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Abstract: The visualization of near infrared hyperspectral images is valuable for quick view and
information survey, whereas methods using band selection or dimension reduction fail to produce
good colors as reasonable as corresponding multispectral images. In this paper, an end-to-end
neural network of hyperspectral visualization is proposed, based on the convolutional neural
networks, to transform a hyperspectral image of hundreds of near infrared bands to a three-band
image. Supervised learning is used to train the network where multispectral images are targeted to
reconstruct naturally looking images. Each pair of the training images shares the same geographic
location and similar moments. The generative adversarial framework is used with an adversarial
network to improve the training of the generating network. In the experimental procedure,
the proposed method is tested for the near infrared bands of EO-1 Hyperion images with LandSat-8
images as the benchmark, which is compared with five state-of-the-art visualization algorithms.
The experimental results show that the proposed method performs better in producing naturally
looking details and colors for near infrared hyperspectral images.

Keywords: hyperspectral images; hyperspectral visualization; convolutional neural networks;
Generative Adversarial Networks; GAN; Hyperion

1. Introduction

Hyperspectral satellite images have significant advantages in the recognition of ground contents,
but they are not easily understood by the human eye. A hyperspectral image usually has hundreds
of 16-bits quantized bands, which is converted to an 8-bits Red-Green-Blue (RGB) image for screen
presentation, i.e., hyperspectral visualization. The visualization of hyperspectral images are primarily
needed by data centers with preprocessing or distribution systems. For these systems, the visualization
produces quick views which help us to judge the availability of selected hyperspectral images.
Besides visual recognition, the visualization can improve the accuracy of registration and classification
of hyperspectral images because the spatial information is aggregated to present enriched textural and
structural characteristics.

Many algorithms have been proposed for hyperspectral visualization, which can be categorized
into two groups, namely band-selection-based and dimension-reduction-based. Dimension-reduction-
based methods are then classed into linear-projection-based and nonlinear-projection-based to account
for the adaptive strategy.

The group of band-selection-based methods choose three separate bands from all the hyperspectral
bands. Manually specifying the three bands is experience dependent, therefore is accounted for as
an optimization to various purposes such as higher class separability or perceptual color distance.
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For example, Su et al. [1] used minimum estimated abundance covariance for band selection of true,
infrared, and false color composites. Zhu et al. [2] used dominant set extraction to search a graph
formulation of band selection which was measured with structure awareness for band informativeness
and independence. Amankwah and Aldrich [3] used both mutual information and spatial information
to select the bands. Yuan et al. [4] proposed a multitask sparsity pursuit framework with compressive
sensing based descriptors and joint sparsity constraint to select the bands. Later on, Yuan et al. [5]
proposed a dual clustering method including the contextual information in the clustering process,
a new descriptor revealing the image context, and a strategy in selecting the cluster representatives.
Demir et al. [6] utilized a one-bit transform to select suitable color bands in low complexity for
dedicated hardware implementation.

It is commonly understood that the spectral range of each hyperspectral band is too narrow to
hold rich spatial information. Therefore, more bands are involved by means of dimension reduction
algorithms. The kind of linear-projection-based methods were first proposed to account for this.
For example, Du et al. [7] used principal component analysis (PCA), independent component analysis
(ICA), Fisher’s linear discriminant analysis, and their variations for hyperspectral visualization and
then compared their performance. Zhu et al. [8] used correlation coefficient and mutual information
as the criteria to select three independent components with ICA for color representation. Meka and
Chaudhuri [9] visualized hyperspectral images by summing up all the spectral points at each pixel
location and optimizing the weights by minimizing the 3-D total-variation norm to improve statistical
characteristics of the fused image. Jacobson and Gupta [10] investigated the CIE 1964 tristimulus color
matching envelopes and transformed them to the sRGB color space to obtain the fixed linear spectral
weighting envelopes. These weights could stretch the visual bands of a hyperspectral image for the
linear combination of the red, green, and blue bands, respectively. Algorithms based on PCA or CMF
are irrelevant to image content.

In addition to linear projection, the alternative nonlinear methods of dimension reduction were
also exploited for hyperspectral visualization. Najim et al. [11] employed the modified stochastic
proximity embedding algorithm to cut the spectral dimension as well as to avoid similar colors
of dissimilar spectral signatures. Kotwal and Chaudhuri [12] suggested a hierarchical group
scheme and bilateral filtering for hyperspectral visualization preserving edges and even the minor
details without introducing visible artifacts. In one of the latest work, Kang et al. [13] proposed
the decolorization-based hyperspectral image visualization (DHV) framework for hyperspectral
visualization. In the DHV framework, hundreds of hyperspectral bands are averaged into nine bands,
which are then combined into three bands by means of decolor algorithms [14–17] for natural images.

The dimension reduction methods assure no natural colors. Therefore, most of them cannot
produce good colors except for the work related to color-matching function (CMF) in [10] where CIE 1964
was considered. Motivated by [10], many variations were proposed. Mahmood and Scheunders [18]
used the wavelet transform for hyperspectral visualization by fusing CMFs at the low-level subbands
and denoising at the high-level subbands. Moan et al. [19] excluded irrelevant bands by comparing
entropy between bands, segmented remained bands by thresholding the CMFs, and used the normalized
information at second and third orders to select the bands with minimal redundancy and maximal
informative content. Sattar et al. [20] used dimension reduction methods, including PCA, maximum
noise fraction, and ICA, to get nine bands from a hyperspectral image, and then combined them with
the CMF stretching for higher class separability and consistent rendering. Masood et al. [21] proposed
spectral residual and phase quaternion Fourier transform to generate the saliency maps in both spatial
and spectral domains, which were concatenated with the hyperspectral bands and CMFs to linearly
combine the color image.

Although CMF-based linear methods can achieve good color and details, researchers have noticed
that better visualization methods should adapt to local characteristics, i.e., using different visualization
strategies for different categories of pixels. To illustrate more salient features, Cui et al. [22] clustered
the spectral signature of image pixels, mapped the points to the human vision color space, and then
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performed the convex optimization on cluster representatives and interpolation of the remaining
spectral samples. Long et al. [23] introduced the principle of equal variance to divide all hyperspectral
bands into three subgroups of uniformly distributed energy, and treated normal pixels and outliers
separately using two different mapping methods to enhance global contrast. Cai et al. [24] proposed a
feature-driven multilayer visualization technique by analyzing the spatial distribution and importance
of each endmember and then visualize it adaptively based on its commonness. Erturk et al. [25] used
bilateral filters to extract the base and detail images, reducing contrast in the base image but preserving
the detail so that the significance of the detail image can be enhanced, which is a high-dynamic-range
(HDR) technique for display devices. Mignotte [26] used the criterion of preserving spectral distance
to measure the agreement between the distance of spectrums associated with each pair of pixels and
their L∗a∗b∗ (also written as lab) perceptual color distance in the final three-band image, which led to
the optimization of a nonstationary Markov random field. Liao et al. [27] proposed a fusion approach
based on constrained manifold learning, which preserves the image structures by forcing pixels with
similar signatures being displayed with similar colors.

Although many algorithms have been proposed, there has been a lack of visualization methods
for the near-infrared spectrums. With the increase of hyperspectral sensors, more and more images are
captured in the near-infrared band exceeding 760 nm. For example, the spectral range of the shortwave
infrared (SWIR) hyperspectral camera mounted on the TIANGONG-1 is 800–2800 nm, and the
atmospheric detector mounted on the GAOFEN-5 is also in a similar spectral range. Commonly used
algorithms focus on the visualization of images from sensors such as AVIRIS and ROSIS that span to
visible light range [28–30], which may not be suitable for visualization of the near-infrared detectors.

When the near infrared bands are concerned, it is still challenging to show hyperspectral images
with naturally looking colors. Band-selection-based and CMF-based methods may fail because they
rely on the visual light bands for natural colors. Dimension reduction tends to produce unnatural colors
even for the visual light bands. When the visual light bands are missing, none of the above-mentioned
methods can assure the quick view images of natural colors. As an example, our earlier method [31]
will lose effect because it requires visual light bands to correct the fused colors.

In this paper, a deep convolutional neural network is designed for the visualization of near
infrared hyperspectral bands. It is an end-to-end model, i.e., a hyperspectral image is fed into the
network, which outputs a three-band image for visualization. Against the experienced methods for
hyperspectral visualization, supervised learning is employed in the newly proposed method to train
the network to tune to the expected natural colors. This is accomplished with the repeated observation
data. In line with the hyperspectral images, multispectral images covering red, green, and blue
spectrums can be easily obtained, which offer the expectations that best describes the terrestrial content
of the same place and time. These multispectral images guide the network to fuse natural color and
maintain good detail.

The main contributions of this article are listed.

1. The visualization of near-infrared hyperspectral images is delicately discussed for the first time
in response to the growing trend.

2. An end-to-end deep convolution network is designed to visualize hyperspectral images, which is
very straightforward and flexible to adapt to a variety of transformation styles.

3. A discriminator network is introduced to improve the training quality.

The rest of this article is arranged as follows. In Section 2, the proposed method is presented
where the adversarial framework, network architecture, training, and preprocessing are uncovered in
detail. In Sections 3 and 4, the newly proposed method is tested for the EO-1 Hyperion data without
visual light bands, which is compared with five state-of-the-art visualization methods to prove its
feasibility. In Section 5, the new method is tested for the TIANGONG-1 shortwave infrared bands.
Section 6 presents an extended experiment for the visualization of EO-1 Hyperion data where visual
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light bands are kept. Possible constraints and extensions are discussed in Section 7. Section 8 gives
the conclusion.

2. Methodology

The mapping from hyperspectral images to multispectral images may not be a strict dimension
reduction process. In our experience, objects should be rendered in fixed colors at a given time.
This process implicitly introduces an understanding of the content of the image. We try to describe
this mapping process here. The first step is to classify the features, that is, to distinguish small image
blocks into different feature categories, such as woodland or artificial buildings. The second step is to
find shallow features such as structures and textures. The third step is to color each shallow feature
so that it can be understood by the human eye when it is restored back to the image. These mapping
steps can be explained with an encoder-decoder system. The first step makes up an encoder for feature
extraction, while the second and third steps correspond to a decoder for image reconstruction.

The latest codec methods are implemented using deep convolutional neural networks, which have
been widely used for image processing. In image segmentation, features are extracted using deep
convolutional networks and aggregated and rendered as labeled images. In conditional image
generation, the coded part of the deep convolutional network learns the conditional image features,
merges them with the random features, and generates a new image through the decoder. In image
restoration, the basic features of defective images are learned by the encoder and then sent to the
decoder to repair missing information. These works are essentially the same as the hyperspectral
visualization that we understand. Therefore, we will harness an encoder-decoder neural network to
visualize the near-infrared hyperspectral images.

2.1. Framework with Neural Networks

The aim of hyperspectral visualization is to fuse a three-band image IT from a hyperspectral
input image IH . For an hyperspectral image, we describe IH by a real-valued tensor of size W × H× C
and IT by W × H × 3, respectively. Here, W, H, and C denote the width, height, and number of
channels, respectively.

Our ultimate goal is to train a generating function G that estimates for a given hyperspectral
input image its corresponding three-band multispectral counterpart. To achieve this, a generator
network is trained as a feed-forward convolutional neural network (CNN) GθG parameterized by θG.
Here θG = {ω1:L; B1:L} denotes the weights and biases of a L-layer network and is obtained by
optimizing a specific loss function L (·). For training input images

{
IH
n
}

, n = 1, · · · , N with
corresponding output images

{
IT
n
}

, n = 1, · · · , N,

θ̂G = arg min
θG

1
N ∑N

n=1 L
(

GθG

(
IH
n

)
, IT

n

)
(1)

is solved, where N denotes the number of training samples. In training, IT is obtained by finding the
multispectral images whose spatial resolution and captured time are similar to IH .

In the remainder of this section, the architecture, loss function, adversarial-based improvement,
and data processing of this network will be introduced. For convenience, the proposed method is
called Hyperspectral Visualization of Convolutional Neural Networks, or HVCNN for short.

2.2. Generative Network: Architecture

To describe the encoding-decoding process, the U-Net architecture [32,33] is used. The encoder
is a downsampled convolutional network to aggregate features, where the stride between adjacent
layers is 2. The typical input is a 128 × 128-sized multichannel image, then the encoder network has
7 layers to output a small number of high-level features. The filter sizes are 4 × 4 for all convolutional
layers. The possible depth values are 64, 128, 256 as listed in Table 1. The first convolutional layer is
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followed by a Leaky-ReLU function for activation, while other convolutional layers are followed by
a batch norm (BN) layer and a Leaky-ReLU layer.

Table 1. Parameters of the convolutional layers.

Layer ID Filter Size Kernel Number Stride

Encoder
1 4 × 4 64 2
2 4 × 4 128 2
3 4 × 4 256 2
4 4 × 4 512 2
5 4 × 4 512 2
6 4 × 4 512 2
7 4 × 4 512 2

Decoder
1 4 × 4 1024 2
2 4 × 4 1024 2
3 4 × 4 1024 2
4 4 × 4 512 2
5 4 × 4 256 2
6 4 × 4 128 2
7 4 × 4 3 2

Discriminator
1 4 × 4 64 2
2 4 × 4 128 2
3 4 × 4 256 2
4 4 × 4 512 1
5 4 × 4 1 1

Symmetrical to the encoder, the decoder part contains seven 4 × 4 transposed convolutions with a
stride of 2. Low-level features have higher resolution to hold position and detail, but they are noisy and
of few semantics. On the contrary, high-level features have stronger semantic information, but details
are not perceivable. Concatenation is then used to combine low-level features and high-level features
to improve model performance. In other words, the input of each transposed convolutional layer
in the decoder is a thicker feature formed by concatenating the output of the previous layer and the
corresponding encoder layer output. The function tanh is used for activation of the last convolutional
layer. Therefore, the entire network has a total of 14 convolutional layers, as is shown in Figure 1.

Figure 1. Architecture of the generative network for hyperspectral visualization. The left part is an
encoder network, and the right part is a decoder network. The input of each transposed convolutional
layer in the decoder is a thicker feature formed by concatenating the output of the previous layer and
the corresponding encoder layer output.
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2.3. Adversarial Network: Architecture and Loss Function

It is commonly known that the performance of a generator can be improved by a discriminator,
which leads to a generative adversarial network (GAN). To distinguish the real target image from
the generated color image samples, a discriminator network D is further defined with parameter θD.
We adopt the idea in GANs where θD is optimized along with G in an alternating manner to solve the
minimum-maximum adversarial problem under the expectation E and distribution p:

min
G

max
D

EIT∼ptrain(IT)

[
log DθD

(
IT ||IH

)]
+

EIH∼pG(IH)

[
log

(
1− DθD

(
GθG

(
IH
)
||IH

))]
.

(2)

Here || denotes that two images are combined into one image as the input of the discriminator.
This formula trains a high-quality generative model G to fool the discriminator D as much

as possible. The discriminator D is trained to distinguish generated images from real images.
Alternate training allows the generator and discriminator to find high-quality solutions in each
single-step iteration, and they upgrade as the opponents upgrade. In this way, the generator can learn
a solution that is highly similar to the target image.

In our method, the adversarial network is built upon CNNs (see Figure 2), too. It contains five
convolutional layers. The sigmoid function is used in the last layer as the activation function to assess
the probability of the group to which each image belongs.

Figure 2. Architecture of the discriminator.

2.4. Generative Network: Loss Function

The definition of the generative loss function LG is critical for the performance of the
generator network. In our model, the generative loss is formulated as the weighted sum of two
components—content loss and adversarial loss for minimization, i.e.,

LG = αLcon + Ladv. (3)

The content loss Lcon is defined with the `1 norm, i.e., pixel-wise mean absolute error (MAE).
MAE represents the average error margin of the predicted value, regardless of the direction of the
error. Compared to the mean square error (MSE) which is easier to be solved, MAE is more robust to
outliers. Lcon is calculated with

Lcon=
1

W×H×C

W

∑
x=1

H

∑
y=1

C

∑
z=1

∣∣∣∣IT
x,y,z−G

(
IH
)

x,y,z

∣∣∣∣. (4)
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The adversarial loss Ladv is defined based on the probability of the discriminator D
(
G
(

IH)) on
all training samples as

Ladv = − 1
N ∑N

n=1 log DθD

(
GθG

(
IH
)
||IH

)
, (5)

where DθD

(
GθG

(
IH) ||IH) denotes the probability that the reconstructed image GθG

(
IH) from the

input image IH is an accepted color image, and N denotes the number of training samples. To better
update the gradient, − log (D (·)) is minimized instead of log (1− D (·)).

2.5. Preprocessing

Prior to the network training, each pair of hyperspectral images and the counterpart three-band
image should preferably have the same quantization range to speed up network convergence. This can
be achieved by stretching each band independently to 0–255. On the other hand, affected by the
imaging environment and atmospheric pollution, there are many abnormal points in remote sensing
images, which are often very bright or very dark. The abnormal points in the target image will degrade
the training effect. To solve this problem, a nonlinear stretching method is used. After obtaining the
cumulative distribution of the image histogram, the darkest 0.1% and brightest 0.1% of the pixel range
are eliminated. All the pixels within the statistical threshold range are linearly stretched to 0–255. It is
necessarily pointed out that this operation should be performed not on a small image block but on
a large image. For example, in our experiments, each nonlinear stretch is performed on a complete
image of more than 1,000,000 pixels.

When further used in the network, the input and output images need adjustment once again,
i.e., linearly stretched from [0, 255] to [−1, 1]. The network synthesized image is linearly stretched back
to 0 to 255 for manifestation. If it is necessary to obtain a 16-bit output image, the original threshold
can be used to map pixel values to the approximate range.

3. Experimental Scheme

The EO-1 Hyperion data were tested to illustrate the feasibility of the proposed method. All the
visual light bands were removed from the EO-1 Hyperion data to simulate a near-infrared hyperspectral
image. The red, green, and blue bands of the LandSat-8 data were used as the target towards natural
color. Therefore, there is no overlapping spectrums between input images and output images.

To identify the performance of the proposed visualization method, a variety of state-of-the-art
methods were compared, including the classical principal component analysis method [7] (named
as PCA), the Bilateral Filtering based method [12] (named as BF), the Dominant Set Extraction based
Band Selection [2] (named as DSEBS), and the Decolorization-based Hyperspectral image Visualization
(DHV) framework [13]. Two decolorization models, the Extended RGB2Gray Model (ERM) [15] and
the Log-Euclidean metric based Decolorization (LED) [16] suggested in [13] along with the DHV
framework, were compared and named as DHV-ERM and DHV-LED, respectively.

Parameters of the proposed method were fixed in the experiment. The sizes of input and output
image blocks for training were 128 × 128. The Adam optimizer was used where the parameter β was
0.5 and the learning rate was 0.0002. The parameter α in the loss function of the generative network
was 100. The training was repeated 200 epochs with the batch size set to 1.

In our algorithm, the 0.1% stretch instead of a linear stretch mapped the image nonlinearly to
the range [0, 255]. In order to give a fair comparison, the 0.1% stretch was used for all algorithms.
In other words, all the hyperspectral images were 0.1% stretched before putting into the algorithms.
This benefited all the competing algorithms by increasing their contrast levels.

The quality of synthesized RGB images is assessed with metrics. Structural SIMilarity (SSIM)
measures the structural similarity. Correlated coefficient (CC) and peak signal to noise ratio (PSNR)
measure the radiometric discrepancy. Spectral angle mapper (SAM) [34], relative dimensionless global
error in synthesis (ERGAS) [35], and relative average spectral error (RASE) [36] measure the color
consistency. Q4 [37] measures the general similarity. The three-band images from the LandSat-8 red,
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green, and blue bands are set as the reference. The ideal results are 1 for SSIM, CC, and Q4 while 0 for
SAM, ERGAS, and RASE.

4. Experiment for the Hyperion Data

In this section, the EO-1 Hyperion data and LandSat-8 data were used in the experiment for
training and evaluation. All the Hyperion and LandSat-8 images were carefully registered. For all the
242 bands of the Hyperion data, 113 spectral bands (42–55, 82–97, 102–119, 134–164, 187–220) were
used while others were removed due to uncalibration, noise, or falling into the visual light spectrums
(bands 10–41). A total of 4418 pairs of patches were used for training which were extracted from
16 pairs of Hyperion and LandSat-8 images.

The fused images and digital evaluations are presented in this section. Five state-of-the-art
methods of hyperspectral visualization are compared to the proposed method. In the experimental
procedure, Hyperion images are visualized with geographically matched LandSat-8 images as
benchmark for comparison. All the produced images are evaluated to show the ability in preserving
details and colors.

4.1. Visual Comparison

Figures 3–6 demonstrate the visualization results of Hyperion images without visual light bands.
It is easy to conclude from the comparisons that the colors of the images generated by our method
are far more readable than competing methods. For example, the vegetation areas appear green,
farmlands and bare lands appear dark gray, and artificial buildings appear light white. These are
in line with the visual cognition of the human eye, making it easier to distinguish the categories of
ground objects manually.

In addition to visual identification of large objects, natural colors are also helpful for observing
structural information in images. In our synthetic result in Figure 4, the staggered concrete pavement,
the connected houses, and the surrounding green vegetation constitute a clearly structured city
image. For other methods, however, the color difference between the pavement and the surrounding
environment is less distinct, which requires careful observation to distinguish the contours.

PCA BF DSEBS LandSat-8 DHV-ERM DHV-LED our: HVCNN

Figure 3. Visualization results of Hyperion image 1 (113 bands from 773nm to 2355nm by removing
the visual light bands).
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PCA BF DSEBS LandSat-8 DHV-ERM DHV-LED our: HVCNN

Figure 4. Visualization results of Hyperion image 2 (113 bands from 773nm to 2355nm by removing
the visual light bands).

PCA BF DSEBS LandSat-8 DHV-ERM DHV-LED our: HVCNN

Figure 5. Visualization results of Hyperion image 3 (113 bands from 773nm to 2355nm by removing
the visual light bands).
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PCA BF DSEBS LandSat-8 DHV-ERM DHV-LED our: HVCNN

Figure 6. Visualization results of Hyperion image 4 (113 bands from 773nm to 2355nm by removing
the visual light bands).

4.2. Digital Comparison

The SAM, ERGAS, and RASE errors in Tables 2–5 show that the proposed HVCNN method
produces far better color similar to LandSat-8 in all scenes, which is in line with the conclusion of visual
comparison. As far as the image detail is concerned, the SSIM values of our method show steadily
higher structural similarity to the reference images. As for the radiometric fidelity, the outstanding
PSNR scores of our method show that HVCNN can produce LandSat-8 like images from Hyperion
near-infrared bands.

Table 2. Evaluation of visualized Hyperion image 1 (visual light bands removed).

SSIM CC PSNR SAM ERGAS RASE Q4

PCA 0.398 0.359 8.025 0.589 3.102 2.970 0.134
BF 0.239 0.148 8.324 0.378 2.805 2.869 0.133
DSEBS 0.345 0.337 9.553 0.360 2.741 2.491 0.181
DHV-ERM 0.257 0.165 8.148 0.406 2.920 2.928 0.126
DHV-LED 0.184 0.021 6.892 0.311 3.336 3.383 0.099
HVCNN 0.500 0.696 15.975 0.218 1.240 1.189 0.490
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Table 3. Evaluation of visualized Hyperion image 2 (visual light bands removed).

SSIM CC PSNR SAM ERGAS RASE Q4

PCA 0.573 0.620 10.561 0.365 1.004 1.004 0.292
BF 0.215 0.435 10.925 0.236 0.949 0.962 0.365
DSEBS 0.445 0.618 12.113 0.132 0.848 0.839 0.522
DHV-ERM 0.263 0.453 10.685 0.236 0.980 0.989 0.365
DHV-LED 0.066 0.281 9.545 0.190 1.114 1.128 0.261
HVCNN 0.550 0.638 18.105 0.086 0.419 0.421 0.582

Table 4. Evaluation of visualized Hyperion image 3 (visual light bands removed).

SSIM CC PSNR SAM ERGAS RASE Q4

PCA 0.664 0.669 11.699 0.319 0.725 0.721 0.490
BF 0.525 0.585 11.050 0.163 0.771 0.776 0.497
DSEBS 0.645 0.702 10.413 0.251 0.874 0.836 0.584
DHV-ERM 0.607 0.596 10.899 0.164 0.788 0.790 0.510
DHV-LED 0.637 0.606 10.911 0.207 0.808 0.789 0.524
HVCNN 0.688 0.831 20.176 0.107 0.281 0.272 0.742

Table 5. Evaluation of visualized Hyperion image 4 (visual light bands removed).

SSIM CC PSNR SAM ERGAS RASE Q4

PCA 0.646 0.887 10.787 0.417 0.926 0.877 0.551
BF 0.509 0.762 11.031 0.251 0.870 0.853 0.643
DSEBS 0.654 0.885 12.282 0.258 0.774 0.738 0.770
DHV-ERM 0.587 0.790 11.054 0.248 0.871 0.851 0.662
DHV-LED 0.617 0.795 11.071 0.283 0.888 0.849 0.662
HVCNN 0.669 0.857 18.687 0.137 0.363 0.353 0.766

The visualization results of image 1 and image 2 are compared in Tables 2 and 3, respectively.
In these tables, the proposed HVCNN method is far superior to other algorithms in the evaluation
of all indicators. Due to the spectral inconsistency between the input image and the output image,
neither the dimensionality reduction method nor the band selection method can predict the color of
the target image effectively. Among the competing algorithms, DSEBS has the best color consistency,
while the two DHV methods have the worst color performance, but none of their colors are easily
understandable. In contrast, our method can synthesize roughly acceptable colors as Q4 illustrates.
At the same time, PSNR and CC also proved that the data authenticity of the new method is better
than other methods. The results of SSIM show that our method has an easily recognizable structure.

Tables 4 and 5 present the visualization results of image 3 and image 4, respectively, which are
quite different from the content of the first two images. In these tables, the scores of all algorithms are
improved because the features are simple and free of urban areas. In terms of structural information,
the effect of the competing algorithm is very close to that of HVCNN. However, the advantages of this
method are still obvious in demonstrating better structure and color.

5. Extended Experiment for the TIANGONG-1 Infrared Data

In this section, two images were also tested from the namely short-wave infrared (SWIR) sensor
carried on the TIANGONG-1 satellite. TIANGONG-1 is a manned space platform launched by China
in 2011. A TIANGONG-1 SWIR image has 64 available bands that span 1000–2500 nm with the 23 nm
spectral resolution. The ground resolution is 20 m, and the swath is 10 km.

To visualize the TIANGONG-1 SWIR data is not a strict hyperspectral visualization issue.
After removing the bands of low radiometric quality, only 19 bands were available. However, this data
was tested because it falls into the near infrared spectrums. In the experiment, the LandSat-8 images of



Remote Sens. 2020, 12, 3848 12 of 19

the similar moments were used again as the target for training. All the TIANGONG-1 and LandSat-8
images were carefully registered and resampled to the uniform ground resolution of 30 m. A total of
1062 pairs of patches from other image pairs were extracted for training.

The synthesized images are presented in Figures 7 and 8, which confirm once again that our
method is significantly better than the competing algorithms in producing natural colors. Due to
the limited quantity and quality of the training data, the fused details are not as good as Hyperion,
then the digital evaluations are not included in this paper. Nevertheless, this test proves the stability of
the proposed method in pursuing natural color.

PCA BF DSEBS LandSat-8 DHV-ERM DHV-LED our: HVCNN

Figure 7. Visualization results of TIANGONG-1 image 1 (19 bands between 1000 nm and 2500 nm).

PCA BF DSEBS LandSat-8 DHV-ERM DHV-LED our: HVCNN

Figure 8. Visualization results of the TIANGONG-1 image 2 (19 bands between 1000 nm and 2500 nm).

6. Extended Experiment: Visualization of Hyperspectral Images Covering Visual Light Spectrums

The purpose of this article is to design a visualization method for near-infrared hyperspectral
images so that they can be visually recognized by the human eye. However, the proposed method
should not be limited to near-infrared images. Obviously, the supervised-learning-based neural
network can also deal with hyperspectral images containing visible light. On the other hand,
the algorithms involved in the comparisons are not specifically designed for near-infrared hyperspectral
image visualization. Then the above-mentioned comparisons are not strictly fair. Rationally, we hope
to know whether the new method can behave as superior as shown in the earlier experiments for a
traditional hyperspectral visualization issue that may cover the visual light spectrums. To explore
the answer, an additional experiment on Hyperion was appended in the traditional hyperspectral
visualization, i.e., to visualize hyperspectral images owning visual light spectrums.

To illustrate the performance when the spectral range of the hyperspectral sensor completely
covers the spectral range of the multispectral sensor for reference, training was repeated when all the
data and parameters remain the same except for the input images that extended to the visual light
spectrums. For all the 242 bands of the Hyperion data, 145 spectral bands (10–55, 82–97, 102–119,
134–164, 187–220) were used while others were removed due to uncalibration or noise. As correlated
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coefficients are in line with the PSNR evaluations, mutual information (MI) was calculated to measure
the similarity between the overall structures.

The visualization results of the full hyperspectral images are presented in Figures 9–12. Given a
one-by-one comparison for the HVCNN results in Figures 3–6, it is easily concluded that the fidelity of
the synthesized red bands are greatly improved, making the overall color closer to the target images.
At the same time, the edges and contours are clearer. The urban area in Figures 4 and 10 can explain
the conclusion strongly. As for the competing algorithms, the colors are slightly improved and the
details are greatly improved, but the images are not directly understood yet.

PCA BF DSEBS LandSat-8 DHV-ERM DHV-LED our: HVCNN

Figure 9. Visualization results of Hyperion image 1 (145 bands from 457 nm to 2355 nm).

PCA BF DSEBS LandSat-8 DHV-ERM DHV-LED our: HVCNN

Figure 10. Visualization results of Hyperion image 2 (145 bands from 457 nm to 2355 nm).
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PCA BF DSEBS LandSat-8 DHV-ERM DHV-LED our: HVCNN

Figure 11. Visualization results of Hyperion image 3 (145 bands from 457 nm to 2355 nm).

PCA BF DSEBS LandSat-8 DHV-ERM DHV-LED our: HVCNN

Figure 12. Visualization results of Hyperion image 4 (145 bands from 457 nm to 2355 nm).



Remote Sens. 2020, 12, 3848 15 of 19

Where the evaluation values in Tables 6–9 are concerned, both data fidelity and color consistency
are improved. For image 3 and 4, the PSNR values have reached 25 dB, and the Q4 values are
over 0.9, which show that the HVCNN results could be understood as normal RGB images. Competing
algorithms fail to fuse expected colors, but they have good structure and detail according to SSIM
and MI.

Table 6. Evaluation of visualized Hyperion image 1 (all bands involved).

SSIM CC PSNR SAM ERGAS RASE Q4

PCA 0.550 0.861 9.182 0.662 3.001 2.741 0.096
BF 0.306 0.501 9.878 0.457 2.553 2.530 0.167
DSEBS 0.237 0.582 7.759 0.403 3.415 3.229 0.076
DHV-ERM 0.236 0.486 8.272 0.396 2.967 3.044 0.122
DHV-LED 0.213 0.556 7.623 0.339 3.306 3.280 0.101
HVCNN 0.753 0.766 23.049 0.152 0.567 0.555 0.759

Table 7. Evaluation of visualized Hyperion image 2 (all bands involved).

SSIM CC PSNR SAM ERGAS RASE Q4

PCA 0.705 0.960 11.406 0.439 0.952 0.938 0.307
BF 0.179 0.590 11.887 0.255 0.883 0.888 0.385
DSEBS 0.082 0.652 9.939 0.192 1.119 1.111 0.255
DHV-ERM 0.067 0.631 10.237 0.233 1.057 1.074 0.288
DHV-LED 0.043 0.673 9.659 0.192 1.140 1.147 0.252
HVCNN 0.746 0.870 19.731 0.119 0.362 0.360 0.770

Table 8. Evaluation of visualized Hyperion image 3 (all bands involved).

SSIM CC PSNR SAM ERGAS RASE Q4

PCA 0.799 1.748 12.662 0.390 0.657 0.645 0.507
BF 0.446 0.655 11.673 0.156 0.729 0.723 0.465
DSEBS 0.645 1.138 11.143 0.264 0.792 0.768 0.501
DHV-ERM 0.585 0.850 13.189 0.159 0.598 0.607 0.627
DHV-LED 0.361 0.240 11.448 0.136 0.732 0.742 0.442
HVCNN 0.868 1.800 25.801 0.051 0.146 0.142 0.923

Table 9. Evaluation of visualized Hyperion image 4 (all bands involved).

SSIM CC PSNR SAM ERGAS RASE Q4

PCA 0.767 2.144 11.398 0.460 0.863 0.817 0.615
BF 0.417 0.780 11.528 0.182 0.810 0.805 0.603
DSEBS 0.647 1.606 11.145 0.344 0.902 0.842 0.653
DHV-ERM 0.576 1.068 13.287 0.119 0.617 0.658 0.781
DHV-LED 0.379 0.501 10.493 0.202 0.899 0.907 0.588
HVCNN 0.836 2.058 25.648 0.060 0.162 0.158 0.962

7. Discussion

7.1. Training Details

In the training stage, the standard GAN training approach is adopted, i.e., alternatively updating
the parameters of the generator and discriminator networks. We expect to produce good details and
colors as corresponding multispectral images. Although the `1 loss does not encourage high-frequency
details, in many cases it can capture the low-frequency information accurately. Therefore, in the
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training process of the generated network, the `1 loss was endowed with a high weight to enforce the
correctness at the low frequencies. This restricts the discriminator to model high-frequency structures.

Figure 13 records the converging trends. As shown in the figure, the `1 loss decreases rapidly and
tends to be stable after 200,000 iterations. Then, with the improvement of the discriminator network,
the insufficient high-frequency detail from the generator’s output gradually levels up the loss of
the generator network, which pushes the generator to update itself for better performance. Finally,
the balance is reached after 700,000 iterations.

Figure 13. The loss curves in the training procedure.

7.2. Seasonal Effects

Different color styles result from different seasons and locations. For some locations, our model
implicitly learns different color styles from the training image pairs. Then the network can output the
appropriate style according to the style of the input data if training images of corresponding moment
are provided. This is accomplished when the hyperspectral image and multispectral image of the
training data pair are taken from the same moment. In addition, it is also possible to map hyperspectral
images of different seasons to the same season. This can be achieved by fixing the capturing time of
multispectral images in all training data pairs. The latter facilitates comparisons to quickly discover
new information in the ground. However, no matter which scheme is adopted, a large amount of
training data is required. The feasibility of our method has been proven for limited data, and its
feasibility for large-scale data can be expected. However, a lot of work is needed to fully prove this by
data collection and experiment, which can be expected in the future work.

7.3. Effects of Nonlinear Stretching

Although both the hyperspectral data and the introduced multispectral image are 16-bit
quantization, they have to be stretched to the range 0–255 for displaying in screens. There are two
stretching strategies: stretching to 0 to 255 after synthesis or stretching before synthesis. These two
methods are equal if the upper and lower boundaries used for stretching are unchanged. However,
for neural networks, stretching in advance is more preferable because different ranges of input and
output may increase the difficulty of training the network.

Furthermore, 0.1% is suggested in our method for the nonlinear threshold. It is small enough to
keep up high data fidelity. On the contrary, a larger ratio will bring higher contrast and clearer details,
which is conducive to human observation. In this case, however, the data authenticity has a large loss.
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For instance, the 2% stretch causes about 4% of RMSE loss for LandSat-8 images, which may impact
quantitative applications.

8. Conclusions

In this paper, the visualization of near infrared images is addressed for the first time. The solution
to this issue is described as a decoder-encoder process, modeled with an end-to-end architecture based
on convolutional neural networks, and trained with referenced images to obtain naturally looking
images. Multispectral images give the expected structures and colors for supervised learning.

The proposed method is compared with five state-of-the-art algorithms to validate the
performance. The EO-1 Hyperion images are used for testing without the visual light bands.
The comparison results show that the proposed method can produce LandSat-8 like images for
the visual-light-free Hyperion images, which yields the best color fidelity, as well as the structural
information most similar to that of the contemporary multispectral images.

The versatility of the new method is also tested for more scenes. The extended experiment on
TIANGONG-1 shortwave infrared restates the advantage of our method in producing natural colors
even with limited data. The supplementary experiment on Hyperion images of full spectrums shows
that the proposed method can also be used for the traditional hyperspectral visualization issue.
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