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Abstract: Carbon (C) emissions from forest fires in the Amazon during extreme droughts may
correspond to more than half of the global emissions resulting from land cover changes. Despite their
relevant contribution, forest fire-related C emissions are not directly accounted for within national-level
inventories or carbon budgets. A fundamental condition for quantifying these emissions is to have a
reliable estimation of the extent and location of land cover types affected by fires. Here, we evaluated
the relative performance of four burned area products (TREES, MCD64A1 c6, GABAM, and Fire_cci
v5.0), contrasting their estimates of total burned area, and their influence on the fire-related C
emissions in the Amazon biome for the year 2015. In addition, we distinguished the burned areas
occurring in forests from non-forest areas. The four products presented great divergence in the total
burned area and, consequently, total related C emissions. Globally, the TREES product detected the
largest amount of burned area (35,559 km2), and consequently it presented the largest estimate of
committed carbon emission (45 Tg), followed by MCD64A1, with only 3% less burned area detected,
GABAM (28,193 km2) and Fire_cci (14,924 km2). The use of Fire_cci may result in an underestimation
of 29.54 ± 3.36 Tg of C emissions in relation to the TREES product. The same pattern was found for
non-forest areas. Considering only forest burned areas, GABAM was the product that detected the
largest area (8994 km2), followed by TREES (7985 km2), MCD64A1 (7181 km2) and Fire_cci (1745 km2).
Regionally, Fire_cci detected 98% less burned area in Acre state in southwest Amazonia than TREES,
and approximately 160 times less burned area in forests than GABAM. Thus, we show that global
products used interchangeably on a regional scale could significantly underestimate the impacts
caused by fire and, consequently, their related carbon emissions.
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1. Introduction

Naturally occurring fires are a rare event in the Amazon, with return intervals of hundreds if not
thousands of years [1]. However, fires are often used as a tool to clear the land after deforestation or
maintain existing farmland and pasture, which means their occurrence in the Amazon is primarily
associated with human activity [2,3]. These two fire types, deforestation fires and management fires,
impose risks on adjacent forests, and when these are impacted, the third main type of fire occurs,
the forest fires. Forest fires contribute significantly to global climate change, consuming plant biomass
and transferring part of the associated carbon (C) stock to the atmosphere [4]. The gross C emissions
from forest fires across the Brazilian Amazon (270 ± 137 Tg C year−1) [5] corresponded to 80% of
the Brazilian emissions resulting from land use change (338 ± 142 Tg C) [6] during drought years.
Additionally, forest fires in the Legal Brazilian Amazon contributed 86% (68% to 103%) to the annual C
emission reduction target [7] set by the Brazilian National Climate Change Plan [8].

Despite this remarkable contribution, forest fire-related C emissions are not yet accounted for
national-level inventories. The quantification of deforestation-related fire emissions in these inventories
takes into account the strong relationship between these two processes (r2 = 84%, p < 0.004) [9]. However,
in the last decade a relative decoupling between deforestation and fire incidence has been observed,
disaggregating these two processes in terms of emissions [5]. This pattern has been associated with an
amplification of forest fragmentation [10] and an increase in extreme drought frequency [5], favoring
the leakage of deforestation and management fires into surrounding forests. These anomalous climate
events have happened more often during the last few decades [11,12], and global climate models
predict a drier Amazon in the 21st century [13,14]. Recently, the area of burned forests relative to total
burned area has increased during extreme droughts. For example, an increase of 51–99% in the forest
burned area was observed in the 2015/2016 extreme drought years in relation to the average from 2006 to
2016 [15]. In addition, fires reduce forest storage of carbon by approximately 25% compared to pristine
forests [16], highlighting the impact of forest fires on the carbon balance. Therefore, the prevalence of
forest fires during extreme droughts makes it urgent to also account for non-deforestation fire-related
carbon emissions [15].

In order to have fire-related C emissions adequately accounted for, it is essential to have an
accurate estimation of extent, location, and land cover affected. In this sense, several methodological
approaches have been developed using remote sensing applications for the detection and monitoring
of fires [7,17–20]. Burned area can be detected by remote sensing in a variety of ways. The diversity of
methodologies, combined with the availability of multiple sensors, and the fast development of new
technologies, reflects the high number of burned area products. They can be developed for different
purposes, reach different scales, and present different spatial resolutions, varying considerably in
distribution, size, and frequency of mapped fires [21]. In this sense, intercomparison is an important
and practical tool for characterizing burned area products according to their performance [22,23]
when field validation points are not available. Nonetheless, intercomparison implicitly assumes that,
as a whole, the products being compared provide a reasonable approximation of the conditions on
the ground [22]. It should be recognized as a complementary evaluation to the product validation.
Since no product is a ground portrait, and all have limitations, the choice of which product to use
should consider the advantages and disadvantages in terms of the data use objective, taking into
account the regional performance of each one of them. It must be recognized that the main challenge is
trying to precisely balance the pros and cons, and identifying the implications of the choice.

Only a few studies have been carried out to compare different burned area products [22,24–27].
Currently, there is a dearth in the literature providing a regional intercomparison of burned area
products for the Amazon [22]. Given the importance of this assessment to improve the fire products
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and consequently fire-related C emission estimates of this region, it is critical to evaluate the relative
performances of the most-used global burned area products, both on forest and non-forest areas,
to provide clear information regarding their limitations and implications. This work performed an
intercomparison of three global burned area products and one regional, all developed independently
and for different purposes and scales. The study considered total burned area detected, and its
influence on fire-related C emission, in the Brazilian Amazon biome for the year 2015. The specific
objectives were as follows: (i) evaluate the differences and similarities among the products regarding
the total burned area detected, considering burned areas detected over forest and non-forest land
covers; (ii) evaluate the differences and similarities in fire-related carbon emission estimates; and (iii)
evaluate the spatial differences and similarities among the products. We hypothesize that the variation
among the products increases in forest areas due to the difficult distinction of the burned areas in this
land cover type [28–30].

The next sections are organized to provide a brief review of burned area detection techniques
with remote sensing data, followed by the description of the study area and the burned area products
considered in this study. We finally describe our intercomparison approaches and present their results
in terms of burned area and commited C emissons.

2. Burned Area Detection by Remote Sensing

The detection and mapping of burned areas aims to produce spatially-explicit data on the extent
of fire-affected areas, usually using data from optical sensors on the solar spectrum [31], which ranges
from the visible light (0.4–0.7 µm) to the short wave infrared (SWIR) bands (1.4–2.2 µm). The radiation
reflected by the Earth’s surface in these spectral regions (reflectance) is influenced by the target
chemical and physical characteristics, as well as the sun–target–sensor geometry [31]. Data from the
thermal infrared spectrum (0.7–2.2 µm) can also be used to map burned areas, but they are commonly
integrated with other optical bands [32]. The near infrared (NIR, 0.7–1.0 µm) and SWIR (1.4–2.2 µm)
spectral regions are especially sensitive to forest structure changes [33], and consequently are widely
used to generate spectral indices or ratios for burned area detection [34–39]. However, due to a
strong variability in the spectral characteristics of both pre- and post-fire conditions, and in the fire
intensity and severity as well, the use of such indices may lead to the misclassification of burned areas,
especially in forest environments [34]. As all of them are based on reflectance changes related to the
immediate charcoal/ash deposition and lingering changes in the vegetation structure, they are also
highly dependent on the temporal behavior of such conditions [35,40].

A burned area mapping algorithm based on spectral indices derived from moderate resolution
imaging spectroradiometer (MODIS) imagery and daily active fire data is described by Giglio et al.
(2018) [17]. Their final product, MODIS Direct Broadcast Monthly Burned Area Product Collection 6
(MCD64A1), presented a global omission error of 0.73 [41], showing the conservative aspect of their
methodology, and the underestimation that unsupervised algorithms can generate. When considering
tropical forest ecosystems, the omission and commission errors are still higher (0.9060 and 0.6350,
respectively) [41]. Bastarrika et al. (2014) [42] developed a supervised burned area mapping software
(BAMS), which analyzes the temporal behavior of a multispectral index derivered from Landsat images.
Their algorithm has only been tested in temperate forests, and its application for burned area mapping
in tropical regions is more complex. Some of the challenges regarding burned area mapping in tropical
forests are the high and persistent cloud cover and canopy closure, which can preclude the detectability
of understory fires.

Another way to highlight features of interest, such as burned areas, is through a linear spectral
mixing model (LSMM) [43]. LSMM is based on a linear relation that represents the spectral mixture of
different targets within a pixel. The data dimensionality (number of reflectance bands) is reduced by
generating fraction images to represent the proportion of each target of interest within the resolution
cell. Usually, the LSMM is processed to represent three targets (e.g., vegetation, soil, and shade).
The use of shade fraction images has been shown to be more efficient than spectral indices in mapping
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burned area in the Amazon [43]. Many studies have used LSMM to detect burned areas in the Brazilian
Amazon [43–47]. They use moderate and/or coarse-resolution images (e.g., MODIS and/or Landsat,
respectively) to perform LSMM, followed by shade fraction image segmentation and unsupervised
classification. This approach proved to be an efficient method to map burned areas. However, all these
studies require a final manual image interpretation procedure for minimizing misclassifications.

A fundamental parameter that influences the detection of burned areas by satellites is the sensor
resolution, both spatial and temporal. Most of the fire occurrence products are developed with satellite
data with coarse spatial resolution (>250 m). Coarse spatial resolution images make the development
of automatic mapping very challenging due to the variability in the spectral characteristics of the
burned area. On the other hand, a medium spatial resolution (~30 m) gives more reliability to the
evaluation of the burned area [19]. However, these sensors often have worse temporal resolutions, and
their longer revisit time decreases the chances of obtaining cloud-free images. This can be critical for
burned area mapping over tropical regions, where the recovery of the spectral signal of vegetation can
be quick and cloud cover is persistent [36]. The spatial resolution can also induce the underestimation
of small fires, leading to a considerable underestimation of the global burned area [17,48]. For example,
this limitation can underestimate fires in croplands by as much as 10 times [17].

3. Study Area

The study area corresponds to the Brazilian Amazon biome below the equator line. The area
comprises about 74% of the Legal Amazon, and 73% of its 3,583,565 km2 were covered by forest in
2016 (Figure 1). The study area includes the states of Acre (AC), Rondônia (RO), and portions of the
states of Amazonas (AM), Pará (PA), Amapá (AP), Maranhão (MA), Mato Grosso (MT), Tocantins (TO)
and Roraima (RR) (Figure 1). For the regional analysis, we considered only the percentage of area that
falls within the study region of states with more than 40% of their area considered, and under similar
rainfall regimes (dry season from July to October) (Figure 1, Table S2). Since the TREES product does
not consider the north hemisphere region in its mapping due to the difficulty in obtaining cloud-free
images, we excluded this region from our analyses to consider the common mapping area among all
four products.
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Figure 1. Study area located in the Legal Amazon. Forest proportion in a 10 × 10 km grid cell, extracted
by the Amazon Forest Deforestation Calculation Program (PRODES) forest mask of 2016 used to select
burned areas over the forest. It presented the total area of each Brazilian state that intersects the study
area, and their respective percentage area and forest area within the considered boundaries.
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4. Materials and Methods

4.1. Burned Area Products

Currently, there are more than 13 open access burned area products available worldwide (Table S1),
which are widely used. We considered three global burned area products, and one regional product for
the intercomparison evaluation (TREES, MCD64A1, GABAM and Fire_cci) (Table 1). The products were
chosen taking into account the spatial scale, since we would like to compare the global products with a
regional one, and the spatial resolution, as we would like to analyze the effect of higher-resolution
inputs in burned area detection. Therefore, we chose two global products that are widely used in the
literature (MCD64A1 and Fire_cci), a recently published global product that has a spatial resolution
of 30 m, this being the product with the best spatial resolution (GABAM), and a regional product
developed particularly for the Amazon region (TREES).

The Tropical Ecosystems and Environmental Sciences lab (TREES), based on the National Institute
of Space Research (INPE), developed their burned area product in a regional basis that covers 86% of
the Amazon biome, developed as part of multiple projects [7,43,46] (Project Amazonica—NERC/grant:
NE/F005806/1; Project Estimativa de emissões de CO2 por desmatamento e degradação florestal utilizada como
subsidio para definição de municípios prioritários para monitoramento e controle—CAPES/grant; Project
Mapping and monitoring forest degradation using remote sensing data with medium and moderate spatial
resolution—FAPESP/grant: 16/19806-3). Their product, called here TREES, is available upon request for
2006 to 2016 in an annual composite dataset. The product was developed using a hybrid classification
method to delineate burned areas. The images of bands 1, 2 and 6 (red, near infrared and medium
infrared) of the product MOD09A1Q1 were used as input to the LSM model. Then, a water mask is
applied to avoid the detection of water pixels and unsupervised classification of the shade fraction
image is carried out. In this fraction image the burned areas are highlighted, facilitating the distinction
of these targets on the terrestrial surface [46]. Subsequently, an expert inspection is carried out to
improve the accuracy of the final map, especially in forested areas, where burned areas can be easily
confused or undetected [7,43]. The map accuracy resulting from the methodology adopted by TREES
was quantified using a point-based method, considering a study case in Mato Grosso state for 2010 [28].
This product presents an overall accuracy for forested (0.9920) burned areas slightly higher than for
non-forested (0.9630) burned areas (Table 2).

MCD64A1 is a global dataset on burned areas developed by the National Aeronautics and Space
Administration (NASA). The product is freely available for 2000 to present. Incorporating MODIS
surface reflectance data coupled with 1 km MODIS active fire observations, its algorithm uses a burn
sensitive vegetation index (VI) to create dynamic thresholds that are applied to produce the monthly
composite data [17]. The current collection (c6) algorithm has already undergone improvements from
older ones, and there is a continuous effort to minimize its limitations (more details on Table S1).
The product is widely used; it has been applied as input for the development of other burned area
products [49,50], as well as for the development of the Global Fire Atlas, which includes information
on ignition locality, fire line, speed and direction of spread, essential to understanding the dynamics of
individual fires and, therefore, better characterizing the changing role of fire in the Earth system [51].
It has also been used as input for biomass burning emissions models [48,52], to study the relation
between fire and land cover change [53], and to track the response of fire occurrence to climate
change [54].
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Table 1. Specifications of the burned area products to be compared.

Name Developer Scale Time Span Sensors/Inputs Spatial Resolution References

TREES TREES—INPE Regional
(Brazilian Amazon) 2006–2016 MODIS 250 m [7,43,46]

MCD64A1
c6 NASA Global 2000–present MODIS (surface reflectance

and active fires) 500 m [17]

GABAM

Institute of Remote
Sensing and Digital

Earth—Chinese
Academy of Sciences

Global 2000, 2005, 2010, 2015
and 2018 Landsat 8 OLI 30 m [36]

Fire_cci v.5.0 ESA Global 2001–2016

MOD09GQ (surface
reflectance)

MOD09GA (quality flags)
MCD14ML (active fires)

250 m [55]

Table 2. Accuracy information of four burned area products.

Burned Area
Product

Overall
Accuracy

Omission
Error

Commission
Error Validation Method Summary References

TREES
Forest areas 0.9920 0 0.1600 Point-based validation. Stratified random sample of 300 points’ distributed over burned and unburned forest on Landsat images for Mato Grosso state, 2010. The points are

verified by experienced interpreters. [28]
Non-forest areas 0.9630 0.4852 0.1067

MCD64A1 c6
Global 0.9970 0.7260 0.4020 Globally distributed reference dataset from 1 March 2014 to 19 March 2015, consisting of high-resolution reference maps derived from 1116 Landsat images visually interpreted.

These independent reference data were selected using a stratified random sampling approach that allows for the probability sampling of Landsat data in both time and space. [41]
Tropical forests 0.9940 0.9060 0.6350

GABAM 0.9392 0.3013 0.1317 It considered 80 validation sites globally, from where it acquired data from Landsat 8, CBERS-4 MUX and Gaofen-1 WFV. The reference burned areas were mapped with a
semi-automatic classification method and refined with the manual edition. [36]

Fire_cci v5.0 0.9972 0.7090 0.5123 Stratified random sample of 1200 pairs of Landsat images, covering the whole globe from 2003 to 2014. [55]
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The Global Annual Burned Area Mapping (GABAM) is a recently released burned area product
developed by Long et al. (2019) [36]. It is built from an automated algorithm implemented on Google
Earth Engine (GEE), and it uses reflectance data from the Landsat 8 Operational Land Imager (OLI)
and spectral indexes information as input for a Random Forest model. A final step consists of burned
area shaping through a region growth approach [36]. GABAM is currently the global dataset with the
highest spatial resolution (30 m), but it is only available for 2000, 2005, 2010, 2015 and 2018, and in a
yearly composite, which does not allow seasonal analysis within a year. Its validation process showed
lower omission (0.3013) and commission (0.1317) errors compared to Fire_cci and MCD64A1 (Table 2).
The implementation of the algorithm in GEE constitutes a great advance in mapping approaches, since
the tool is open source, provides an extensive catalog of medium-resolution images and allows for
cloud processing, which considerably increases the data incorporation in the process.

The product Fire Disturbance (Fire_cci) is part of the Climate Change Initiative (CCI) program
developed by the European Space Agency’s (ESA). To map the burned areas, a MODIS dataset is used,
including reflectance images (MOD09GQ), quality masks (MOD09GA) and active fires (MOD14ML) [55]
(Table 1). The images are aggregated into monthly composites and the classification algorithm is based
on region growth, after the selection of seed pixels. Spatial and temporal parameters are, then, used in
order to reduce commission and omission errors [55]. The final product is made available on a global
scale. The version 5.0 was used in this work, since it was the most updated version when this work
was developed. Among the products developed using coarse spatial resolution data, Fire_cci was the
first to provide a global dataset with a 250 m resolution. Its validation process indicated an overall
accuracy of 0.9972, with 0.7090 global omission error and 0.5123 commission error (Table 2). Recently,
a new version of Fire_cci (version 5.1) was released [56]. The new version brings improvements of the
burned area detection algorithm, which has allowed for detecting more burned area globally compared
to the version 5.0, and expands the time span for 2001 to 2019 [56]. Even with the improvements, the
product has omission and commission errors similar to those of the previous version. Evaluating
the southern hemisphere of South America, the product detects less burned area than the product
MCD64A1 for the period 2005–2011, and its improvement in performance seems to be much smaller
compared to the results obtained for the African continent [56].

In the following sections these products will be called TREES, MCD64A1, GABAM and Fire_cci.
We considered only burned area polygons detected between June and November of 2015, to guarantee
temporal compatibility among the products analyzed. For GABAM, burned areas throughout the
year were considered, as this is the only temporal resolution available. In order to extract the burned
area over the forest, we applied the old-growth forest mask of 2016, produced by the Amazon Forest
Deforestation Calculation Program (PRODES) [57] (Figure 1), since it covers the period of August 2015
to July 2016, and is thus a conservative mask for forest cover. The non-forest class corresponds to
other land covers. It is important to highlight that, despite the TREES product presenting the best
results in terms of errors of omission and commission, and because it is a product that was designed
specifically for the study region involving a visual interpretation correction phase, we did not consider
it as reference data. Our objective here was to compare the products with each other and to analyze the
relative performance of each one in mapping burned areas in the Amazon, and not to validate them
based on a reference. We emphasize that each product has its own development methodology, which
incorporates advantages and limitations, and even assuming that, as a whole, the product provides a
reasonable approximation of the conditions on the ground, none of which is the truth to be used as
a reference.

4.2. Committed Gross Carbon Emission Estimation

To estimate the committed gross carbon emission, we used the above ground biomass (AGB) map
developed by environmental monitoring via satellite in the Amazon biomeAmazon Fund-Subproject
7—Estimating Biomass in the Amazon (EBA). The EBA map covers the Amazon biome, and it provides
AGB density information for 2016 at a 250 m spatial resolution and an associated uncertainty map
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(See Supplementary Material (S§1) for more information). Even though our analysis was done for
2015, we used the map for 2016 because just a minimum fraction (2%) of the burned area of 2015
overlapped the deforested area of PRODES 2016 (Table S3). The emissions associated with these areas
were considered negligible compared to the total amount estimated for each burned area product.

The committed carbon gross emission was estimated based on the relationship between the
biomass before and after the fire, measured within a maximum of one year gap (Equation (1)).
This method is an improvement of Anderson et al.’s (2015) [7] since it incorporates new data from
Silva et al. (2018) [16] (See Supplementary Material (S§2) for more information). This model shows the
existence of a strong correlation between the incidence of fire and the initial biomass existing before
burning. The hypothesis assumes that with the increase in biomass, microclimate conditions are more
conducive to maintaining humidity within the canopy, reducing the intensity and susceptibility to fire
spreading [58].

B f = 0.05·B1.47
i (1)

Bf is the above ground living biomass (Mg ha−1) after the fire, and Bi is the initial above ground
living biomass, given by the AGB map. The difference betweem Bi and Bf gives us the committed
biomass density. After we applied this model to obtain the committed biomass density per cell,
we transformed this density map into absolute biomass value by calculating the correct biomass
proportion given the cell area. Then, following the Intergovernmental Panel on Climate Change’s
(IPCC) approach [59], we obtained the committed carbon map by multiplying the biomass per 0.5, that
is, the amount of committed carbon per pixel. The committed carbon emission is then the sum of all
cells that fall within the burning polygons, considering the different products. The same approach
was used for the biomass uncertainty map, since it provides a biomass density value to be used as
an uncertainty interval of the value presented in the AGB map, thus resulting in a committed carbon
uncertainty map. In the same way, the uncertainty of the committed carbon emission is then the sum
of all cells that fall within the burning polygons, considering the different products.

4.3. Total and Regional Analysis

We adopted two approaches for the analyses: the vector approach, which was applied to evaluate the
agreement between the total burned area detected by each product, and to estimate its impact on carbon
emission; and the matrix approach, which was applied to investigate the spatial variations in these results.

On the vector approach, the total burned area was computed for each of the four products,
considering the forest and non-forest classes. This processing was carried out using the ‘rgeos’
package [60] in R statistical software [61]. Subsequently, the C emission maps (EBA and EBA
uncertainty) were used separately to extract the sum of committed gross C emission within each
burned area polygon, considering the different classes of land cover. This process was carried out
on R, using the ‘raster’ package [62]. Of the total 113,190 km2 burned area detected, considering all
four products, 0.3% was not considered, due to polygon size incompatibility with the resolution of
the carbon data. The most affected product was GABAM, whose deleted polygons summed 133.3
km2. This area, however, represents only 0.5% of the total burned area of this product, and therefore
can be considered insignificant. The estimates were also made separately for each Brazilian state
included in the study area, in order to generate information for decision making since the states
have autonomy in seeking investments under Reducing Emissions from Deforestation and Forest
Degradation (REDD+) initiatives.

To assess whether the error embedded in the burned area data, translated into the committed gross
C emission estimate, is greater than the estimated emission uncertainty, we compared the absolute
value of the difference in C emission estimate between every burned area product pair with the
maximum uncertainty value between them. Therefore, this strategy can be considered conservative,
since the maximum uncertainty value was used for the comparison. The following conditions were
tested (Equation (2)):
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IF



∣∣∣∣Cp1 −Cp2

∣∣∣∣−max
(
UCp1, UCp2

)
> 0 ; the burned area product choice

signi f icantly alters the carbon emission estimation∣∣∣∣Cp1 −Cp2

∣∣∣∣−max
(
UCp1, UCp2

)
< 0 ; the burned area product choice does not

signi f icantly alters the carbon emission estimation

(2)

Cp1 is the committed gross C emission estimation using burned area product 1n and Cp2 is the
same, using a second burned area product. UCp1 is the committed gross C emission uncertainty
associated to the estimation using burned area product 1 and UCp2, which is the same using a second
burned area product. Therefore, if the absolute value of the difference between the committed gross C
emission estimation among the two products is smaller than the committed gross C emission estimation
uncertainty, we can conclude that the difference among the products is within what is expected for
the uncertainty of the AGB data, and therefore, the choice of one product or another does not cause
significant over- or underestimation of committed gross C emission in the considered area.

For the matrix approach, the burned area products, considering the different land covers, were
incorporated into a regular grid with an approximately 10 by 10 km spatial resolution. The incorporation
took into account the proportion of the polygon falling inside each grid cell. This process was run on R
using the ‘raster’ package [62]. The statistical comparison between the six possible combinations of product
pairs was carried out using the non-parametric Kolmogorov–Smirnov two-sample test [63]. We used a
bootstrap approach, implemented in R statistical software v.4.0.2 [61], with 10,000 iterations. For each
iteration, the algorithm randomly raffled a sample of 10% of the total cells in each case with replacement.
Finally, based on the bootstrap results, we calculated the mean and standard deviation of the 10,000
p-values. The comparison considered only cells that presented burning detection by at least one product.

Subsequently, for the spatial comparison, the regular grid was converted into raster files carrying
the information of burned area for each combination of burned area product and land cover. Like the
statistical comparison, we considered only cells that presented burning detection by at least one product.
The burned area maps were then compared two by two, within each land cover class, using the fuzzy
numerical method implemented in the Map Comparison Kit 3 (MCK) application [64]. The fuzzy
numerical method takes into account grades of similarity between pairs of cells in two numerical maps.
Although it is a cell-by-cell comparison method, it considers the neighborhood to express the similarity
of each cell in a value between 0 (fully distinct) and 1 (fully identical) [65]. The fuzzy technique allows
one to distinguish real differences from minor mapping artifacts, besides giving a spatial assessment,
clarifying not only the location of disagreement but also the severity [66].

Considering that the burned area registered in a cell is partly defined by the cells found in its
proximity, the fuzziness of location influence level is accounted for via a function. In this study, we
adopted an exponential decay function with Halving distance equal to 2 and considered the neighborhood
radius as equal to 4. This is the default setting for the algorithm implemented in MCK. In the fuzzy
numerical model, the similarity of two values (a and b) is calculated following Equation (3). The resulting
statistic for overall similarity is then the average similarity over the whole area considered.

S(a, b) = 1−
|a− b|

max(|a|, |b|)
(3)

5. Results

5.1. Vector Approach: Intercomparison of Total Burned Area

The four burned area products differ according to the total area mapped and, consequently, total
C that is emission related (Figure 2). The most similar products, both in total mapped area and C
emission, are TREES and MCD64A1. MCD64A1 presents only 2.9% less total burned area compared to
TREES, 0.9% in non-forest and 10% in forest areas (Figure 3). The most significant difference occurs
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between TREES and Fire_cci, with the second mapping 58% less burned areas; 52% and 78% for
non-forest and forest, respectively.
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Regionally, TREES, MCD64A1 and GABAM present the same pattern of burned area both over
non-forest and forest, whereby eastern Amazonian forests (Pará state) were the most affected area
(Figure 3, Figure S2). Despite this, GABAM presents 41% more forest area mapped in this region
than TREES and 22% more than MCD64A1. GABAM also presents more burned area over forest in
central Amazonia (Amazonas state), mapping 120% more burned area than TREES and 85% more
than MCD64A1. In the far east Amazonia (Maranhão state), on the other hand, GABAM has a poorer
performance, mapping up to 53% less burned area than the TREES product.

In southwestern Amazonia, in Acre state, we also observed great divergence between the products.
TREES presents more burned areas in non-forest than the other products, and the difference can be up
to 40 times when compared with Fire_cci. Interestingly, GABAM presents the highest forest burned
area mapped, close to the TREES product, and 160 times larger than the Fire_cci product. Fire_cci, in
general, registered less burned area in all cases and sites.

5.2. Vector Approach: Impact on Committed Gross Carbon Emissions Estimates

Such differences in burned area among the products are reflected in the variance observed in the
committed gross C emission estimates (Figure 3). The use of the Fire_cci product resulted in 29.54 ± 3.36
Tg C less estimated carbon emitted, a difference of 66% compared to the regional map developed by
TREES. In contrast, the use of MCD64A1 results in only 5% (2.32 ± 0.17 Tg C) less than the carbon
emission estimated by TREES. If only the forest areas are analyzed, TREES is also the product that
generates the highest carbon emission, at 16.96 ± 1.73 Tg C for 2015. The product that comes closest
to this estimate is GABAM, with a difference of 11% (Figure 3). The same pattern can be observed
with the Baccini dataset, considering the total emission on the study area (Table S5). Nonetheless, the
Baccini dataset seems to overestimate the committed gross C emission compared to the EBA dataset,
which makes the EBA estimates conservative (See Supplementary Material (S§3) for more information).
Even though GABAM presented a greater area of burned forest than TREES, it had lower carbon
emission estimate. This is due to the distinct spatial dispersion of the burned areas detected by each
product. Since the emission is estimated as a function of initial biomass, it will depend on the spatial
location of each burned area (Figure S3).

For the southern and western Amazonian states (Acre, Mato Grosso and Rondônia), the TREES
product presented emission estimates superior to all other products for both forest and non-forest.
For example, in Acre state, the emissions estimated using TREES were 57 (0.90 ± 0.11 Tg C) and
171 (0.90 ± 0.09 Tg C) times larger than those derived by using Fire_cci for non-forest and forest,
respectively. On the other hand, in eastern Amazonia, Pará state, although the emission estimates using
TREES and MCD64A1 were similar (16.72 ± 2.02 and 18.27 ± 2.23 Tg C, respectively), the differences
between them still resulted in up to 9% more carbon emission than was estimated using the MCD64A1
product, mainly due to the larger forest area mapped by this product.

So far, we have already observed that there are differences between the burned area products that
can generate under- or over estimates of carbon emissions. Using the reasoning presented in Equation
(2), we show that for non-forest land cover, TREES and MCD64A1 are the only products that can be
used with no significant difference (Figure 4). For forest areas, the choice between these two products
may bring over- or underestimates. In this case, the comparison of GABAM with these two products
showed results within the range of uncertainty. Analyzing each state separately, we observed the
spatial difference of this pattern. For non-forest areas in Acre, for example, no product can be used in a
similar way to another. Likewise, in the forest areas in Maranhão, all products showed differences in
their estimates of carbon emissions that were greater than their uncertainty (Figure 4). In general, the
choice of the Fire_cci product always results in carbon emission underestimations when compared
with the others (Figure 3).
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5.3. Matrix Approach: Statistical and Spatial Intercomparison

Corroborating the differences in magnitude found in the vector analysis, the TREES and MCD64A1
products were the only ones that did not present significant differences at a 95% confidence level
(p > 0.05). The same pattern can be observed when forest and non-forest are analyzed separately
(Table S6). Considering this comparison, the bootstrap approach resulted in 81% of the 10,000 iterations
(84% for forest and 82% for non-forest) of non-significant p-values (p > 0.05). All the other combinations
resulted in 100% significant p-values at a 95% confidence level.
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The four products also present spatial divergence. Despite the small difference in total mapped
area, TREES and MCD64A1 also presented spatial divergence, mainly on the extreme north of the
study area and in Acre state (Figure 5). The GABAM product presents a lot of small patches of burned
areas, which reflects the higher number of cells with low burn proportion (Figure 6). Although this
product does not present the highest burned area, it includes the most spatially broad mapping among
those considered. Analyzing the correlation, given by scatter plots of the percentage of burned area
per cell, among the different pairs of products, we observed that all relations are statistically significant
at a 95% confidence level (p < 0.05). The relation between TREES and MCD64A1 is the closest to
1. The determination coefficients are, however, intermediate for all comparisons, ranging from 0.47
(TREES vs. Fire_cci) to 0.66 (MCD64A1 vs. GABAM) (Figure S4).
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Figure 6. Number of cells in different burned proportion classes.

The similarity analysis allows the identification of the pairs of products that are the most spatially
coherent. In general, the similarity indexes are medium to low between all products (Table 3).
Considering the study area, the similarity indexes are always between 0.4 and 0.5, regardless of the
land cover. When we distinguish forest and non-forest areas, we can see two patterns: relative higher
indexes when Fire_cci is considered for comparisons in non-forest areas, and relative lower indexes
when GABAM is considered for comparisons in forest areas. The first pattern can be explained by the
reduced extent mapped by the Fire_cci product; the more conservative the mapping, the greater the
chance of being more similar to other products, and this is the case for Fire_cci. The second pattern,
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on the other hand, can be explained by the opposite reasoning. GABAM has the largest extent mapped
in forest areas, and therefore a greater chance of mapping areas the other products did not.

Table 3. Overall similarity for each burned area product comparison pair, considering the whole area,
and separating it into non-forest and forest areas. The result is provided for the entire study area, as
well as for each Brazilian state considered separately. The similarity index ranges from 0 (fully distinct)
to 1 (fully identical), and was calculated using the fuzzy numerical algorithm for map comparison.

Study Area AC 1 AM 2 MA 3 MT 4 PA 5 RO 6

Total
TREES ×MCD64A1 0.408 0.194 0.316 0.458 0.459 0.406 0.451
TREES × Fire_cci 0.483 0.114 0.610 0.437 0.529 0.491 0.395
TREES × GABAM 0.467 0.470 0.495 0.395 0.529 0.416 0.544
MCD64A1 × Fire_cci 0.507 0.784 0.389 0.369 0.544 0.493 0.583
MCD64A1 × GABAM 0.450 0.164 0.376 0.489 0.468 0.474 0.465
Fire_cci × GABAM 0.414 0.073 0.463 0.254 0.555 0.387 0.408
Non-forest
TREES ×MCD64A1 0.428 0.242 0.390 0.474 0.464 0.421 0.456
TREES × Fire_cci 0.505 0.153 0.653 0.459 0.543 0.510 0.413
TREES × GABAM 0.449 0.276 0.420 0.436 0.484 0.424 0.513
MCD64A1 × Fire_cci 0.533 0.798 0.454 0.396 0.553 0.520 0.607
MCD64A1 × GABAM 0.472 0.651 0.406 0.489 0.445 0.484 0.480
Fire_cci × GABAM 0.480 0.670 0.513 0.312 0.563 0.445 0.443
Forest
TREES ×MCD64A1 0.515 0.291 0.433 0.674 0.551 0.507 0.507
TREES × Fire_cci 0.542 0.151 0.580 0.699 0.572 0.543 0.425
TREES × GABAM 0.513 0.519 0.504 0.608 0.583 0.451 0.514
MCD64A1 × Fire_cci 0.573 0.790 0.464 0.614 0.600 0.548 0.578
MCD64A1 × GABAM 0.493 0.202 0.382 0.673 0.527 0.498 0.463
Fire_cci × GABAM 0.446 0.090 0.408 0.546 0.553 0.418 0.386
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Regionally, both the extreme west and extreme east (Acre and Maranhão, respectively) are the
regions where most differences in mapping occur, denoted by the broad range of similarity among the
products. In Acre, the relative high similarity index found for MCD64A1 and Fire_cci (0.784) shows
that both products presented less burned area detected in this state. These products did not present as
much burned area as was captured by the TREES product (less 88% and 98%, respectively), in both
land covers. When analyzing GABAM compared to MCD64A1 and Fire_cci, we observed that the
lower similarity indexes are mainly due to forest affected areas for the study area, and for the Acre
and Amazonas states. GABAM is the product with the highest detection of forest fires in Acre and
Amazonas; its mapping areas were approximately 161 and 10 times greater than those of Fire_cci in the
forest areas of these states, respectively. However, GABAM presents relatively poor performance for
the eastern forests in Maranhão state. Although the overall similarity for Maranhão state is already
relatively low compared to the other states, we see that the indexes for the non-forest areas are clearly
lower than the ones for forest, indicating a greater divergence between the products for non-forest
areas in this state (Table 3).

Despite the fact that most values of similarity indexes are intermediate, as they are averages for
each region, similarity scale extremities can be observed spatially in Figure 7 (and Figures S5 and
S6, for burned area over forest and non-forest, respectively). This visual spatial analysis allows the
identification of regions that are the more cohesive, or not, among the burned area products. Between
TREES and MCD64A1, most of the low similarity registries occur in the north region, where MCD64A1
presents better performance, and in southwestern Amazonia, where TREES registers more burned area
(Figure 8a). Between TREES and GABAM, little similarity occurs on the north, mainly in the northeast
of the Pará and Amazonas states, where GABAM presented more fire-affected areas. Even in Acre,
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where these products present approximately equal estimates in forest affected area, there is divergence,
mainly in the western part of the state (Figure 8b). The same occurs between MCD64A1 and GABAM,
with the addition of minor similarities in Rondônia state. The low performance presented by Fire_cci
in mapping as much burned area as the other products is highlighted in Figure 8, which shows that
most cells contain information exclusively from TREES or MCD64A1, or a combination of them.
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6. Discussion

Every sensor considered to generate a burned area product has characteristics and specifications
that incorporate limitations in the final product, affecting their performances regionally. The daily
temporal resolution of MODIS data ensures a higher frequency of data acquisition and minimizes cloud
cover, important factors for monitoring tropical areas. In these regions, depending on the time elapsed
after the fire, the signs of burned areas can be removed quickly due to climatic conditions and the speed
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of vegetation regeneration [67]. Currently, with daily global products available, MODIS data have
been widely used in burned area detection with 500 m spatial resolution [68,69]. Landsat data have a
16-day temporal resolution, but with the advantage of a 30 m spatial resolution in the optical spectrum.
The spatial resolution allows a better definition of the boundaries of the burned area, avoiding a greater
mixture of pixels from burned and unburned patches [36]. In addition, its long time series allows one
to trace historical trends in fire dynamics [70]. Therefore, it is essential for the final user to understand
such characteristics in order to consider them in the choice of which product is most appropriate for
their application. In addition to the limitations of each data set, the spatial evaluations of the burned
areas revealed that the similarities between the products varied regionally. Depending on the scale of
the study to be developed, the choice of which product to use can have a significant impact on the
final result.

Regarding the total burned area mapped, we can separate the products into two groups: two very
similar products (MCD64A1 and TREES) and two other (GABAM and Fire_cci). Although the GABAM
product presents 21% less total burned area compared to the TREES product, GABAM was the product
that registered the most burned forest, reaching 11% more than the TREES product. This shows that the
spatial resolution of GABAM (30 m) gives an advantage to the mapping of this land cover. In addition,
GABAM presents the smallest commission error, considering the error related to forest areas for
the TREES product. Although some studies indicate that the use of MODIS data at a 250 m spatial
resolution can underestimate burned area by approximately 25% in relation to manually digitized
burn scars based on Landsat images at a 30 m resolution [30,71], in a global comparison between the
GABAM and Fire_cci products using the proportion of burned area in 0.25◦ × 0.25◦ grids, GABAM
generally underestimated burned scars, and the inconsistency was attributed to the difference in
spatial resolution of data sources [36]. GABAM’s higher resolution can allow better delineation of
fire pixels, resulting in less pixels classified as burned globally. However, our study shows that in a
regional analysis, this statement can change, since the GABAM product registered almost twice as
much (1.9 times) total burned area as the product Fire_cci, for the study area considered. Nevertheless,
GABAM’s developers warn that using Landsat images as the data source decreases the number of
valid observations, considering Landsat’s temporal resolution and cloud contamination, which may
explain its performance compared to TREES and MCD64A1 products. This limitation is especially
critical over tropical regions, where vegetation recovery is quick, and cloud cover is persistent [36].
In this sense, the use of coarse-resolution images to detect fire can be justified, since they generally
offer higher temporal frequency [17,18].

Among the products developed using coarse spatial resolution data, Fire_cci was the first to
provide a global dataset with a 250 m resolution. Its validation process for version 5.0 indicated an
overall accuracy of 0.9972, with 0.7090 global omission error and 0.5123 commission error (Table 2) [55].
Similarly, version 5.1 presented 0.6710 global omission error and 0.5440 commission error [56].
The errors reflect the conservative nature of this dataset, which may explain the great difference
compared to other products. Its developer argues that, although globally higher than MCD64A1 c6,
its errors for version 5.0 are better compensated, with a tendency towards underestimation, than most
existing global products [55]. Fire_cci’s developers highlight its better detection accuracy for small
patches (<100 ha) compared to MCD64A1 in a sample over Africa [55], although both had high
errors for these small fires. Version 5.1 brings improvements in this direction. Despite the significant
contribution of this product to fire modeling based on burned area global analysis, we show that
regionally, the use of this product can be critical in underestimating the overall burned area, and thus
consequently the fire-related impacts on carbon emissions.

In general, coarse-resolution products have been shown to be unable to adequately detect small
fires (<100 ha) [72]. This limitation can lead to a considerable underestimation of global burned
area [17,48], underestimating fires in croplands by as much as 10 times [17]. The newest collection (c6)
in the MCD64A1 offers the significantly better detection of small burns (<100 ha) compared to older
versions, but in general, it remains unable to map them adequately. It underestimated fire perimeter
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length in all vegetation classes, and care should be taken when using it for cropland regions [51].
Considering its higher spatial resolution, GABAM seems to detect small burned areas better. Although
it was the product that presented the greatest range of mapping, it was not the one that detected the
most extensive total area. Furthermore, when analyzing the regular grid of 10 km spatial resolution,
most cells that had burned areas in GABAM recorded small burn proportions, suggesting small
burnt patches.

The product MCD64A1 was the one presenting the biggest difference in omission and commission
errors related to TREES, reaching commission errors 75% higher than the TREES product for forest areas
and 83% higher for non-forest areas. The high omission error presented by this product, especially for
tropical forests, also indicates the conservatism adopted in its methodology. Surprisingly, MCD64A1
was the product that came closest to the regional product TREES in total burned area detected.
Shimabukuro et al. (2015) [19] estimated a difference of 21% between the MCD64A1 and a product
built with Landsat TM images using the same methodology as TREES for Mato Grosso state. Here,
we found a difference of only 0.15% between MCD64A1 compared to TREES for Mato Grosso state,
considering the total burned area. However, this difference can reach 15%, considering burned areas
over the forest. When analyzing the whole study area, these products registered significant spatial
divergences. The product MCD64A1 recorded more fires in the north and northwest of the study
area, mainly in the state of Amazonas, compared to TREES. The TREES product concentrates on more
exclusive mapped areas in the southwest, mainly in Acre state. The burned areas in the north of the
study area, presented by the product MCD64A1 and also by the product GABAM, seem to follow the
hydrography (Figure S7). One hypothesis would be that these burned areas would partially correspond
to flooded regions. Many detected areas occur along the margins of the Amazonas river and water
presents low reflectance in all wavelengths, similar to burned areas. As a brief analysis, we assessed
the burned areas of the four products in relation to the hydrography to calculate the proportion of
intersection (Table S7). Even the percentages of burned area over the hydrography mask are small for
all four products (maximum of 1.5%), and MCD64A1 and GABAM are the products with the largest
overlap (1.5% and 0.9%, respectively). If we compare regionally, Amazonas is the state with the largest
overlap presented by these two products (10.3% and 4%, respectively).

The detection of burned forest worldwide is made difficult when fire does not reach the forest
canopy, since the spectral signal does not change sufficiently to be detectable by remote sensors. It has
been shown that in areas with high leaf area index (LAI) and percent tree cover, there is a misdetection
of burned areas [29,30]. Therefore, our initial hypothesis was that the variation between the products
would increase in forest-affected areas. We expected that the regional product TREES, in which there is
manual image interpretation, would present greater sensitivity for mapping burned forests [28]. This
hypothesis was not sustained in most cases. Firstly, GABAM, which has a 30 m spatial resolution, was
the product that most detected burned forests, leading us to consider that spatial resolution can be
very important for burned forests detection. In an intercomparison analysis between FireCCISFD11
(20 m), a Sentinel-2 burned area product derived for 2016 in Sub-Saharan Africa, MCD64A1 c6 and
Fire_cci v.5.0, the Sentinel product was found to be more accurate than any global product for detecting
small fires, detecting 4.9 Mkm2, 80% more than MCD64A1 c6 (2.7 Mkm2) and 97% more than Fire_cci
v.5.0 (2.5 Mkm2) [56]. Since all these three products used MODIS active fires to train their algorithms,
the improved performance of FireCCISFD11 should be mostly attributed to the spatial resolution of
the input reflectance [56]. However, the study did not distinguish land cover classes in its analyses.
Additionally, in our analysis, even though the burned area difference was greater in burned forests
between MCD64A1 and TREES, and between Fire_cci and GABAM, the difference in burned area was
greater in non-forest areas in most cases. There is no rule to support this hypothesis, and it is possible
to observe that there is variation both between products and spatially.

For a study that aims to quantify fire-related C emission, the choice of the burned area product
must consider the scale of the process to be observed. For the study area, the difference between
products can reach 29.54 ± 3.36 Tg C yr−1 when comparing the global product Fire_cci and the regional
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TREES. Taking the average value, it corresponds to 21% of the total gross CO2 emissions from forest
fires in 2015 in the Brazilian Amazon biome [5]. In Acre state, even the most similar products, TREES
and GABAM, differed by 0.8 ± 0.33 Tg C, and this is equivalent to 23% of the average biomass loss
during an extreme drought year in this state [73]. The same comparison with Fire_cci can result in a
difference of more than 50% of the average biomass loss in a drought year in Acre state. The differences
in estimates can be significant, but it is necessary to consider that biomass data bring uncertainty
into these estimates, an intrinsic factor in the development of the data. Thus, when calculating
the carbon emission related to fire, the choice between burned area products can reflect significant
differences in the estimates, or irrelevant differences, considering the level of uncertainty of the biomass
data. For non-forest areas, in most cases, MCD64A1 and TREES presented irrelevant differences
in fire-related carbon emissions, which means that the difference in emission estimates using these
products is smaller than the biomass data uncertainty. For forest areas, there is more variability among
the states. All comparisons with Fire_cci resulted in significant differences. It is recommended to
undertake not only a spatial analysis but also an analysis of the phenomenon itself, as a way to support
the choice of the product, conditioning it to the particular research objective aimed at.

The map scale can also influence the differences in the burned area products. It is more feasible
to adapt the mapping method regionally over the wide range of pre- and post-burn conditions,
considering specific dynamics for different ecosystems. Work on a regional scale also allows for a
manual post edition of the automatic burn classification, minimizing the omission and commission
errors [28,46,74]. The adoption of global burned area products in regional analyses, in general, can
result in significant underestimation of the fire-affected area, and this underestimation varies spatially.
The underestimation shown here, for 2015, between TREES and MCD64A1 for Acre state, which was
88% less burned area registered by MCD64A1 compared to TREES, was again found for 2019 by Silva
et al. (2020) [75], with the same percentage of less burned area registered by MCD64A1 compared
to their product, which also includes a manual edition in its mapping methodology. Although the
final manual edition procedure has a high time and human resource cost, it can avoid as much as 20%
of the underestimation of the burned area, compared to methods that do not consider this step [19].
Additionally, studies that consider a time series can assess whether the spatial variation is systematic,
and in this case, this variation can be used as a guideline for improvements in mapping.

Finally, we also highlight that the most probable result of comparing different data is obtaining
different patterns, which was indeed the case. However, it may also be relevant to point out that,
notwithstanding the differences, some patterns are similar, which means that the four burned area
products can cross-validate each other to some extent or, similarly, that the more the sources point
to a given pattern, the more reliable the pattern is. Moreover, we consider the continuous process of
improving global burned area products as fundamental to strengthening environmental conservation
in the Amazon, as they are often used as inputs for technical reports and public policy formulation.
In the absence of an official national product for the long-term monitoring of fire-degraded forests
extent, global products provide the only reliable and operational option to expose the magnitude of the
fire-related socioeconomic and environmental losses we are currently experiencing in the region [76].

7. Conclusions

This work performed an intercomparison of four burned area products, one being a regional
burned area map, developed by TREES–INPE, and the other three being global products. We analyzed
the difference in the total area mapped over forest and non-forest areas, as well as their influence on
fire-related C emission estimates in the Amazon for the year 2015.

The four burned area products differ according to the total area mapped and, consequently, total
related C emission. Only accounting for the magnitude of the difference, the most similar products are
TREES and MCD64A1, both for non-forest and forest areas. The products that stand out the most are
TREES and Fire_cci, and the difference between the two can reach 78% less burned area detected by
Fire_cci in forest areas considering the Amazon, and 99% in Acre. The difference between products
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was not higher in forest areas in all comparisons, and regionally analyzing the initial hypothesis of
more significant variation in these areas cannot be sustained in most cases.

Despite the broader coverage of the GABAM product, it does not have the magnitude of total
burned area recorded by TREES and MCD64A1, and this is linked to the use of Landsat 30 m data.
The more extended temporal resolution of Landsat images makes it difficult to obtain data without
cloud interference, and besides, the better spatial resolution can either decrease the mapped area due
to a better scar delineation or increase the contribution of small polygons. The better spatial resolution
of the Fire_cci product (250 m) compared to MCD64A1 (500 m) does not appear to have conferred an
advantage for the mapping of fire-affected areas in the Amazon.

Besides, when these products are used to estimate fire-related carbon emission, the choice between
them can lead to significant changes in estimates. The use of Fire_cci may result in 29.54 ± 3.36 Tg C less
estimated carbon emitted, a difference of 66% less compared to the regional product TREES. Considering
non-forest areas in the Amazon, and for the analysis of carbon emission estimates specifically, the
difference between the adoption of TREES and MCD64A1 is within the expected error for the biomass
dataset. For forest areas, the comparisons that are within the expected error are GABAM and TREES,
and GABAM and MCD64A1. This analysis varied across the Brazilian Amazon states, and there was
no single rule for all of them.

Overall, for the Amazon, the global product MCD64A1 was the closest to the regional product
TREES, but regionally there are still significant differences between them, especially in forest areas.
It was shown here that global products used interchangeably on a regional scale could significantly
underestimate the impacts of fire and, consequently, fire-related carbon emissions. As such, the
end-user must choose the product based on the phenomenon and scale to be studied, considering
the parameters of the data used in the mapping and the limitations conferred by such in the final
result. The choice process can involve merging more than one product to optimize its advantages and
produce more consistent data for the user’s needs, getting closer to the true total burned area and its
regional distribution. Additionally, the information contained herein still serves as evidence for the
improvement of burned area detection algorithms in the Amazon, subsidizing the development of
new and more accurate products for the region.
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