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Abstract: Deep learning classifiers exhibit remarkable performance for hyperspectral image
classification given sufficient labeled samples but show deficiency in the situation of learning with
limited labeled samples. Active learning endows deep learning classifiers with the ability to alleviate
this deficiency. However, existing active deep learning methods tend to underestimate the feature
variability of hyperspectral images when querying informative unlabeled samples subject to certain
acquisition heuristics. A major reason for this bias is that the acquisition heuristics are normally
derived based on the output of a deep learning classifier, in which representational power is bounded
by the number of labeled training samples at hand. To address this limitation, we developed a
feature-oriented adversarial active learning (FAAL) strategy, which exploits the high-level features
from one intermediate layer of a deep learning classifier for establishing an acquisition heuristic
based on a generative adversarial network (GAN). Specifically, we developed a feature generator
for generating fake high-level features and a feature discriminator for discriminating between the
real high-level features and the fake ones. Trained with both the real and the fake high-level features,
the feature discriminator comprehensively captures the feature variability of hyperspectral images
and yields a powerful and generalized discriminative capability. We leverage the well-trained feature
discriminator as the acquisition heuristic to measure the informativeness of unlabeled samples.
Experimental results validate the effectiveness of both (i) the full FAAL framework and (ii) the
adversarially learned acquisition heuristic, for the task of classifying hyperspectral images with
limited labeled samples.

Keywords: hyperspectral image classification; active learning; generative adversarial networks

1. Introduction

Hyperspectral imaging is characterized by simultaneously capturing the radiance of the earth’s
surface at several hundreds of contiguous wavelength bands [1]. Despite the usual coarse spatial
resolution, the acquired hyperspectral images record abundant spectral information of imaging
areas [2], valuable for various remote sensing applications, such as monitoring and management
of environmental changes, agricultural land-use, mineral exploitation, etc. [3–5]. Hyperspectral images
are in the form of 3D cubes with two spatial dimensions and a spectral dimension (i.e., number of
bands) [1,6]. Spatial pixels in a hyperspectral image correspond to the reflectance of the materials on
the earth’s surface. Hyperspectral image classification necessitates a classifier that learns to predict the
class label of each pixel given a fraction of labeled pixels for training [7–9].

In recent literature, the design of deep learning classifiers [10–13] has been at the forefront of
efforts, leading to a dramatic improvement in terms of classification accuracy. Deep learning classifiers
directly extract representative features from labeled samples and specifies a parameterized mapping
from data space to label space. In essence, the performance of deep learning classifiers relies heavily on
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the volume of labeled samples for training [14,15]. A deep learning classifier would achieve remarkable
performance for hyperspectral image classification given sufficient labeled samples but normally shows
deficiency in the situation of learning with limited labeled samples [16]. Classifying hyperspectral
images with limited labeled samples is a major demand as collecting and labeling hyperspectral images
are prohibitively labor- and material-consuming compared with doing similar operations for natural
images [17–20]. Specifically, collecting hyperspectral images requires deploying specialized imaging
spectrometers. In addition, coarse spatial resolution and extensive bands bring about difficulties for
labeling. Under the circumstances, it turns to be ill-posed to learn an effective deep learning classifier
with limited labeled hyperspectral samples.

Active learning provides a potential means for alleviating this deficiency. Active learning does
not change the internal structure of a deep learning classifier but behaves like an efficient labeling
strategy. The fundamental principle of the active learning protocol lies in building the training
set of labeled samples iteratively [21], by querying informative unlabeled samples and assigning
them supplementary labels within multiple loops. Pool-based active learning and active learning
by synthesis are two representatives [22]. We concentrate on the pool-based one, which is indeed
the scheme employed by almost all the active learning-based hyperspectral image classification
methods [17,18,23–28]. Given a pool (i.e., a set) of labeled hyperspectral samples and a pool of
unlabeled hyperspectral samples, active learning algorithms strategically query a fixed number
(referred to as ‘budget’ in active learning) of most informative ones from the unlabeled pool [22].
The queried samples are labeled additionally and put into the labeled pool to facilitate model
improvement [29].

Which samples are queried depends on certain criteria which are referred to as acquisition
heuristics. There is no generic criterion and each sophisticated acquisition heuristic is designed
elaborately by active learning practitioners. Existing active learning-based hyperspectral classifiers
normally employ off-the-shelf uncertainty-based algorithms [30,31], such as the least confidence [32],
the entropy sampling [32], the bayesian active learning disagreement (BALD) [33], etc. Indeed,
the above algorithms query unlabeled samples by evaluating the uncertainty based on the output of
classifiers, in which representational power is bounded by the number of labeled samples at hand.
In this scenario, these active deep learning methods tend to underestimate the feature variability of
hyperspectral images spanning from spectral domain to spatial domain.

To address the limitation and comprehensively capture the feature variability of hyperspectral
images, we propose a feature-oriented adversarial active learning (FAAL) strategy in this article.
We exploit the high-level features obtained from one intermediate layer of a deep learning classifier
rather than its output. We employ a deep learning classifier that combines 3D convolutional layers,
2D convolutional layers, and dense layers (i.e., fully connected layers) [11]. The use of 3D convolutional
layers accords with the 3D nature of hyperspectral images and facilitates feature extraction [34,35] from
both spectral domain and spatial domain. Moreover, we simply divide the classifier into (i) a convolutional
module, which learns the high-level features of hyperspectral samples, and (ii) a dense module,
which learns to perform predictions. Further, we developed an acquisition heuristic based on
adversarial learning with the high-level features. We arrange a generative adversarial network (GAN)
in addition to the deep learning classifier for deriving the acquisition heuristic. The GAN comprises
two subnetworks: (i) a feature generator that generates fake high-level features, and (ii) a feature
discriminator that discriminates between the real high-level features extracted from the convolutional
module and the fake high-level features generated by the feature generator. The two subnetworks
co-evolve during adversarial learning. Trained with both the real and the fake high-level features,
the feature discriminator comprehensively captures the feature variability of hyperspectral images
and yields a powerful and generalized discriminative capability. We leverage a well-trained feature
discriminator, a purely parameterized yet simple neural network, as the acquisition heuristic to
query informative unlabeled samples. The informativeness of them is measured by the estimated
probabilities of the well-trained feature discriminator.
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The divided deep learning classifier and the feature-oriented GAN form the full feature-oriented
adversarial active learning (FAAL) framework. Multiple active learning loops, where both the
classifier and the GAN are trained with ever-increasing labeled data, render the classifier robust
and generalized for hyperspectral image classification. Overall, the GAN undertakes a pretext task [36]
for the mainstream classification task of the classifier.

Our contributions are summarized as follows.

• We develop an active deep learning framework, referred to as feature-oriented adversarial active
learning (FAAL), for classifying hyperspectral images with limited labeled samples. The FAAL
framework integrates a deep learning classifier with an active learning strategy. This improves the
learning ability of the deep learning classifier for classifying hyperspectral images with limited
labeled samples.

• To the best of our knowledge, neither the focus on high-level features nor the adversarial learning
methodology has been explored for active learning-based hyperspectral image classification.
In contrast, the active learning within our FAAL framework is characterized by an acquisition
heuristic which is established via high-level feature-oriented adversarial learning. Such exploration
enables our FAAL framework to comprehensively capture the feature variability of hyperspectral
images and thus yield an effective hyperspectral image classification scheme.

• Our FAAL framework achieves state-of-the-art performance on two public hyperspectral image
datasets for classifying hyperspectral images with limited labeled samples. The effectiveness of
both the full FAAL framework and the adversarially learned acquisition heuristic is validated by
rigorous experimental evaluations.

The rest of this article is structured as follows. Section 2 gives some preliminary knowledge of our
work. Section 3 describes our FAAL framework in detail. Section 4 provides experimental evaluations
and discussion. Finally, Section 5 concludes this article with several directions for future research.

2. Preliminaries

2.1. Active Learning

Active learning benefits learning with limited labeled samples via building the training set
iteratively [21]. We refer readers to Reference [37] for a systematic review. We follow the pool-based
scheme. Given a small pool of labeled samples and a large pool of unlabeled samples, active learning
algorithms query a fixed number (referred to as ‘budget’ in active learning) of samples from the
unlabeled pool after the model trained on current labeled samples converges [22]. Specifically,
they query unlabeled samples that, if labeled, would produce a considerable improvement in
classification [38]. A specific acquisition heuristic (i.e., a criterion) based commonly on model
uncertainty determines which samples are queried [39]. The queried samples are assigned with
supplementary labels and incorporated into the labeled pool. Meanwhile, they are removed from the
unlabeled pool. Samples in the newly built labeled pool are used to update the model in the next
active learning loop. The process iterates multiple times (referred to as ‘loops’ in active learning) until
a given threshold is approached. The performance of the model is improved progressively as trained
with ever-increasing labeled samples.

The investigation of acquisition heuristics lies at the core of an active learning method [33].
Unlike common uncertainty-based algorithms that depend on the output of a classifier, we propose to
cope with the intermediate high-level features. This is one means of capturing the feature variability of
hyperspectral images within the active learning paradigm.
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2.2. Generative Adversarial Networks

Generative adversarial networks (GANs) have promoted the progress of adversarial learning in
the deep learning era [40–43]. Vanilla GAN has two subnetworks: a generator that maps noise drawn
typically from a Gaussian distribution into realistic images, and a discriminator that distinguishes
real images from the generated ones. To be precise, the discriminator estimates the probability that an
image comes from the training data rather than being generated [40]. Not only does the generative
ability of the generator improves, but also the discriminative capability of the discriminator advances
during adversarial learning where the two subnetworks are alternately optimized [44]. The potential
of either the generative ability of the generator or the discriminative capability of the discriminator is
promising for applications spanning from computer vision to remote sensing [8,45–48].

Recent literature has seen several semi-supervised learning methods using GANs to augment
(generate) unlabeled data [45,47,49,50] developed for hyperspectral image classification. Despite the
prevailing use of the generative ability, the discriminative capability is somewhat overlooked in the
field of hyperspectral image analysis [46]. In this article, we leverage the discriminative capability of
the discriminator to establish a core unit of active learning, i.e., acquisition heuristic. The discriminator
behaves as a critical part of our active deep learning framework and forms another means of capturing
the feature variability of hyperspectral images within the active learning paradigm.

3. Feature-Oriented Adversarial Active Learning

Our feature-oriented adversarial active learning (FAAL) framework performs hyperspectral
image classification in a spatial-spectral manner [51,52]. We commence by conducting dimensionality
reduction (e.g., with 30 spectral bands retained) [53,54] to preprocess hyperspectral images. Following,
we exert a spatial window (e.g., sized 25) on them and obtain a group of hyperspectral image cubes
(e.g., sized 25× 25× 30). Our FAAL framework receives as input such hyperspectral image cubes that
comprise object pixels (i.e., spectra to be classified) and their spatial neighbor pixels with respect to the
hyperspectral images after dimensionality reduction. Without loss of generality, we refer to such a
cube as a sample.

Let (xi, yi), i = 1, ..., L be the ith sample-label pair in the labeled pool with size L and xj, j = 1, ..., U
be the jth sample in the unlabeled pool with size U, separately. We omit the subscripts of notations
to make generalizations unless otherwise specified. Active learning-based hyperspectral classifiers
delve into querying the most informative hyperspectral samples to be labeled from the unlabeled
pool according to a specific acquisition heuristic. Our FAAL framework, composed of a deep learning
classifier and a generative adversarial network (GAN), achieves the active query based on adversarial
learning with high-level features. The adversarial learning renders the discriminator subnetwork in
the GAN increasingly powerful and generalized in discriminative capability, making it an acquisition
heuristic in nature. Figure 1 illustrates the adversarial learning with high-level features. Figure 2 shows
the feature map changes within the GAN. Figure 3 displays the active query of unlabeled samples
outside training. More details are given in the following subsections.



Remote Sens. 2020, 12, 3879 5 of 19

G
D

Reshape

Conv3D Conv2D

Flatten

f

Dense

x ොy

ሚfz
Real/Fake

Classifier

GANGenerator Discriminator

Convolutional Module Dense Module

Labeled Samples Real Features Predictions

Noise

Fake Features

Figure 1. Adversarial learning with high-level features. The process involves two distinctive
components: (i) a classifier that is divided into a convolutional module and a dense module, and (ii)
a generative adversarial network (GAN) with two subnetworks: a feature generator G and a feature
discriminator D. The convolutional module learns representative high-level features f from labeled
hyperspectral samples x. The dense module transforms f into final predictions ŷ. The GAN provides
adversarial learning with the high-level features. Specifically, G maps noise z into high-level feature
space to generate fake high-level features f̃ . D learns to distinguish f (treated as ‘Real’) from f̃ (treated
as ‘Fake’). Trained with both the real and the fake high-level features, D captures the feature variability
of hyperspectral images and yields a powerful and generalized discriminative capability. We leverage
well-trained D as the acquisition heuristic for active learning to measure whether an unlabeled sample
is worth querying or not.
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Figure 2. Feature map changes of the feature generator G (left) and the feature discriminator D (right).
G starts by a dense layer to expand the input low dimensional (e.g., 100× 1) noise to an appropriate size
(8192 × 1) to be reshaped to a piece of small feature maps (4 × 4 × 512). 2D transposed convolutional
layers (Transposed Conv2D) are applied to up-scaling feature maps. Among the procedure, we crop
the 16 × 16 feature maps to 15 × 15 by abandoning the last row and the last column to make them
up-sampled smoothly to match the target size (17 × 17 × 64). Flattening feature maps with the size
yields the generated fake high-level features. D comprises simply of three dense layers and transforms
the input real/fake high-level features into real value probabilities.
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Figure 3. Active query of unlabeled samples. Both the convolutional module of the classifier and the
well-trained feature discriminator D are frozen. We let unlabeled hyperspectral samples x input the
convolutional module to obtain a pool of high-level features f . Following, we put those features into
the well-trained D and sort them in the light of estimated probabilities. We query the top K minimums,
with which we trace back to the corresponding hyperspectral samples and label them additionally.

3.1. High-level Features from Classifier Division

A typical deep learning classifier extracts representative features layer by layer. We employ
a classifier that combines 3D convolutional layers, 2D convolutional layers, and dense layers
(i.e., fully connected layers). It is broadly adapted from the one developed by Roy et al. [11]. The use
of 3D convolutional layers accords with the 3D nature of hyperspectral images, which facilitates
spatial-spectral feature extraction for the downstream classification task. Assuming that there are N
labeled samples for training, we use the widely used softmax cross entropy as the cost for the classifier,
i.e., LCLS:

LCLS = −
N

∑
i=1

yi log Softmax(ŷi), (1)

where yi and ŷi denotes the groundtruth and the prediction of the ith sample, respectively. Softmax( )
indicates a softmax operation.

We divide the classifier into two modules by splitting two certain intermediate layers and consider
the derived high-level feature space. Specifically, we adopt a simple division strategy that derives
(i) a convolutional module including all 3D and 2D convolutional operations in the head of the
classifier, and (ii) a dense module stacked by dense layers in the tail, as shown in the upper half
of Figure 1. For simplicity, we use Conv3D, Conv2D, and Dense to represent 3D convolutional
layers, 2D convolutional layers, and dense layers, respectively. Given the input labeled samples x,
the convolutional module learns to extract representative high-level features f . The dense module
transforms f into final predictions ŷ via multiple layer-wise non-linear transformations.

With such division, the mapping from data space to label space is interposed by high-level feature
space and thus can be considered as a sequential combination of two mappings. The convolutional
module accounts for mapping from data space to high-level feature space, and the dense module
concludes the mapping from high-level feature space to label space. We implement an active query by
coping with the high-level features in high-level feature space rather than the output of the classifier,
i.e., data points in label space. The representational power of the classifier is bounded by the number
of labeled samples at hand, making the neatly formed classifier output hardly reflects the feature
abundance of hyperspectral images. Exploring the intermediate high-level features alleviates this bias
to a certain extent. Besides, we leverage additional fake high-level features generated by a GAN to
help capture the feature variability of hyperspectral images during the active query further, which will
be introduced in the next subsection.

3.2. Adversarial Learning with High-Level Features

We train a GAN independent of the classifier, as shown in the lower half of Figure 1. The GAN
is composed of a feature generator G and a feature discriminator D. Specifically, G maps noise z
into high-level feature space to generate fake high-level features f̃ . D treats f = E(x) (For unity,
here, we use E to denote the convolutional module of classifier), the high-level features extracted from
the convolutional module of the classifier as real and f̃ = G(z), those generated from noise as fake,
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and learns to discriminate between them. To be precise, D receives high-level features ( f or f̃ ) as input
and estimates the probabilities that they are real. The output probabilities are real values between
0 and 1.

The configuration of neither G or D is elaborately designed. Figure 2 illustrates the feature map
changes within G and D given a feature size of 18496 × 1, separately. G begins with a dense layer
to expand the input low dimensional (e.g., 100 × 1) noise z to a size (e.g., 8192 × 1) ready for being
reshaped to a piece of small feature maps (e.g., 4 × 4 × 512). We use 2D transposed convolutional
layers (Transposed Conv2D) to up-scale feature maps. Particularly, we crop the 16× 16 feature maps to
15 × 15 by abandoning the last row and the last column to make them up-sampled smoothly to match
the target size (i.e., 17 × 17 × 64). Flattening feature maps with that size yields the generated fake
high-level features. To build D, we simply use three dense layers that transform the input real/fake
high-level features into real value probabilities.

G and D co-evolve during adversarial learning where they are trained adversarially and
alternately. D is commonly trained prior to G. The cost for the feature discriminator LD takes
the form of standard binary cross entropy:

LD =− 1
2
Ex∼p(x) log D(E(x))

− 1
2
Ez∼p(z) log(1− D(G(z))),

(2)

where p(x) and p(z) are the empirical distribution of current labeled samples and an
easy-to-sample prior distribution (e.g., Gaussian distribution) of noise, respectively. E indicates
an expectation operation.

To ensure that both G and D have strong gradients during training [55], the cost for the feature
generator LG holds the form of cross entropy but changes into:

LG = −1
2
Ez∼p(z) log D(G(z)), (3)

where p(z) is the prior distribution of noise.
In addition, we follow the disparity measurement [56] to facilitate a diverse feature synthesis,

and extend LG with a regularization term LREG:

LREG = −|G(z1)− G(z2)|
|z1 − z2|

. (4)

Minimizing LREG explicitly maximizes the ratio of the distance between two generated features
G(z1) and G(z2) with respect to that between two corresponding noise vectors z1 and z2.

Trained with both the real and the fake high-level features, D captures the feature variability of
hyperspectral images and yields a powerful and generalized discriminative capability. It estimates
the probabilities that the input features are real rather than fake (generated). We freeze the training of
a well-trained D and take its estimated probabilities as a criterion to measure whether an unlabeled
sample is previously well-represented or not. The well-trained D is an acquisition heuristic for active
learning in nature and is a purely parameterized yet simple neural network. In general, samples not
previously well-represented yield high uncertainty [57]. The adversarially learned acquisition heuristic
does not extricate from being uncertainty-based but does not explicitly measure uncertainty, either.
Such implicit measurement by means of feature discrimination enhances capturing the feature
variability of hyperspectral images. Besides, the adversarially learned acquisition heuristic is
task-agnostic, so that we believe it scalable to other applications. Research on the property is beyond
the scope of this article.
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3.3. Active Query of Unlabeled Samples

The above adversarial learning provides an acquisition heuristic for the subsequent active query.
Overall, the GAN undertakes a pretext task [36] for the mainstream classification task. During the
adversarial learning, D learns to output high probability values when receiving real high-level features
as input and output low probability values given fake high-level features. When a frozen well-trained
D generalizes to new input, it is intuitively sound that D would output low probability values if the
new input is not well-represented by the pool of f , and vice versa.

Figure 3 illustrates the active query of unlabeled samples. Our acquisition heuristic performs
an active query in the form of high-level features rather than computing using hyperspectral
samples throughout. We let hyperspectral samples x in the unlabeled pool input the frozen trained
convolutional module of the classifier to obtain a pool of high-level features f . We put those features
into the frozen trained D as the aforementioned new input. Assume the budget of each active learning
loop is K. We sort the output estimated probabilities by value and query the top K minimums.
The output of the active query is a series of indices, with which we can easily trace back to the
corresponding unlabeled samples. After being labeled, those queried samples are merged with the
labeled samples at hand and removed from the unlabeled pool.

The GAN provides adversarial learning with high-level features, yielding a purely parameterized
yet simple acquisition heuristic for actively querying unlabeled samples to be labeled. The feature
variability of hyperspectral images is taken into consideration. Multiple active learning loops
progressively improve the performance of the classifier for classifying hyperspectral images with
limited labeled samples. We refer to the full strategy/framework as feature-oriented adversarial active
learning (FAAL).

3.4. Workflow of Full Framework

The two distinctive components involved in our FAAL framework, i.e., a deep learning classifier
and a GAN, are trained alternatively and separately. The classifier is trained prior to the GAN.
Training one of them necessitates an ad hoc freezing of the training of the other.

The training process has two stages overall. Firstly, the two components are trained with initial
labeled samples. Secondly, they are trained with ever-increasing labeled samples (or high-level
features) within multiple active learning loops. Specifically, the GAN is unnecessary to be trained in
the last active learning loop. Algorithm 1 summarizes the workflow of our FAAL framework.
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Algorithm 1 Feature-oriented adversarial active learning.

1: repeat

2: Update classifier initially:

Minimize Equation (1) with initial labeled samples.
3: Update GAN initially:

a. Freeze classifier and obtain real high-level features f of current labeled samples.

b. Generate fake high-level features f̃ from noise z.

c. Update D in terms of minimizing Equation (2).

d. Generate two groups of fake high-level features f̃1 and f̃2 from noise z1 and z1, respectively.

e. Update G in terms of minimizing Equations (3) and (4).
4: for loop = 1, ..., 4 do

5: Active query of unlabeled samples:

a. Freeze D.

b. Query K unlabeled high-level features with minimum estimated probabilities.

c. Trace back to unlabeled samples and label them.

d. Merge newly labeled samples with previous ones.

e. Remove the queried samples from the unlabeled pool.
6: Update classifier using current labeled samples.
7: Update GAN using the high-level features of the current labeled samples.
8: end for
9: for loop = 5 do

10: Active query of unlabeled samples.
11: Update classifier using current labeled samples.
12: end for
13: until reaching the given threshold.

4. Experimental Results and Discussion

We rigorously evaluated our FAAL framework for the task of classifying hyperspectral images
with limited labeled samples. We avoided using any data augmentation method. We adopted two
public hyperspectral image datasets and organize three groups of experimental comparisons on them.
All the quantitative comparisons were assessed using three common evaluation metrics: overall
accuracy (AA), average accuracy (AA), and kappa coefficient (KAPPA). Larger values indicated better
performance. All of the reported results were averaged over ten runs. In each run, initial labeled
samples were randomly sampled without fixing random seeds. In all quantitative comparisons,
we marked the best in bold.

4.1. Datasets

We adopted two public hyperspectral image datasets (the two datasets are available at http:
//www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes), i.e., Indian Pines and
Pavia University. The Indian Pines scene was acquired by the Airborne Visible Infrared Imaging
Spectrometer (AVIRS) sensor, and the Pavia University scene was collected by the Reflective Optics
System Imaging Spectrometer (ROSIS) sensor. The ground sites of the two scenes are the Indian Pines
test site, USA, and the Pavia University, Italy, separately.

Table 1 lists more basic information of the two datasets, including sensor, size, number of available
bands, spectral range, ground sample distance (GSD, i.e., spatial resolution), and number of labeled
classes. By comparison, the Indian Pines dataset exhibits relatively heavy class imbalance and the

http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
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Pavia University dataset has less labeled classes. Class information and respective labeled spectrum
numbers of the two datasets are given in Tables 2 and 3, separately.

Table 1. Basic information of Indian Pines and Pavia University.

Dataset Sensor Size No. Available Bands Range GSD No. Classes

Indian Pines AVIRS 145 × 145 200 0.4–2.5 µm 20 m 16
Pavia University ROSIS 610 × 340 103 0.43–0.85 µm 1.3 m 9

Table 2. Class information and labeled spectrum numbers of Indian Pines.

# Color
Indian Pines

Class No. Labeled Pixels
1 Alfalfa 46
2 Corn-Notill 1428
3 Corn-Mintill 830
4 Corn 237
5 Grass-Pasture 483
6 Grass-Trees 730
7 Grass-Pasture-Mowed 28
8 Hay-Windrowed 478
9 Oats 20

10 Soybean-Notill 972
11 Soybean-Mintill 2455
12 Soybean-Clean 593
13 Wheat 205
14 Woods 1265
15 Bldg-Grass-Trees-Drives 386
16 Stones-Steel-Towers 93

Total 10,249

Table 3. Class information and labeled spectrum numbers of Pavia University.

# Color
Pavia University

Class No. Labeled Pixels
1 Asphalt 6631
2 Meadows 18,649
3 Gravel 2099
4 Trees 3064
5 Painted-metal-sheets 1345
6 Bare-Soil 5029
7 Bitumen 1330
8 Self-Blocking-Bricks 3682
9 Shadows 947

Total 42,776

4.2. Implementation Details

We implement our FAAL framework using Python in conjunction with the TensorFlow library.
Our experimental environment contains 512 GB random access memory (RAM) and NVIDIA Tesla
K80 graphic processing unit (GPU) computing accelerators (11GB memory). We retain 30 bands
for each dataset after the dimensionality reduction. The spatial window size for spatial-spectral
classification is 25. We set the dimensionality of noise to 100. The learning rates for the classifier and
the GAN are 0.001 and 0.0002, respectively. Specifically, we set a minor decay rate of 0.000006 for
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the training of the classifier. The number of active learning loops is five. We initialize the labeled
pool by randomly selecting five samples per class. We set the unlabeled pool by randomly sampling
another 1000 samples, leaving the rest for testing. By default, the budgets are set as 34 for Indian
Pines, and 41 for Pavia University. After all the active learning loops finish, there are 250 samples
in the labeled pool for each of the two datasets. The training epochs are 45 for both initial training
and active training. The computational training time is about eleven minutes. Code is available at
https://github.com/gxwangupc/FAAL.

4.3. Analysis of the Naive Classifier

We start by analyzing our employed deep learning classifier (i.e., the basic classifier of our FAAL
framework), which is configured with 3D convolutional layers, 2D convolutional layers, and dense
layers. The configuration is generally adapted from Roy et al. [11].

We test two dimensionality reduction strategies. One is the traditional principal component
analysis (PCA) [53]. The other is the superpixel-wise principal component analysis (SuperPCA) [54]
that performs PCA on segmented homogenous regions [58,59]. To build a training set for the naive
classifier, we randomly sample five samples per class and then randomly choose additional disjointed
170 samples for Indian Pines, and 205 for Pavia University. In total, there are 250 labeled samples for
each dataset.

The naive classifier receives all the 250 labeled samples at once. However, these samples are
selected in an absolutely random manner regardless of informativeness. An active classifier (naive
classifier + active learning) takes into account informativeness during the process of iteratively adding
queried samples. Its training starts with an extremely small number of labeled samples and runs
multiple times, i.e., loops, during which samples are queried unrestricted by class. The model trained
in the current loop can be thought of as a pre-trained model for resuming training in the next loop.

Table 4 assesses the naive classifier and our FAAL framework on the two datasets with the
above two dimensionality reduction strategies, in terms of the OA, AA, and KAPPA. Results show
that reducing dimensionality using SuperPCA delivers better performance than that using PCA.
A sophisticated dimensionality reduction strategy plays a significant role in the downstream task.
Hence, we preprocess hyperspectral data just using SuperPCA in the following evaluations. We observe
that the naive classifier obtains plausible results in a mass. It suggests that the configuration of our
employed deep learning classifier is considerably effective. A major source of the capability may
be that the use of 3D convolutional layers accords with the 3D nature of hyperspectral images.
Overall, our FAAL framework yields better performance than the naive classifier under the same
dimensionality strategy. It highlights that an active learning strategy surpasses the naive setting,
i.e., randomly selecting samples and training at once, in classifying hyperspectral images with limited
labeled samples. Besides, this validates that the informativeness of samples carries a big weight in the
scenario of learning with limited labeled samples.

Table 4. Comparison of the naive classifier and feature-oriented adversarial active learning (FAAL) with
two different dimensionality reduction strategies.

Dataset Indian Pines Pavia University

Method/Metric OA (%) AA (%) k (×100) OA (%) AA (%) k (×100)

Classifier (PCA) 81.15 81.30 81.59 87.48 75.91 83.23

Classifier (SuperPCA) 87.39 89.16 85.60 88.93 82.14 85.23

FAAL (PCA) 84.71 88.10 82.54 92.39 85.51 89.83

FAAL (SuperPCA) 91.41 93.20 90.20 93.47 88.97 91.34

https://github.com/gxwangupc/FAAL
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4.4. Comparison with Other Active Learning Classifiers

We selected three state-of-the-art methods for comparison. Each of them performs a
spatial-spectral hyperspectral image classification based on active learning. Zhang et al. [26] combine
active learning with a hierarchical segmentation responsible for extracting spatial information.
Zhang et al. [25] incorporate active learning with an adaptive multi-view generation and an ensemble
strategy. Cao et al. [17] integrate active learning and a convolutional neural network, followed by a
Markov random field for finetuning.

AL-SV-HSeg (a single-view active learning framework with hierarchical segmentation) in
Zhang et al. [26], AL-SV (a single-view active learning framework), AL-MV (a multi-view active
learning framework), AL-MV-HSeg (a multi-view active learning framework with a hierarchical
segmentation), and AL-MVE-HSeg (a multi-view active learning ensemble framework with a
hierarchical segmentation) in Zhang et al. [25], and AL-CNN-MRF (an active deep learning framework
with a Markov random field) in Cao et al. [17], are included as baselines. We compare our FAAL
framework with their reported results directly. We use the same number of labeled samples as
Zhang et al. [25,26]: five samples per class initially and 250 samples totally in the end.

Table 5 reports the comparison results on Indian Pines, in terms of the OA, AA, KAPPA,
and accuracy of each class. In the case of using 250 labeled samples in total, our FAAL framework
achieves the best performance measured by all the three general metrics. Specifically, FAAL with
250 labeled samples for training obtains higher AA compared with AL-CNN-MRF trained with
416 labeled samples in total. When trained with 300 labeled samples, our FAAL framework consolidates
the gains and surpasses AL-CNN-MRF in terms of OA.

Table 6 gives the comparison results on Pavia University. Our FAAL framework trained with 250
labeled samples achieves higher OA and k than AL-SV-HSeg but lower AA. In comparison with the
reported results of AL-CNN-MRF trained with 321 labeled samples in total, we change to initialize
the labeled pool by randomly selecting ten samples per class and query 46 unlabeled samples in each
active learning loop. 320 labeled samples are used in total. Despite the lower OA than AL-CNN-MRF,
our FAAL framework exhibits effectiveness in terms of AA and surpasses AL-CNN-MRF.

Table 5. Comparison of active classifiers and FAAL on Indian Pines.

Metric/Method AL-SV AL-SV-HSeg AL-MV AL-MV-HSeg AL-MVE-HSeg FAAL (250) AL-CNN-MRF (416) FAAL (300)

OA (%) 61.96 81.64 51.19 80.00 87.10 91.41 92.26 93.91
AA (%) 62.16 82.52 48.64 83.14 90.13 93.20 86.54 95.16

k (×100) 56.30 79.11 43.67 77.07 85.34 90.20 - 93.07

1 51.22 76.77 36.71 56.18 64.59 99.29 84.17 100
2 33.82 72.94 19.12 63.01 84.09 82.35 91.00 88.16
3 43.21 66.82 28.62 74.83 84.95 89.81 83.64 98.52
4 49.94 59.24 13.08 60.83 82.20 89.88 87.01 91.78
5 71.93 82.27 66.11 88.67 92.08 87.59 91.57 90.39
6 31.99 75.26 41.49 72.81 79.00 92.14 95.18 94.62
7 41.26 93.30 20.38 92.94 94.58 100 89.13 100
8 59.80 86.59 59.88 83.62 92.98 100 98.93 100
9 79.38 94.45 71.55 92.36 89.06 100 16.08 100

10 86.00 96.94 41.37 97.27 97.78 85.94 90.68 91.94
11 87.21 99.27 92.43 99.18 99.71 97.44 94.70 96.43
12 77.25 95.56 35.58 75.94 94.36 78.91 91.51 83.24
13 82.24 98.55 48.71 98.14 99.56 98.88 99.25 98.90
14 85.49 91.13 63.54 96.21 98.63 95.20 95.73 96.33
15 29.75 88.99 59.41 90.63 95.65 98.38 83.99 94.86
16 84.05 89.74 80.22 87.56 92.87 95.37 92.08 97.33
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Table 6. Comparison of active classifiers and FAAL on Pavia University.

Metric/Method AL-SV-HSeg FAAL(250) AL-CNN-MRF (321) FAAL(320)

OA (%) 92.23 93.47 97.43 97.14
AA (%) 92.66 88.97 94.80 95.07

k (×100) 90.05 91.34 - 96.20

1 90.00 92.01 98.18 95.29
2 93.59 97.36 99.82 99.96
3 86.21 97.93 78.46 99.01
4 92.65 70.62 93.86 84.89
5 97.62 77.32 99.05 94.14
6 90.34 99.09 98.46 99.77
7 95.59 99.69 94.77 99.23
8 90.72 96.26 97.71 96.32
9 97.25 70.76 92.91 94.06

4.5. Study on Acquisition Heuristics

We finally compare the adversarially learned acquisition heuristic of our FAAL framework with
off-the-shelf acquisition heuristics. We exert the random sampling (i.e., querying unlabeled samples
randomly within each active learning loop), the least confidence [32], the entropy sampling [32],
and BALD [33] onto our employed classifier, separately. The usage of labeled samples is as default.

Tables 7 and 8 list quantitative comparisons on the two datasets: Indian Pines and Pavia University,
respectively. We observe that our FAAL framework achieves superior performance to the classifiers
with other available acquisition heuristics. An intuitive reason is that our FAAL framework makes
decisions for the active query relying on the high-level features instead of the output of the classifier.
Adversarial learning with the high-level features makes our FAAL framework comprehensively
capture the feature variability of hyperspectral images.

Table 7. Comparison of the classifier with different acquisition heuristics on Indian Pines.

Metric/Heuristic Random Sampling Least Confidence Entropy Sampling BALD FAAL

OA (%) 88.61 89.11 89.30 90.41 91.41
AA (%) 91.55 91.58 92.28 92.47 93.20

k (×100) 87.01 87.60 87.81 89.07 90.20

1 98.60 100 100 100 99.29
2 89.09 83.95 84.69 83.92 82.35
3 77.16 81.44 88.20 94.28 89.81
4 90.00 91.43 93.33 93.33 89.88
5 89.72 73.21 79.10 79.91 87.59
6 92.87 96.98 96.93 95.25 92.14
7 100 100 100 98.33 100
8 100 99.92 100 99.68 100
9 100 100 100 100 100

10 81.19 88.41 81.48 80.04 85.94
11 93.77 91.03 91.15 95.11 97.44
12 74.81 77.61 79.20 72.65 78.91
13 97.75 97.57 97.75 94.94 98.88
14 85.71 95.34 93.50 95.55 95.20
15 95.88 94.22 92.94 98.14 98.38
16 98.38 94.24 98.15 98.35 95.37
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Table 8. Comparison of the classifier with different acquisition heuristics on Pavia University.

Metric/Heuristic Random Sampling Least Confidence Entropy Sampling BALD FAAL

OA (%) 90.16 90.36 91.08 92.09 93.47
AA (%) 83.69 85.28 86.35 88.24 88.97

k (×100) 86.91 87.19 88.17 89.51 91.34

1 83.90 75.08 79.53 82.31 92.01
2 96.06 98.22 98.05 97.49 97.36
3 98.58 98.85 98.27 99.44 97.93
4 64.56 70.11 66.23 61.68 70.62
5 67.53 72.81 80.38 83.38 77.32
6 94.68 91.96 93.89 99.57 99.09
7 99.53 99.73 99.33 99.61 99.69
8 96.77 98.08 97.13 99.08 96.26
9 51.63 62.66 64.38 71.74 70.76

Figures 4 and 5 illustrate the qualitative results on Indian Pines and Pavia University, respectively.
Groundtruth maps are provided firstly as references.

Classification maps predicted by the classifier with the random sampling, the least confidence,
the entropy sampling, BALD, and our adversarially learned acquisition heuristic (i.e., our FAAL
framework) are given separately. Overall, superior visual results are obtained with the adversarially
learned acquisition heuristic of our FAAL framework.

Figure 4. Classification maps on Indian Pines. The first map is the groundtruth. The rest ones are
predicted by our employed classifier with the random sampling, the least confidence, the entropy
sampling, bayesian active learning disagreement (BALD), and our adversarially learned acquisition
heuristic (i.e., our FAAL framework), separately. Table 2 lists what class each color represent.
Specifically, the part in black means unlabeled.

Figure 5. Classification maps on Pavia University. The first map is the groundtruth. The rest ones
are predicted by our employed classifier with the random sampling, the least confidence, the entropy
sampling, BALD, and our adversarially learned acquisition heuristic (i.e., our FAAL framework),
separately. Table 3 lists what class each color represent. Specifically, the part in black means unlabeled.

Figures 6 and 7 compare the classification performance after each active learning loop on Indian
Pines and Pavia University, respectively. The comparisons are measured by OA, AA, and KAPPA,



Remote Sens. 2020, 12, 3879 15 of 19

separately. Not surprisingly, the varying curves achieved by the classifier with the random sampling
are at the lowest almost all the time. The curves obtained with the adversarially learned acquisition
heuristic of our FAAL framework tangle with those obtained with other available acquisition heuristics
in the first two active learning loops, as well as edge ahead of them in the next three active
learning loops.
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Figure 6. Performance after each active learning loop on Indian Pines. The number of initial labeled
samples is 80. There are 114, 148, 182, 216, and 250 labeled samples after the first, the second, the third,
the fourth, and the fifth active learning loop, respectively. Three general metrics: OA (leftmost),
AA (middle), and KAPPA (rightmost) are used for comparison.

5 0 1 0 0 1 5 0 2 0 0 2 5 0

6 0

6 5

7 0

7 5

8 0

8 5

9 0

9 5

OA
(%

)

N o .  L a b e l e d  S a m p l e s

 R a n d o m  S a m p l i n g
 L e a s t  C o n f i d e n c e
 E n t r o p y  S a m p l i n g
 B A L D
 F A A L

5 0 1 0 0 1 5 0 2 0 0 2 5 0

6 0

6 5

7 0

7 5

8 0

8 5

9 0

AA
(%

)

N o .  L a b e l e d  S a m p l e s

 R a n d o m  S a m p l i n g
 L e a s t  C o n f i d e n c e
 E n t r o p y  S a m p l i n g
 B A L D
 F A A L

5 0 1 0 0 1 5 0 2 0 0 2 5 0

5 0

6 0

7 0

8 0

9 0

KA
PP

A(
×1

00
)

N o .  L a b e l e d  S a m p l e s

 R a n d o m  S a m p l i n g
 L e a s t  C o n f i d e n c e
 E n t r o p y  S a m p l i n g
 B A L D
 F A A L

Figure 7. Performance after each active learning loop on Pavia University. The number of initial labeled
samples is 45. There are 86, 127, 168, 209, and 250 labeled samples after the first, the second, the third,
the fourth, and the fifth active learning loop, respectively. Three general metrics: OA (leftmost), AA
(middle), and KAPPA (rightmost) are used for comparison.

5. Conclusions

For this article, we developed an active deep learning strategy, i.e., FAAL, for classifying
hyperspectral images with limited labeled samples. Our FAAL framework comprehensively captured
the feature variability of hyperspectral images and included a purely parameterized yet simple
acquisition heuristic. The acquisition heuristic was adversarially learned with high-level features,
which stemmed from one intermediate layer of a deep learning classifier. Experimental evaluations
on two public hyperspectral image datasets demonstrated that our FAAL framework achieves the
state-of-the-art in classifying hyperspectral images with limited labeled samples.

Our FAAL framework admits many possible extensions.

• As either the GAN or the classifier can be separated from each other, imposing constraints on
each of them is feasible. In this scenario, is there an additional constraint capable of capturing the
feature variability of hyperspectral images further? As the active query is fully unsupervised and
unrestricted by class, is there an additional constraint responsible for learning to be class-balanced?
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• High-level feature space is commonly low dimensional compared to data space [60–62].
To an extent, dealing with a low dimensional space would reduce the requirement of computational
resources and ease the burden of network design. We believe that state-of-the-art feature
extraction and band selection methods would come into effect in this direction. Besides, building a
low dimensional latent space external to the classifier would be constructive despite the
additional burden.

• The task-agnostic property of our acquisition heuristic makes it scalable to other applications,
possibly spanning from computer vision to remote sensing. Research on this direction would
further examine the effectiveness of the adversarially learned and purely parameterized yet simple
acquisition heuristic.
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