieved the highest number of vertices in the polygonal
models, which can be explained because the algorithm is designed to detect the maximum number
of corners in the images. The projection of the image patterns produces many surface features that
are well adapted to the Shi-Tomasi algorithm in the feature extraction process. The KAZE method
exhibited the lowest mean distance and standard deviation values for the polygonal model when
compared with the reference model. This behavior can be explained by the fact that, when blurring the
images, the KAZE algorithm preserves the boundaries of the objects, which results in a more accurate
matching in the subsequent process; hence, a 3D reconstruction of the better quality.
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Table 1. The number of vertices found in the dense point clouds of planar surface reconstruction.

Pattern
HARRIS Shi-Tomasi MSER SIFT SURF KAZE BRISK

Real Virtual Real Virtual Real Virtual Real Virtual Real Virtual Real Virtual Real Virtual

Salt Pepper 333,776 374,435 349,877 377,170 349,547 408,694 351,819 388,882 345,854 377,295 336,758 388,948 321,687 370,238
Gaussian 321,254 374,636 324,931 389,168 349,592 389,766 355,264 388,848 332,265 390,024 341,559 377,505 325,654 388,532
Speckle 316,190 389,723 331,225 390,690 311,359 390,762 328,399 408,792 328,996 407,496 384,552 387,681 297,111 388,306

Pi 396,052 388,957 416,462 378,691 372,798 408,658 401,546 408,516 390,739 388,939 386,662 374,973 402,154 379,557
Euler 399,088 389,295 397,218 389,423 406,699 375,686 390,470 390,660 405,226 390,583 381,252 375,611 394,009 389,582

Golden Ratio 400,332 377,244 403,797 389,335 386,266 389,482 392,946 408,541 391,867 390,148 396,991 381,597 395,247 378,049
Random 404,362 376,049 409,327 374,895 393,276 378,269 393,584 384,666 405,537 375,217 388,368 389,247 383,595 378,560

Random Eq 408,148 377,950 401,035 378,761 395,661 392,000 396,536 389,200 387,835 375,170 391,230 376,407 402,779 376,006

Table 2. The standard deviation calculated for the dense point clouds of planar surface reconstruction while using the best fit method.

Pattern
HARRIS Shi-Tomasi MSER SIFT SURF KAZE BRISK

Real Virtual Real Virtual Real Virtual Real Virtual Real Virtual Real Virtual Real Virtual

Salt Pepper 0.007964 0.000727 0.001395 0.002825 0.004711 0.002905 0.002012 0.000851 0.002124 0.005984 0.008351 0.003033 0.012119 0.00451
Gaussian 0.005142 0.004051 0.003201 0.001263 0.003245 0.004886 0.00193 0.000891 0.001664 0.004059 0.002719 0.008868 0.004523 0.004501
Speckle 0.003624 0.006985 0.004261 0.005722 0.005113 0.000764 0.00302 0.000686 0.002735 0.002529 0.002354 0.003657 0.030517 0.007487

Pi 0.001699 0.00202 0.004283 0.002457 0.004052 0.009611 0.000971 0.000909 0.00478 0.0038 0.003925 0.003455 0.001394 0.009267
Euler 0.004596 0.003036 0.006106 0.003678 0.003926 0.002073 0.002374 0.000813 0.005827 0.002245 0.003115 0.002656 0.011435 0.002133

Golden Ratio 0.002782 0.006474 0.002302 0.004619 0.002895 0.004815 0.002319 0.001045 0.001293 0.004292 0.002504 0.003125 0.00494 0.004823
Random 0.004561 0.000614 0.004148 0.007706 0.001869 0.000741 0.001034 0.000819 0.003893 0.006808 0.002048 0.004414 0.002996 0.004258

Random Eq 0.002171 0.000632 0.00251 0.006221 0.001938 0.004773 0.001546 0.000743 0.00339 0.002134 0.002076 0.006545 0.001245 0.000896
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Figure 7. The quality score graph of the point clouds from phase one real and virtual experiments.

Figure 8. The heatmap representation of the test object for (a) HARRIS, (b) Shi-Tomasi, (c) MSER,
(d) SIFT, (e) SURF, (f) KAZE, and (g) BRISK feature extraction methods. Grey color on the scle-bar
represents values out of range.
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Figure 9. The signed distances of the test object for (a) HARRIS, (b) Shi-Tomasi, (c) MSER, (d) SIFT,
(e) SURF, (f) KAZE, and (g) BRISK feature extraction methods.

Table 3. The mean distance and standard deviation calculated for the polygonal models from different
feature extraction methods.

Method Mesh M. Distance St. Deviation
Vertices [mm] [mm]

HARRIS 77,875 −0.1134 0.1798
Shi-Tomasi 90,497 0.0183 0.1011

MSER 87,923 −0.0584 0.0758
SIFT 89,334 −0.0099 0.0801
SURF 86,790 −0.0228 0.0822
KAZE 86,198 −0.0092 0.0635
BRISK 85,982 −0.0322 0.0967

5. Discussion

Two types of surfaces are used in order to evaluate the behavior of feature detection methods
with synthetic noise patterns. In the first phase of experiments, the projection of the pattern is captured
on a plane wall in the real environment. Because the surface of the object under observation is plane,
the pattern shown in the corresponding image would be similar to that of the projected pattern.
In addition, the structure and randomness of the pattern is maintained as well as focus of the projector.
Consequently, the 3D reconstruction of the surface is essentially the reconstruction of the pattern itself.
These factors prove the ability of this method to examine the efficiency of image patterns and find
their accuracy.

In phase one experiments, the point clouds of virtual planar surfaces generally resulted in more
vertices than the real planar surfaces and the quality graph also tends to be more consistent. This can
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be explained by the fact that in the case of real experiments, the pixels of the pattern image can lose or
change their intensity when projected on the wall. Additionally, the surface color, lighting conditions,
and limitations of the projection system (such as color aberration) can affect the projected image.
However, these factors are not involved in the case of virtual experiments. Therefore, synthetic image
patterns can behave differently in real and virtual environments. As shown in Figure 7, the Random
Eq pattern, the highest ranked pattern in real conditions, achieved a quality score of about 20%
higher than the worst (Salt&Pepper) pattern, while it scored lower (5%) than the same pattern in the
simulated environment.

The polygonal models that are generated in the second phase of the experiments are analyzed in
order to evaluate the performance of the feature extraction methods. Because the experiments were
performed under real conditions, only the highest ranked pattern from the phase one real environment
is used during the image acquisition process. All of the feature detection methods were able to recreate
3D polygonal models of the test object with varying accuracy. Because the Gaussian distribution of
the measured distances (Figure 9a) is widespread with a mean distance of −0.113 mm, the Harris
corner detector exhibited maximum deviation (0.179 mm). While the efficiency gain for other feature
extraction methods (Shi-Tomasi 43%, MSER 58%, SIFT 55%, SURF 54%, KAZE 64%, and BRISK 48%)
is observed as compared to the Harris detector in terms of standard deviation. Because 3D printing
technology (Sindoh 2X Series) was used to create the test object, dimensional inaccuracies can occur
during the printing process. To determine this error, the printed object was measured from 12 different
places while using a digital vernier caliper and the difference was found from the corresponding
locations on the CAD model. Subsequently, descriptive statistics, including mean (0.055 mm), standard
deviation (0.12 mm), median (0.13 mm), min (−0.3 mm), max (0.3 mm), and RMS (0.202 mm) of
those differences were calculated. Although the dimensional inaccuracies (very small) are present in
the printed object, they remain constant for all of the evaluated polygonal 3D models.

6. Conclusions

In this paper, we evaluated the performance of feature extraction methods with synthetic noise
patterns on texture-less surfaces. Seven state-of-the-art feature detector algorithms were included for
feature extraction and then tested on a planar and a challenging object. Experiments were conducted in
two phases, one of which culminated in the best performing pattern used to reconstruct a texture-less
object in the second phase to find the best feature extraction method. The best performing pattern was
one with the highest quality score average that was determined by considering all feature detector
algorithms. We discovered that the Random Eq. pattern achieved higher quality score (63%) as
compared to the other noise pattern, followed by the Gaussian (61%) and Euler (56%) noise patterns,
respectively. The characteristics of the patterns involved intensity histograms and the Random Eq
pattern has a uniform distribution of the intensity histogram.

Due to its performance and the application of the Random Eq pattern, polygonal models of
the test object were generated for each feature extraction method. When compared to the CAD
model, the polygonal model that was generated with the KAZE algorithm showed minimal deviations.
Furthermore, the high number of mesh vertices does not ensure higher efficiency, as the KAZE
detector produced 86K (with 64% gain) of mesh vertices, while the Shi-Tomasi detector obtained 90K
(with 43% gain). Depending on the application, where the surface texture is important, it is vital
to choose the right feature detector for high quality 3D reconstruction. For instance, high quality is
desirable in preserving cultural heritage artifacts or creating replicas. The choice of a feature detection
method and a synthetic image pattern can substantially increase the accuracy of the reconstructed
polygonal 3D model.

While 3D reconstruction of texture-less objects using synthetic image patterns is a viable solution
where no other digitization approaches are possible or applicable, it is rather limited to indoor
conditions. Although the use of multiple projectors eliminates the need of post-processing, the image
acquisition stage is still time consuming and needs a very experienced camera operator. A compact
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system, such as multi-camera rig system with multiple projectors, can overcome some of the limitations
and reduce the duration of image acquisition. Further research will focus on achieving a greater degree
of automation in image acquisition for texture-less 3D surface reconstruction while using SFM-MVS
pipelines.
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Appendix A

Table A1. The parameters used for feature detection and description in MATLAB.

Method Name Matlab Function for Feature Detection Matlab Function for Feature Description

HARRIS detectHARRISFeatures(MinQuality, 0.01) extractFeatures(‘method’, ‘SURF’, ‘size’, 128)

Shi-Tomsi detectMinEigenFeatures(MinQuality, 0.2) extractFeatures(‘method’, ‘SURF’, ‘size’, 128)

MSER detectMSERFeatures(‘ThresholdDelta’,
1, ‘MaxAreaVariation’, 0.5)

extractFeatures(‘method’, ‘SURF’, ‘size’, 128)

SURF detectSURFFeatures(‘NumOctave’,
4, ‘MetricThreshold’, 50)

extractFeatures(‘size’, 128)

KAZE detectKAZEFeatures(‘Threshold’, 0.0001) extractFeatures(‘size’, 128)

BRISK detectBRISKFeatures(‘MinQuality’,
0.1, ‘MinContrast’, 0.15)

extractFeatures(‘size’, 128)

SIFT SiftGPU with default parameters extractFeature(‘size’, 128)
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