
remote sensing

Article

Development of an Automated Visibility Analysis
Framework for Pavement Markings Based on the
Deep Learning Approach

Kyubyung Kang 1 , Donghui Chen 2 , Cheng Peng 2, Dan Koo 1, Taewook Kang 3,* and
Jonghoon Kim 4

1 Department of Engineering Technology, Indiana University-Purdue University Indianapolis (IUPUI),
Indianapolis, IN 46038, USA; kyukang@iu.edu (K.K.); dankoo@iu.edu (D.K.)

2 Department of Computer and Information Science, Indiana University-Purdue University
Indianapolis (IUPUI), Indianapolis, IN 46038, USA; dch1@iu.edu (D.C.); cp16@iu.edu (C.P.)

3 Korea Institute of Civil Engineering and Building Technology, Goyang-si 10223, Korea
4 Department of Construction Management, University of North Florida, Jacksonville, FL 32224, USA;

jongkim@unf.edu
* Correspondence: ktw@kict.re.kr; Tel.: +82-10-3008-5143

Received: 29 September 2020; Accepted: 13 November 2020; Published: 23 November 2020 ����������
�������

Abstract: Pavement markings play a critical role in reducing crashes and improving safety on public
roads. As road pavements age, maintenance work for safety purposes becomes critical. However,
inspecting all pavement markings at the right time is very challenging due to the lack of available
human resources. This study was conducted to develop an automated condition analysis framework
for pavement markings using machine learning technology. The proposed framework consists of
three modules: a data processing module, a pavement marking detection module, and a visibility
analysis module. The framework was validated through a case study of pavement markings training
data sets in the U.S. It was found that the detection model of the framework was very precise,
which means most of the identified pavement markings were correctly classified. In addition, in the
proposed framework, visibility was confirmed as an important factor of driver safety and maintenance,
and visibility standards for pavement markings were defined.

Keywords: pavement markings; deep learning; visibility; framework

1. Introduction

Pavement markings play a critical role in reducing crashes and improving safety on public
roads. They do not only convey traffic regulations, road guidance, and warnings for drivers, but also
supplement other traffic control devices such as signs and signals. Without good visibility conditions
of pavement markings, the safety of drivers is not assured. Therefore, it is important for transportation
agencies and other stakeholders to establish a systematic way of frequently inspecting the quality of
pavement markings before accidents occur.

State highway agencies in the U.S. invest tremendous resources to inspect, evaluate, and repair
pavement markings on nearly nine million lane-miles [1]. One of the challenges in pavement
marking inspection and maintenance is the variable durability of pavement markings. Conditions
of pavement markings vary even if they were installed at the same time. Such conditions are highly
dependent on the material characteristics, pavement characteristics, traffic volumes, weather conditions,
etc. Unfortunately, inspecting all pavement markings at the right time is very challenging due to the lack
of available human resources. Hence, an automated system for analyzing the condition of pavement
markings is critically needed. This paper discusses a study that developed an automated condition

Remote Sens. 2020, 12, 3837; doi:10.3390/rs12223837 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0001-7293-2171
https://orcid.org/0000-0001-9915-0524
https://orcid.org/0000-0001-8521-3133
http://www.mdpi.com/2072-4292/12/22/3837?type=check_update&version=1
http://dx.doi.org/10.3390/rs12223837
http://www.mdpi.com/journal/remotesensing

Remote Sens. 2020, 12, 3837 2 of 17

analysis framework for pavement markings using machine learning technology. The proposed
framework consists of three modules: a data processing module, a pavement marking detection
module, and a visibility analysis module. The data processing module includes data acquisition and
data annotation, which provides a clear and accurate dataset for the detection module to train. In the
pavement marking detection module, a framework named YOLOv3 is used for training to detect
and localize pavement markings. For the visibility analysis module, the contour of each pavement
marking is clearly marked, and each contrast intensity value is also provided to measure visibility.
The framework was validated through a case study of pavement markings training data sets in the U.S.

2. Related Studies

With the remarkable improvements in cameras and computers, pavement conditions can now
be analyzed remotely using image processing technologies. Unlike traditional manual inspection,
remote analysis does not require on-site operations and closed traffic, yet has high inspection accuracy
and efficiency, which greatly reduces the management costs of the government’s transportation
department. With the continuous development of computer vision technology, more and more
researchers are exploring how to use videos or images to complete the analysis of pavement systems.
Ceylan et al. summarized the recent computer vision-based pavement engineering applications into
seven categories: estimation of pavement conditions and performance, pavement management and
maintenance, pavement distress prediction, structural evaluation of pavement systems, pavement
image analysis and classification, pavement materials modeling, and other transportation infrastructure
applications [2,3]. The increasing number of publications and technologies in these fields in recent
years undoubtedly demonstrates that more and more researchers are interested in exploring the use of
computer vision technology to study pavement engineering problems [4–10].

A complete pavement system consists mainly of the pavement and the painted markings or
lanes. Intuitively, most studies of pavement systems focused on analyzing the pavements and
markings. Regarding pavements, researchers pay more attention to exploring how to efficiently and
precisely detect cracks on roads. Traditional techniques start mainly from pattern matching or texture
analysis to help locate cracks. However, due to the diversity of cracks and their unfixed shapes,
such traditional techniques have been found wanting. Studies have been conducted on the automatic
identification of pavement cracks using neural network algorithms, due to their powerful learning and
representing capabilities. In this new technique, the characteristic information on the road images
is first extracted, and then the neural network is trained to recognize it. For sample pavements with
known characteristics, the neural network can automatically learn and memorize them, whereas
for unknown pavement samples, the neural network can automatically make inferences based on
previously learned information.

Meignen et al. directly flattened all the pixels of each image into one-dimensional feature vectors,
which were taken as the inputs to a neural network [11]. This method did not work very well, as different
roads had different crack characteristics, and the training input data set was too large. Therefore, it is
wise to first extract the features that are meaningful for recognizing pavement cracks, and then process
the features using a neural network. Xu et al. proposed a modified neural network structure to improve
the recognition accuracy [8]. First, the collected pavement images were segmented into several parts,
after which the features were extracted from each part. For each segment, the probability that it could
have cracks was inferred with the neural network model. The regional division strategy reduced the
differences between the samples and effectively improved the performance of the network. Zhang et
al. trained a supervised convolutional neural network (CNN) to decide if a patch represents a crack
on a pavement [10]. The authors used 500 road system images taken with a low-cost smartphone to
inspect the performance of the proposed model. The experiment results showed that the automatically
learned features of the deep CNN provided a superior crack recognition capability compared with the
features extracted from the hand-craft approaches. Li et al. explored the possibility that the size of
the reception field in the CNN structure influences its performance [6]. They trained four CNNs with

Remote Sens. 2020, 12, 3837 3 of 17

different reception field sizes and compared them. The results showed that the smaller reception fields
had slightly better model accuracy, but also had a more time-consuming training process. Therefore,
a good trade-off between effectiveness and efficiency was needed. In the study of Zhang et al.,
a recurrent neural network (RNN) named CrackNet-R was modeled to perform automatic pixel-wise
crack detection for three-dimensional asphalt pavements [12]. In this model, the authors applied a
new structure, a gated recurrent multilayer perceptron network, which showed a better memorization
ability than other recurrent schemes. Relying on such a memorization ability, the CrackNet-R first
searched the image sequence with the highest probability of having a crack pattern. Then an output
layer was adopted to transform the timely probabilities of the sequence into pixel-wise probabilities.
This novel pixel-wise pavement crack detection model provided a new orientation for the development
of the field.

For pavement markings, many publications have also focused on the detection and classification
of road signs or lanes, which is an important task for pavement system maintenance or autonomous
driving. Most previous studies on this problem were developed with the image processing theory
and the hand-craft pattern functions, which made it very difficult to generalize in various situations.
Chen et al. proposed a two-stage framework for road markings detection and classification based on
machine learning [13]. The first-stage detection model was carried out with the binarized normed
gradient (BING) approach, and the second-stage classification model was realized with the principal
component analysis network (PCANet). Both BING and PCANet are popular techniques in the field of
machine learning. Yamamoto et al. adopted a simple neural network to recognize pavement markings
on road surfaces [9]. The authors first extracted the candidate road areas based on the edge information,
and then fed them to the neural network to accomplish the recognition. Gurghian et al. proposed a
novel method called DeepLanes to directly estimate, from images taken with a side-mounted camera,
the position of the lanes using a deep neural network [14]. Besides the ability of the proposed model to
determine the existence of lane markings, it could also predict the position of the lane markings with
an average speed of 100 frames per second at the centimeter level, without any auxiliary processing.
This algorithm can provide significant support for the driver-assistant system that depends on the
lanes. The aforementioned models mainly treated pavement markings and lanes as different objects
for processing and analysis, until the emergence of the vanishing point guided network (VPGNet),
which Lee et al. proposed [15]. VPGNet was an end-to-end deep CNN inspired by the multi-task
network structure that can simultaneously detect road markings and lanes. It introduced the vanishing
point prediction task into the network to guide lane detection, which improved the performance of the
network in some bad situations such as rainy days or at night. The authors also provided a public
image dataset for lane and road marking detection tasks with pixel-wise annotations.

3. Methodology

Figure 1 shows an overview of the proposed framework with its three modules: a data processing
module, a pavement marking detection module, and a visibility analysis module.

Remote Sens. 2020, 12, x FOR PEER REVIEW 3 of 17

The results showed that the smaller reception fields had slightly better model accuracy, but also had
a more time-consuming training process. Therefore, a good trade-off between effectiveness and
efficiency was needed. In the study of Zhang et al., a recurrent neural network (RNN) named
CrackNet-R was modeled to perform automatic pixel-wise crack detection for three-dimensional
asphalt pavements [12]. In this model, the authors applied a new structure, a gated recurrent
multilayer perceptron network, which showed a better memorization ability than other recurrent
schemes. Relying on such a memorization ability, the CrackNet-R first searched the image sequence
with the highest probability of having a crack pattern. Then an output layer was adopted to transform
the timely probabilities of the sequence into pixel-wise probabilities. This novel pixel-wise pavement
crack detection model provided a new orientation for the development of the field.

For pavement markings, many publications have also focused on the detection and classification
of road signs or lanes, which is an important task for pavement system maintenance or autonomous
driving. Most previous studies on this problem were developed with the image processing theory and
the hand-craft pattern functions, which made it very difficult to generalize in various situations. Chen
et al. proposed a two-stage framework for road markings detection and classification based on machine
learning [13]. The first-stage detection model was carried out with the binarized normed gradient
(BING) approach, and the second-stage classification model was realized with the principal component
analysis network (PCANet). Both BING and PCANet are popular techniques in the field of machine
learning. Yamamoto et al. adopted a simple neural network to recognize pavement markings on road
surfaces [9]. The authors first extracted the candidate road areas based on the edge information, and
then fed them to the neural network to accomplish the recognition. Gurghian et al. proposed a novel
method called DeepLanes to directly estimate, from images taken with a side-mounted camera, the
position of the lanes using a deep neural network [14]. Besides the ability of the proposed model to
determine the existence of lane markings, it could also predict the position of the lane markings with
an average speed of 100 frames per second at the centimeter level, without any auxiliary processing.
This algorithm can provide significant support for the driver-assistant system that depends on the lanes.
The aforementioned models mainly treated pavement markings and lanes as different objects for
processing and analysis, until the emergence of the vanishing point guided network (VPGNet), which
Lee et al. proposed [15]. VPGNet was an end-to-end deep CNN inspired by the multi-task network
structure that can simultaneously detect road markings and lanes. It introduced the vanishing point
prediction task into the network to guide lane detection, which improved the performance of the
network in some bad situations such as rainy days or at night. The authors also provided a public image
dataset for lane and road marking detection tasks with pixel-wise annotations.

3. Methodology

Figure 1 shows an overview of the proposed framework with its three modules: a data
processing module, a pavement marking detection module, and a visibility analysis module.

Figure 1. Overview of the Framework for Condition Analysis of Pavement Markings.

Figure 1. Overview of the Framework for Condition Analysis of Pavement Markings.

Remote Sens. 2020, 12, 3837 4 of 17

3.1. Data Processing Module

3.1.1. Data Acquisition

Since deep learning is a kind of data-driven algorithm, a training dataset must be prepared for the
network model. Due to the quick development of autonomous driving, many public datasets for each
driving situation have been collected, such as BDD100K, KITTI, Caltech Lanes, and VPGNet [15–18].
However, these datasets mainly focus on lane detection rather than the pavement markers. The VPGNet
dataset provides annotations for lanes and pavement markers, but its pixel-wise annotations are
inappropriate for the detection module used in this study. Thus, a system for automatically gathering
images or videos of pavement systems must be set up. An action camera mounted behind the front
windshield of a car driving on the roadways of Indianapolis, U.S.A. was used to record high-definition
(HD) videos. Generally, the camera can capture 90% of the view in front of the moving vehicle,
including pavements, transportation systems, and nearby street views, but only the data on pavements
were used in this study. For this study, several trips were taken to record plenty of video data.
The collected dataset covered various weather conditions, such as daytime, nighttime, sunny days,
and rainy days, and different regions such as highways and urban areas. After screening all the video
data, more than 1000 high-quality pictures were intercepted, of which about 200 were used for testing,
and the remaining pictures were used for training, which maintained a good training-testing ratio.

3.1.2. Data Annotation

Since the primary goal of this study was to make the computer recognize the pavement markings
in the road view videos or images, a labeled dataset had to be prepared for the model training process.
After comparing multiple open-source labeling software, the visual object tagging tool (VoTT) was
chosen to perform the data annotation. VoTT is a powerful open-source labeling software released by
Microsoft [19]. This software provides a technique for automatic labeling based on the pre-trained
network, which can significantly reduce the workload for annotations. It also supports many formats of
the exported annotation results, which make the labeled sample set suitable for various deep learning
development frameworks. Figure 2 shows an example of the labeling process.

Remote Sens. 2020, 12, x FOR PEER REVIEW 4 of 17

3.1. Data Processing Module

3.1.1. Data Acquisition

Since deep learning is a kind of data-driven algorithm, a training dataset must be prepared for the
network model. Due to the quick development of autonomous driving, many public datasets for each
driving situation have been collected, such as BDD100K, KITTI, Caltech Lanes, and VPGNet [15–18].
However, these datasets mainly focus on lane detection rather than the pavement markers. The VPGNet
dataset provides annotations for lanes and pavement markers, but its pixel-wise annotations are
inappropriate for the detection module used in this study. Thus, a system for automatically gathering
images or videos of pavement systems must be set up. An action camera mounted behind the front
windshield of a car driving on the roadways of Indianapolis, U.S.A. was used to record high-definition
(HD) videos. Generally, the camera can capture 90% of the view in front of the moving vehicle,
including pavements, transportation systems, and nearby street views, but only the data on pavements
were used in this study. For this study, several trips were taken to record plenty of video data. The
collected dataset covered various weather conditions, such as daytime, nighttime, sunny days, and
rainy days, and different regions such as highways and urban areas. After screening all the video data,
more than 1000 high-quality pictures were intercepted, of which about 200 were used for testing, and
the remaining pictures were used for training, which maintained a good training-testing ratio.

3.1.2. Data Annotation

Since the primary goal of this study was to make the computer recognize the pavement markings
in the road view videos or images, a labeled dataset had to be prepared for the model training process.
After comparing multiple open-source labeling software, the visual object tagging tool (VoTT) was
chosen to perform the data annotation. VoTT is a powerful open-source labeling software released
by Microsoft [19]. This software provides a technique for automatic labeling based on the pre-trained
network, which can significantly reduce the workload for annotations. It also supports many formats
of the exported annotation results, which make the labeled sample set suitable for various deep
learning development frameworks. Figure 2 shows an example of the labeling process.

Figure 2. The software interface for data annotation tasks.

The VOC XML file format was chosen to generate annotations for each imported image. The key
step in this procedure is to develop categories for the pavement markings. This study mainly focused
on arrow-like pavement markings, such as those for left turn, right turn, etc. However, up to 10
categories of pavement markings were additionally captured with rectangular boxes for future
research. Those categories are described in Figure 3. The annotated data were divided into a training
dataset and a testing dataset at a ratio of 0.9:0.1.

Figure 2. The software interface for data annotation tasks.

The VOC XML file format was chosen to generate annotations for each imported image. The key
step in this procedure is to develop categories for the pavement markings. This study mainly focused
on arrow-like pavement markings, such as those for left turn, right turn, etc. However, up to 10
categories of pavement markings were additionally captured with rectangular boxes for future research.
Those categories are described in Figure 3. The annotated data were divided into a training dataset
and a testing dataset at a ratio of 0.9:0.1.

Remote Sens. 2020, 12, 3837 5 of 17

Remote Sens. 2020, 12, x FOR PEER REVIEW 5 of 17

Figure 3. Types of labeled pavement markings.

3.2. Pavement Markings Detection Module

In the field of computer vision, many novel object recognition frameworks have been studied in
recent years. Among these frameworks, the most studied frameworks are deep learning-based
models. Generally, according to the recognition principle, existing object detection models can be
divided into two categories: two-stage frameworks and one-stage frameworks [20].

In two-stage frameworks, the visual target is detected in mainly two steps. First, abundant
candidate regions that can possibly cover the targets are proposed, and then the validity of such regions
is determined. R-CNN, Fast-RCNN, and Faster-RCNN are the representative two-stage frameworks,
all of which have high a detection precision [21–23]. However, since they take time to generate
candidate regions, their detection efficiency is relatively unpromising, which makes them unsuitable
for real-time applications. To make up for this deficiency, researchers proposed the
one-stage framework.

Compared to the two-stage framework, the one-stage framework gets rid of the phase for
proposing candidate regions, and simultaneously performs localization and classification by treating
the object detection task as a regression problem. Moreover, with the help of CNN, the one-stage
framework can be constructed as an end-to-end network so that inferences can be made with simple
matrix computations. Although this type of framework is slightly inferior to the two-stage framework
in detection accuracy, its detection speed is dozens of times better. One of the representative one-stage
frameworks, You Only Look Once (YOLO), achieves a balance between detection accuracy and speed
[24]. After continuous updating and improvement, the detection accuracy of YOLOv3 has already
caught up with that of most two-stage frameworks. This is why YOLOv3 was chosen as the pavement
markings detection model in this study.

3.2.1. Demonstration of the YOLO Framework

Previous studies, such as on Region-CNN (R-CNN) and its derivative methods, used multiple
steps to complete the detection, and each independent stage had to be trained separately, which slowed
down the execution and made optimizing the training process difficult. YOLO uses an end-to-end
design idea to transform the object detection task into a single regression problem, and directly obtains
the coordinates and classification probabilities of the targets from raw image data. Although
Faster-RCNN also directly takes the entire image as an input, it still uses the idea of the
proposal-and-classifier of the R-CNN model. The YOLO algorithm brings a new solution to the object
detection problem. It only scans the sample image once and uses the deep CNNs to perform both the
classification and the localization. The detection speed of YOLO can reach 45 frames per second, which
basically meets the requirement of real-time video detection applications.

YOLO divides the input image into 𝑆 ∗ 𝑆 sub-cells, each of which can detect objects individually.
If the center point of an object falls in a certain sub-cell, the possibility of including the object in that
sub-cell is higher than the possibility of including it in the adjacent sub-cells. In other words, this
sub-cell should be responsible for the object. Each sub-cell needs to predict 𝐵 bounding boxes and the
confidence score that corresponds to each bounding box. In detail, the final prediction is a
five-dimensional array, namely, (𝑥, 𝑦, 𝑤, ℎ, 𝑐)், where (𝑥, 𝑦) is the offset that compares the center point
of the bounding box with the upper left corner of the current sub-cell; (𝑤, ℎ) is the aspect ratio of the
bounding box relative to the entire image; and 𝑐 is the confidence value. In the YOLO framework, the
confidence score has two parts: the possibility that there is an object in the current cell, and the

Figure 3. Types of labeled pavement markings.

3.2. Pavement Markings Detection Module

In the field of computer vision, many novel object recognition frameworks have been studied in
recent years. Among these frameworks, the most studied frameworks are deep learning-based models.
Generally, according to the recognition principle, existing object detection models can be divided into
two categories: two-stage frameworks and one-stage frameworks [20].

In two-stage frameworks, the visual target is detected in mainly two steps. First, abundant
candidate regions that can possibly cover the targets are proposed, and then the validity of such regions
is determined. R-CNN, Fast-RCNN, and Faster-RCNN are the representative two-stage frameworks,
all of which have high a detection precision [21–23]. However, since they take time to generate
candidate regions, their detection efficiency is relatively unpromising, which makes them unsuitable for
real-time applications. To make up for this deficiency, researchers proposed the one-stage framework.

Compared to the two-stage framework, the one-stage framework gets rid of the phase for
proposing candidate regions, and simultaneously performs localization and classification by treating
the object detection task as a regression problem. Moreover, with the help of CNN, the one-stage
framework can be constructed as an end-to-end network so that inferences can be made with simple
matrix computations. Although this type of framework is slightly inferior to the two-stage framework
in detection accuracy, its detection speed is dozens of times better. One of the representative one-stage
frameworks, You Only Look Once (YOLO), achieves a balance between detection accuracy and
speed [24]. After continuous updating and improvement, the detection accuracy of YOLOv3 has
already caught up with that of most two-stage frameworks. This is why YOLOv3 was chosen as the
pavement markings detection model in this study.

3.2.1. Demonstration of the YOLO Framework

Previous studies, such as on Region-CNN (R-CNN) and its derivative methods, used multiple steps
to complete the detection, and each independent stage had to be trained separately, which slowed down
the execution and made optimizing the training process difficult. YOLO uses an end-to-end design
idea to transform the object detection task into a single regression problem, and directly obtains the
coordinates and classification probabilities of the targets from raw image data. Although Faster-RCNN
also directly takes the entire image as an input, it still uses the idea of the proposal-and-classifier
of the R-CNN model. The YOLO algorithm brings a new solution to the object detection problem.
It only scans the sample image once and uses the deep CNNs to perform both the classification and the
localization. The detection speed of YOLO can reach 45 frames per second, which basically meets the
requirement of real-time video detection applications.

YOLO divides the input image into S ∗ S sub-cells, each of which can detect objects individually.
If the center point of an object falls in a certain sub-cell, the possibility of including the object in
that sub-cell is higher than the possibility of including it in the adjacent sub-cells. In other words,
this sub-cell should be responsible for the object. Each sub-cell needs to predict B bounding boxes
and the confidence score that corresponds to each bounding box. In detail, the final prediction is a
five-dimensional array, namely, (x, y, w, h, c)T, where (x, y) is the offset that compares the center
point of the bounding box with the upper left corner of the current sub-cell; (w, h) is the aspect ratio of
the bounding box relative to the entire image; and c is the confidence value. In the YOLO framework,

Remote Sens. 2020, 12, 3837 6 of 17

the confidence score has two parts: the possibility that there is an object in the current cell, and the
Intersection over Union (IoU) value between the predicted box and the reference one. Suppose the
possibility of the existence of the object is Pr(Obj), and the IoU value between the predicted box and
the reference box is IoU(pred, truth), the formula for the confidence score is shown as Equation (1).

Con f idence = Pr(Obj) ∗ IoU(pred, truth) (1)

Suppose that boxp is the predicted bounding box, and boxt is the reference bounding box. Then the
IoU value can be calculated using the following formula.

IoUt
p =

boxp ∩ boxt

boxp ∪ boxt
(2)

In addition, YOLO outputs the individual conditional probability of C object categories for each
cell. The final output of the YOLO network is a vector with S ∗ S ∗ (5 ∗ B + C) nodes.

YOLO adopted the classic network structure of CNN, which first extracted spatial features
through convolutional layers, and then computed predictions by fully connected layers. This type
of architecture limits the number of predictable target categories, which makes the YOLO model
insufficient for multi-object detection. Moreover, since YOLO randomly selects the initial prediction
boxes for each cell, it cannot accurately locate and capture the objects. To overcome the difficulties
of YOLO and enhance its performance, Redmon et al. further modified its structure, applied novel
features, and proposed improved models such as YOLOv2 and YOLOv3 [25,26].

The YOLOv2 network discarded the fully connected layers of YOLO, transformed YOLO into a
fully convolutional network, and used the anchor boxes to assist in the prediction of the final detection
bounding boxes. It predefined a set of anchor boxes with different sizes and aspect ratios in each cell to
cover different positions and multiple scales of the entire image. These anchor boxes were used as
initial candidate regions, which were distinguished according to the presence or absence of the targets
inside them through the network. The position of the predicted bounding boxes was also continuously
fine-tuned [27]. To fit the characteristics of the training samples, YOLOv2 used the k-means clustering
algorithm to automatically learn the best initial anchor boxes from the training dataset. Moreover,
YOLOv2 applied the Batch Normalization (B.N.) operation to the network structure. B.N. decreased
the shift in the unit value in the hidden layer, and thus improved the stability of the neural network [28].
The B.N. regularization can prevent overfitting of the model, which makes the YOLOv2 network easier
to converge.

Compared to YOLOv2, YOLOv3 mainly integrated some advanced techniques. While maintaining
the fast detection, it further improved the detection accuracy and the ability to recognize small targets.
YOLOv3 adopted a novel framework called Darknet-53 as its main network. Darknet-53 contained a
total of 53 convolutional layers and adopted the skip-connection structure inspired by ResNet [29].
The much deeper CNN helped improve feature extraction. Motivated by the idea of multilayer feature
fusion, YOLOv3 used the up-sampling method to re-extract information from the previous feature
maps, and performed feature fusion with different-scale feature maps. In this way, more fine-grained
information can be obtained, which improved the accuracy of the detection of small objects.

3.2.2. Structure of YOLOv3

Figure 4 shows the YOLOv3 network structure, which has two parts: Darknet-53 and the
multi-scale prediction module. Darknet-53 is performed to extract features from the input image,
the size of which is set at 416 × 416. It consists of two 1 ∗ 1 and 3 ∗ 3 convolutional layers, without
any fully connected layers. Each convolutional layer is followed by a B.N. layer and a LeakyReLU
activation function, which is regarded as the DBL block. In addition, Darknet-53 applies residual
blocks in some layers. The main distinction of the residual block is that it adds a direct connection from
the block entrance to the block exit, which helps the model to converge more easily, even if the network

Remote Sens. 2020, 12, 3837 7 of 17

is very deep. When the feature extraction step is completed, feature maps are used for multi-scale
object detection. In this part, YOLOv3 extracts three feature maps of different scales in the middle,
middle-bottom, and bottom layers. In these layers, the concatenation operations are used to fuse the
multi-scale features. In the end, three predictions of different scales will be obtained, each of which
will contain the information on the three anchor boxes. Each anchor box is represented as a vector of
(5 + numclass) dimensions, in which the former five values indicate the coordinates and the confidence
score, and numclass refers to the category number of the objects. In this study, five kinds of arrow-like
pavement markings were considered.

Remote Sens. 2020, 12, x FOR PEER REVIEW 7 of 17

multi-scale features. In the end, three predictions of different scales will be obtained, each of which will
contain the information on the three anchor boxes. Each anchor box is represented as a vector of (5 + 𝑛𝑢𝑚௖௟௔௦௦) dimensions, in which the former five values indicate the coordinates and the confidence
score, and 𝑛𝑢𝑚௖௟௔௦௦ refers to the category number of the objects. In this study, five kinds of arrow-like
pavement markings were considered.

Figure 4. Structure of the YOLOv3 network.
(https://plos.figshare.com/articles/YOLOv3_architecture_/8322632/1).

3.3. Visibility Analysis Module

After the data collected by the dashboard camera are labeled, a YOLOv3-based pavement
marking detection module can be constructed and trained. The target pavement markings can be
extracted and exported as small image patches. Thus, the next step is to design a visibility analysis
module to help determine the condition of the pavement markings.

Pavement markings are painted mainly to give notifications to drivers in advance. As such, a
significant property of pavement markings is their brightness. However, brightness is an absolute
value affected by many factors, such as the weather and the illumination. Since the human visual
system is more sensitive to contrast than to absolute luminance, the intensity contrast is chosen as the
metric for the visibility of pavement markings [30]. In this study, contrast was defined as the
difference between the average intensity of the pavement marking and the average intensity of the
surrounding pavement. The main pipeline of this visibility analysis module is shown in Figure 5.

Figure 5. A demonstration of the pipeline of the visibility analysis module.

3.3.1. Finding Contours

As the pavement markings are already exported as image patches, the first step is to separate
the pavement markings from the pavement. Since only arrow-like markings were considered in this
study, the portion with the marking can be detached easily from the image, for as long as the outer
contour of the marking is found. The contour can be described as a curve that joins all the continuous
points along the boundary with the same color or intensity.

The contour tracing algorithm used in this part was proposed by Suzuki et al. [30] It was one of
the first algorithms to define the hierarchical relationships of the borders and to differentiate the outer
bounders from the hole bounders. This method has been integrated into the OpenCV Library [31].
The input image should be a binary image, which means the image has only two values: 0 and 1, with
0 representing the black background, and 1, the bright foreground or object. Thus, the border should
mainly serve as the edge.

Assume that 𝑝௜௝ denotes the pixel value at position (𝑖, 𝑗) in the image. Two variables, Newest
Border Number (𝑁𝐵𝐷), Last Newest Border Number (𝐿𝑁𝐵𝐷), are created to record the relationship

Figure 4. Structure of the YOLOv3 network. (https://plos.figshare.com/articles/YOLOv3_architecture_
/8322632/1).

3.3. Visibility Analysis Module

After the data collected by the dashboard camera are labeled, a YOLOv3-based pavement marking
detection module can be constructed and trained. The target pavement markings can be extracted and
exported as small image patches. Thus, the next step is to design a visibility analysis module to help
determine the condition of the pavement markings.

Pavement markings are painted mainly to give notifications to drivers in advance. As such,
a significant property of pavement markings is their brightness. However, brightness is an absolute
value affected by many factors, such as the weather and the illumination. Since the human visual
system is more sensitive to contrast than to absolute luminance, the intensity contrast is chosen as the
metric for the visibility of pavement markings [30]. In this study, contrast was defined as the difference
between the average intensity of the pavement marking and the average intensity of the surrounding
pavement. The main pipeline of this visibility analysis module is shown in Figure 5.

Remote Sens. 2020, 12, x FOR PEER REVIEW 7 of 17

multi-scale features. In the end, three predictions of different scales will be obtained, each of which will
contain the information on the three anchor boxes. Each anchor box is represented as a vector of (5 + 𝑛𝑢𝑚௖௟௔௦௦) dimensions, in which the former five values indicate the coordinates and the confidence
score, and 𝑛𝑢𝑚௖௟௔௦௦ refers to the category number of the objects. In this study, five kinds of arrow-like
pavement markings were considered.

Figure 4. Structure of the YOLOv3 network.
(https://plos.figshare.com/articles/YOLOv3_architecture_/8322632/1).

3.3. Visibility Analysis Module

After the data collected by the dashboard camera are labeled, a YOLOv3-based pavement
marking detection module can be constructed and trained. The target pavement markings can be
extracted and exported as small image patches. Thus, the next step is to design a visibility analysis
module to help determine the condition of the pavement markings.

Pavement markings are painted mainly to give notifications to drivers in advance. As such, a
significant property of pavement markings is their brightness. However, brightness is an absolute
value affected by many factors, such as the weather and the illumination. Since the human visual
system is more sensitive to contrast than to absolute luminance, the intensity contrast is chosen as the
metric for the visibility of pavement markings [30]. In this study, contrast was defined as the
difference between the average intensity of the pavement marking and the average intensity of the
surrounding pavement. The main pipeline of this visibility analysis module is shown in Figure 5.

Figure 5. A demonstration of the pipeline of the visibility analysis module.

3.3.1. Finding Contours

As the pavement markings are already exported as image patches, the first step is to separate
the pavement markings from the pavement. Since only arrow-like markings were considered in this
study, the portion with the marking can be detached easily from the image, for as long as the outer
contour of the marking is found. The contour can be described as a curve that joins all the continuous
points along the boundary with the same color or intensity.

The contour tracing algorithm used in this part was proposed by Suzuki et al. [30] It was one of
the first algorithms to define the hierarchical relationships of the borders and to differentiate the outer
bounders from the hole bounders. This method has been integrated into the OpenCV Library [31].
The input image should be a binary image, which means the image has only two values: 0 and 1, with
0 representing the black background, and 1, the bright foreground or object. Thus, the border should
mainly serve as the edge.

Assume that 𝑝௜௝ denotes the pixel value at position (𝑖, 𝑗) in the image. Two variables, Newest
Border Number (𝑁𝐵𝐷), Last Newest Border Number (𝐿𝑁𝐵𝐷), are created to record the relationship

Figure 5. A demonstration of the pipeline of the visibility analysis module.

3.3.1. Finding Contours

As the pavement markings are already exported as image patches, the first step is to separate the
pavement markings from the pavement. Since only arrow-like markings were considered in this study,
the portion with the marking can be detached easily from the image, for as long as the outer contour of
the marking is found. The contour can be described as a curve that joins all the continuous points
along the boundary with the same color or intensity.

The contour tracing algorithm used in this part was proposed by Suzuki et al. [30] It was one of
the first algorithms to define the hierarchical relationships of the borders and to differentiate the outer
bounders from the hole bounders. This method has been integrated into the OpenCV Library [31].

https://plos.figshare.com/articles/YOLOv3_architecture_/8322632/1
https://plos.figshare.com/articles/YOLOv3_architecture_/8322632/1

Remote Sens. 2020, 12, 3837 8 of 17

The input image should be a binary image, which means the image has only two values: 0 and 1, with 0
representing the black background, and 1, the bright foreground or object. Thus, the border should
mainly serve as the edge.

Assume that pi j denotes the pixel value at position (i, j) in the image. Two variables, Newest
Border Number (NBD), Last Newest Border Number (LNBD), are created to record the relationship
between the pixels during the scanning process. The algorithm uses the row-by-row and left-to-right
scanning schemes to process each NBD and LNBD, where pi j > 0.

Step 1. If pi j = 1 and pi, j−1 = 0, which indicate that this point is the starting point of an outer border,
increment NBD by 1 and set (i2, j2)← (i, j− 1) . If pi j ≥ 1 and pi, j+1 = 0, which means it
leads a hole border, increment NBD by 1 and set (i2, j2)← (i, j + 1) and LNBD← pi j in case
pi j > 1. Otherwise, jump to Step 3.

Step 2. From this starting point (i, j), perform the following operations to trace the border.

2.1. Starting from pixel (i2, j2), traverse the neighborhoods of pixel (i, j) in a clockwise direction.
In this study, the 4-connected case is selected to determine the neighborhoods, which means
only the points connected horizontally and vertically are regarded as the neighborhoods. If a
non-zero value exists, denote such pixel as (i1, j1). Otherwise, let pi j = −NBD and jump to
Step 3.

2.2. Assign (i2, j2)← (i1, j1) and (i3, j3)← (i, j) .
2.3. Taking pixel (i3, j3) as the center, traverse the neighborhoods in a counterclockwise direction

from the next element (i2, j2) to find the first non-zero pixel, and assign it as (i4, j4).
2.4. Update the value pi3, j3 according to Step 2.4 in Figure 6.
2.5. If pi3, j3+1 = 0, update pi3, j3 ← −NBD .
2.6. If pi3, j3+1 , 0 and pi3, j3 = 1, update pi3, j3 ← NBD .
2.7. If the current condition satisfies (i4, j4) = (i, j) and (i3, j3) = (i1, j1), which means it goes back

to the starting point, jump to Step 3. Otherwise, assign (i2, j2)← (i3, j3) and (i3, j3)← (i4, j4)
and return to Sub-step 2.3.

Step 3. If pi j , 1, update LNBD←
∣∣∣pi j

∣∣∣ . Let (i, j)← (i, j + 1) and return to Step 1 to process the next
pixel. This algorithm stops after the most bottom-right pixel of the input image is processed.

Remote Sens. 2020, 12, x FOR PEER REVIEW 8 of 17

between the pixels during the scanning process. The algorithm uses the row-by-row and left-to-right
scanning schemes to process each 𝑁𝐵𝐷 and 𝐿𝑁𝐵𝐷, where 𝑝௜௝ ൐ 0.

Step 1. If 𝑝௜௝ = 1 and 𝑝௜,௝ିଵ = 0, which indicate that this point is the starting point of an outer
border, increment 𝑁𝐵𝐷 by 1 and set (𝑖ଶ, 𝑗ଶ) ← (𝑖, 𝑗 − 1). If 𝑝௜௝ ൒ 1 and 𝑝௜,௝ାଵ = 0, which
means it leads a hole border, increment 𝑁𝐵𝐷 by 1 and set (𝑖ଶ, 𝑗ଶ) ← (𝑖, 𝑗 + 1) and 𝐿𝑁𝐵𝐷 ←𝑝௜௝ in case 𝑝௜௝ ൐ 1. Otherwise, jump to Step 3.

Step 2. From this starting point (𝑖, 𝑗), perform the following operations to trace the border.

2.1. Starting from pixel (𝑖ଶ, 𝑗ଶ) , traverse the neighborhoods of pixel (𝑖, 𝑗) in a clockwise
direction. In this study, the 4-connected case is selected to determine the neighborhoods,
which means only the points connected horizontally and vertically are regarded as the
neighborhoods. If a non-zero value exists, denote such pixel as (𝑖ଵ, 𝑗ଵ) . Otherwise, let 𝑝௜௝ = −𝑁𝐵𝐷 and jump to Step 3.

2.2. Assign (𝑖ଶ, 𝑗ଶ) ← (𝑖ଵ, 𝑗ଵ) and (𝑖ଷ, 𝑗ଷ) ← (𝑖, 𝑗).
2.3. Taking pixel (𝑖ଷ, 𝑗ଷ) as the center, traverse the neighborhoods in a counterclockwise

direction from the next element (𝑖ଶ, 𝑗ଶ) to find the first non-zero pixel, and assign it
as (𝑖ସ, 𝑗ସ).

2.4. Update the value 𝑝௜య,௝య according to Step 2.4 in Figure 6
2.5. If 𝑝௜య,௝యାଵ = 0, update 𝑝௜య,௝య ← −𝑁𝐵𝐷.
2.6. If 𝑝௜య,௝యାଵ ് 0 and 𝑝௜య,௝య = 1, update 𝑝௜య,௝య ← 𝑁𝐵𝐷.
2.7. If the current condition satisfies (𝑖ସ, 𝑗ସ) = (𝑖, 𝑗) and (𝑖ଷ, 𝑗ଷ) = (𝑖ଵ, 𝑗ଵ), which means it goes

back to the starting point, jump to Step 3. Otherwise, assign (𝑖ଶ, 𝑗ଶ) ← (𝑖ଷ, 𝑗ଷ) and (𝑖ଷ, 𝑗ଷ) ←(𝑖ସ, 𝑗ସ) and return to Sub-step 2.3.

Step 3. If 𝑝௜௝ ് 1, update 𝐿𝑁𝐵𝐷 ← ห𝑝௜௝ห. Let (𝑖, 𝑗) ← (𝑖, 𝑗 + 1) and return to Step 1 to process the
next pixel. This algorithm stops after the most bottom-right pixel of the input image
is processed.

Figure 6. The introduction of Step 1, 2.1–2.4 and the introduction of the final output to the contour
tracing algorithm.

Figure 6 show the contour tracing algorithm. By using this approach, the outer border or the
contour of the arrow-like pavement marking can be found. However, due to uneven lighting or faded
markings, the detected contours are not closed curves, as shown in Figure 7b. The incomplete
contours cannot help separate the pavement marking portion. To solve this problem, the dilation
operation is performed before the contours are traced.

Figure 6. The introduction of Step 1, 2.1–2.4 and the introduction of the final output to the contour
tracing algorithm.

Figure 6 show the contour tracing algorithm. By using this approach, the outer border or the
contour of the arrow-like pavement marking can be found. However, due to uneven lighting or faded

Remote Sens. 2020, 12, 3837 9 of 17

markings, the detected contours are not closed curves, as shown in Figure 7b. The incomplete contours
cannot help separate the pavement marking portion. To solve this problem, the dilation operation is
performed before the contours are traced.Remote Sens. 2020, 12, x FOR PEER REVIEW 9 of 17

Figure 7. Results of the visibility analysis module. (a) Original patch, including the pavement marking;
(b) Found contours without the dilation operation; (c) Found contours with the dilation operation; (d)
Generated image mask for the marking; and (e) Generated image mask for the pavement.

Dilation is one of the morphological image processing methods, opposite to erosion [32]. The
basic effect of the dilation operator on a binary image is the gradual enlargement of the boundaries
of the foreground pixels so that the holes in the foreground regions would become smaller. The
dilation operator takes two pieces of data as inputs. The first input is the image to be dilated, and the
second input is a set of coordinate points known as a kernel. The kernel determines the precise effect
of the dilation on the input image. It presumes that the kernel is a 3 × 3 square, with the origin at its
center. To compute the dilation output of a binary image, each background pixel (i.e., 0-value) should
be processed in turns. For each background pixel, if at least one coordinate point inside the kernel
coincides with a foreground pixel (i.e., 1-value), the background pixel must be flipped to the
foreground value. Otherwise, the next background pixel must be continually processed. Figure 8
shows the effect of a dilation using a 3 × 3 kernel. By using the dilation method before detecting the
contours for the pavement marking patches, the holes in the markings are significantly eliminated,
and the outer border becomes consistent and complete, which can be easily observed in Figure 7b,c.

Figure 8. An example of the effect of the dilation operation
(https://homepages.inf.ed.ac.uk/rbf/HIPR2/dilate.htm).

3.3.2. Construct Masks

Once the complete outer border of the pavement marking is obtained, the next step is to detach
the pavement marking from the surrounding pavement. In practical scenarios, the pavement
marking cannot be physically separated from the image patch due to its arbitrary shape. The most
common way to achieve the target is to use masks to indicate the region segmentation. Since there
are only two categories of objects, i.e., the pavement markings and the pavement, in this study, two
masks had to be generated for each image patch.

Image masking is a non-destructive process of image editing that is universally employed in
graphics software such as Photoshop to hide or reveal some portions of an image. Masking involves
setting some of the pixel values in an image to 0 or another background value. Ordinary masks have
only 1 and 0 values, and areas with a 0 value should be hidden (i.e., masked). Examples of masks
generated for pavement markings are shown in Figure 7d,e.

3.3.3. Computing the Intensity Contrast

According to the pipeline of the visibility analysis module, the final step is to calculate the
contrast between the pavement markings and the surrounding pavement. The straightforward way
to determine the contrast value is to simply compute the difference between the average intensities
of the markings and the pavement. However, this procedure does not adapt to the changes in the
overall luminance. For instance, a luminance difference of 60 grayscales in a dark scenario (e.g., at

Figure 7. Results of the visibility analysis module. (a) Original patch, including the pavement marking;
(b) Found contours without the dilation operation; (c) Found contours with the dilation operation;
(d) Generated image mask for the marking; and (e) Generated image mask for the pavement.

Dilation is one of the morphological image processing methods, opposite to erosion [32]. The basic
effect of the dilation operator on a binary image is the gradual enlargement of the boundaries of the
foreground pixels so that the holes in the foreground regions would become smaller. The dilation
operator takes two pieces of data as inputs. The first input is the image to be dilated, and the second
input is a set of coordinate points known as a kernel. The kernel determines the precise effect of
the dilation on the input image. It presumes that the kernel is a 3 × 3 square, with the origin at its
center. To compute the dilation output of a binary image, each background pixel (i.e., 0-value) should
be processed in turns. For each background pixel, if at least one coordinate point inside the kernel
coincides with a foreground pixel (i.e., 1-value), the background pixel must be flipped to the foreground
value. Otherwise, the next background pixel must be continually processed. Figure 8 shows the effect
of a dilation using a 3× 3 kernel. By using the dilation method before detecting the contours for the
pavement marking patches, the holes in the markings are significantly eliminated, and the outer border
becomes consistent and complete, which can be easily observed in Figure 7b,c.

Remote Sens. 2020, 12, x FOR PEER REVIEW 9 of 17

Figure 7. Results of the visibility analysis module. (a) Original patch, including the pavement marking;
(b) Found contours without the dilation operation; (c) Found contours with the dilation operation; (d)
Generated image mask for the marking; and (e) Generated image mask for the pavement.

Dilation is one of the morphological image processing methods, opposite to erosion [32]. The
basic effect of the dilation operator on a binary image is the gradual enlargement of the boundaries
of the foreground pixels so that the holes in the foreground regions would become smaller. The
dilation operator takes two pieces of data as inputs. The first input is the image to be dilated, and the
second input is a set of coordinate points known as a kernel. The kernel determines the precise effect
of the dilation on the input image. It presumes that the kernel is a 3 × 3 square, with the origin at its
center. To compute the dilation output of a binary image, each background pixel (i.e., 0-value) should
be processed in turns. For each background pixel, if at least one coordinate point inside the kernel
coincides with a foreground pixel (i.e., 1-value), the background pixel must be flipped to the
foreground value. Otherwise, the next background pixel must be continually processed. Figure 8
shows the effect of a dilation using a 3 × 3 kernel. By using the dilation method before detecting the
contours for the pavement marking patches, the holes in the markings are significantly eliminated,
and the outer border becomes consistent and complete, which can be easily observed in Figure 7b,c.

Figure 8. An example of the effect of the dilation operation
(https://homepages.inf.ed.ac.uk/rbf/HIPR2/dilate.htm).

3.3.2. Construct Masks

Once the complete outer border of the pavement marking is obtained, the next step is to detach
the pavement marking from the surrounding pavement. In practical scenarios, the pavement
marking cannot be physically separated from the image patch due to its arbitrary shape. The most
common way to achieve the target is to use masks to indicate the region segmentation. Since there
are only two categories of objects, i.e., the pavement markings and the pavement, in this study, two
masks had to be generated for each image patch.

Image masking is a non-destructive process of image editing that is universally employed in
graphics software such as Photoshop to hide or reveal some portions of an image. Masking involves
setting some of the pixel values in an image to 0 or another background value. Ordinary masks have
only 1 and 0 values, and areas with a 0 value should be hidden (i.e., masked). Examples of masks
generated for pavement markings are shown in Figure 7d,e.

3.3.3. Computing the Intensity Contrast

According to the pipeline of the visibility analysis module, the final step is to calculate the
contrast between the pavement markings and the surrounding pavement. The straightforward way
to determine the contrast value is to simply compute the difference between the average intensities
of the markings and the pavement. However, this procedure does not adapt to the changes in the
overall luminance. For instance, a luminance difference of 60 grayscales in a dark scenario (e.g., at

Figure 8. An example of the effect of the dilation operation (https://homepages.inf.ed.ac.uk/rbf/HIPR2/

dilate.htm).

3.3.2. Construct Masks

Once the complete outer border of the pavement marking is obtained, the next step is to detach
the pavement marking from the surrounding pavement. In practical scenarios, the pavement marking
cannot be physically separated from the image patch due to its arbitrary shape. The most common
way to achieve the target is to use masks to indicate the region segmentation. Since there are only two
categories of objects, i.e., the pavement markings and the pavement, in this study, two masks had to be
generated for each image patch.

Image masking is a non-destructive process of image editing that is universally employed in
graphics software such as Photoshop to hide or reveal some portions of an image. Masking involves
setting some of the pixel values in an image to 0 or another background value. Ordinary masks have
only 1 and 0 values, and areas with a 0 value should be hidden (i.e., masked). Examples of masks
generated for pavement markings are shown in Figure 7d,e.

https://homepages.inf.ed.ac.uk/rbf/HIPR2/dilate.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/dilate.htm

Remote Sens. 2020, 12, 3837 10 of 17

3.3.3. Computing the Intensity Contrast

According to the pipeline of the visibility analysis module, the final step is to calculate the
contrast between the pavement markings and the surrounding pavement. The straightforward way to
determine the contrast value is to simply compute the difference between the average intensities of the
markings and the pavement. However, this procedure does not adapt to the changes in the overall
luminance. For instance, a luminance difference of 60 grayscales in a dark scenario (e.g., at night)
should be more significant than the same luminance difference in a bright scenario (e.g., a sunny day).
The human eyes sense brightness approximately logarithmically over a moderate range, which means
the human visual system is more sensitive to intensity changes in dark circumstances than in bright
environments [33]. Thus, in this study, the intensity contrast was computed using the Weber contrast
method, the formula for which is:

Contrast(M, P) =
IM − IP

IP
, IM =

∑
v∈Marking Iv

NMarking
, IP =

∑
v∈Pavement Iv

NPavement
(3)

where IM and IP are the average intensity values of the pavement marking and the surrounding
pavement, respectively, and the Nregion is the number of pixels in the specific region.

4. Experimental Validation of the Framework

4.1. Experiment Settings

Regarding the pavement marking detection model, it needs to be trained with a labelled dataset
to enhance its performance. In this study, a Windows 10 personal computer with an Nvidia GeForce
RTX 2060 Super GPU and a total memory of 16 GB was used to perform the training and validation
procedures. The deep learning framework that was used to build, train, and evaluate the detection
network is the TensorFlow platform, which is one of the most popular software libraries used for
machine learning tasks [34].

On actual roads, left-turn markings are much more common than right-turn markings. This leads
to an imbalanced ratio of the proportions of these two kinds of pavement markings in the training
dataset. If a classification network is trained without fixing this problem, the model could be completely
biased [35]. Thus, in this study, data augmentation was performed before the model was trained.
Specifically, for each left-turn (right-turn) marking, the image was flipped along the horizontal axis to
make the left-turn (right-turn) marking a new right-turn (left-turn) marking. By applying this strategy
to the whole training dataset, the numbers of the two markings should be the same. An example of
this data augmentation method is shown in Figure 9.

Remote Sens. 2020, 12, x FOR PEER REVIEW 10 of 17

night) should be more significant than the same luminance difference in a bright scenario (e.g., a
sunny day). The human eyes sense brightness approximately logarithmically over a moderate range,
which means the human visual system is more sensitive to intensity changes in dark circumstances
than in bright environments [33]. Thus, in this study, the intensity contrast was computed using the
Weber contrast method, the formula for which is: 𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡(𝑀, 𝑃) = 𝐼ெതതത − 𝐼௉ഥ𝐼௉ഥ , 𝐼ெതതത = ∑ 𝐼௩௩∈ெ௔௥௞௜௡௚𝑁ெ௔௥௞௜௡௚ , 𝐼௉ഥ = ∑ 𝐼௩௩∈௉௔௩௘௠௘௡௧𝑁௉௔௩௘௠௘௡௧ (3)

where 𝐼ெതതത and 𝐼௉ഥ are the average intensity values of the pavement marking and the surrounding
pavement, respectively, and the 𝑁௥௘௚௜௢௡ is the number of pixels in the specific region.

4. Experimental Validation of the Framework

4.1. Experiment Settings

Regarding the pavement marking detection model, it needs to be trained with a labelled dataset
to enhance its performance. In this study, a Windows 10 personal computer with an Nvidia GeForce
RTX 2060 Super GPU and a total memory of 16 GB was used to perform the training and validation
procedures. The deep learning framework that was used to build, train, and evaluate the detection
network is the TensorFlow platform, which is one of the most popular software libraries used for
machine learning tasks [34].

On actual roads, left-turn markings are much more common than right-turn markings. This
leads to an imbalanced ratio of the proportions of these two kinds of pavement markings in the
training dataset. If a classification network is trained without fixing this problem, the model could be
completely biased [35]. Thus, in this study, data augmentation was performed before the model was
trained. Specifically, for each left-turn (right-turn) marking, the image was flipped along the
horizontal axis to make the left-turn (right-turn) marking a new right-turn (left-turn) marking. By
applying this strategy to the whole training dataset, the numbers of the two markings should be the
same. An example of this data augmentation method is shown in Figure 9.

Figure 9. An example of data augmentation.

4.2. Model Training

The neural network is trained by first calculating the loss through a forward inference, and then
updating related parameters based on the derivative of loss to make the predictions as accurate as
possible. Therefore, the design of loss functions is significant. In the YOLOv3 algorithm, the loss
function has mainly three parts: the location offset of the predicted boxes, the deviation of the target
confidence score, and the target classification error. The formula for the loss function is: 𝐿(𝑙, 𝑔, 𝑂, 𝑜, 𝐶, 𝑐) = 𝜆ଵ𝐿௟௢௖(𝑙, 𝑔) + 𝜆ଶ𝐿௖௢௡௙(𝑜, 𝑐) + 𝜆ଷ𝐿௖௟௔(𝑂, 𝐶), (4)

where 𝜆ଵ ∼ 𝜆ଷ refers to the scaling factors.
The location loss function uses the sum of the square errors between the true offset and the

predicted offset, which is formulated as: 𝐿௟௢௖(𝑙, 𝑔) = ෍ ൫𝑙መ௠ − 𝑔ො௠൯ଶ௠∈{௫,௬,௪,௛} (5)

Figure 9. An example of data augmentation.

4.2. Model Training

The neural network is trained by first calculating the loss through a forward inference, and then
updating related parameters based on the derivative of loss to make the predictions as accurate as
possible. Therefore, the design of loss functions is significant. In the YOLOv3 algorithm, the loss

Remote Sens. 2020, 12, 3837 11 of 17

function has mainly three parts: the location offset of the predicted boxes, the deviation of the target
confidence score, and the target classification error. The formula for the loss function is:

L(l, g, O, o, C, c) = λ1Lloc(l, g) + λ2Lcon f (o, c) + λ3Lcla(O, C), (4)

where λ1 ∼ λ3 refers to the scaling factors.
The location loss function uses the sum of the square errors between the true offset and the

predicted offset, which is formulated as:

Lloc(l, g) =
∑

m∈{x,y,w,h}

(l̂m − ĝm)
2

(5)

where l̂ and ĝ represent the coordinate offsets of the predicted bounding box and the referenced
bounding box, respectively. Both l̂ and ĝ have four parameters: x for the offset along the x-axis, y for
the offset along the y-axis, w for the box width, and h for the box height.

The target confidence score indicates the probability that the predicted box contains the target,
which is computed as:

Lcon f (o, c) = −
∑

(oiln(ĉi) + (1− oi)ln(1− ĉi)). (6)

The function Lcon f uses the binary cross-entropy loss, where oi ∈ {0, 1} indicates whether the target
actually exists in the predicted rectangle i. The 1 value means yes, and the 0 value means no. ci ∈ [0, 1]
denotes the estimated probability that there is a target in the rectangle i.

The formulation of the target classification error in this study slightly differs from that in the
YOLOv3 network. In the YOLOv3 network, the authors still used the binary cross-entropy loss
function, as the author thought the object was possibly classified into more than one category in
complicated reality scenes. However, in this study, the categories of the pavement markings were
mutually exclusive. Thus, the multi-class cross-entropy loss function was used to measure the target
classification error, the mathematical expression of which is:

Lcla(O, C) = −
∑
i∈pos

∑
j∈cla

(Oi jln(Ĉi j) + (1−Oi j)ln(1− Ĉi j)), (7)

where Oi j ∈ {0, 1} indicates if the predicted box i contains the object j, and Ĉi j ∈ [0, 1] represents the
estimated probability occurring in the aforementioned event.

Pan and Yang (2010) found that in the machine learning field, the knowledge gained while
solving one problem can be applied to another different but related problem, which is called transfer
learning [36]. For instance, the knowledge obtained while learning to recognize cars could be useful
for recognizing trucks. In this study, the pavement marking detection network was not trained from
scratch. Instead, a pre-trained model learning to recognize objects in the MS COCO dataset was
used for the initialization. The MS COCO dataset, published by Lin et al., contains large-scale object
detection data and annotations [37]. The model pre-trained from the COCO dataset can provide
the machine with some general knowledge on object detection tasks. Starting from the pre-trained
network, a fine-tuned procedure is conducted by feeding the collected data to the machine to make it
capable of recognizing pavement markings. The total training process runs for a total of 50 epochs.

With the help of the TensorBoard integrated into the TensorFlow platform, users can monitor the
training progress in real time. It can export figures to indicate the trends of specific parameters or
predefined metrics. Figure 10 shows the trend of three different losses during the training process.
The figure shows a decreasing trend for all the losses.

Remote Sens. 2020, 12, 3837 12 of 17

Remote Sens. 2020, 12, x FOR PEER REVIEW 11 of 17

where 𝑙መ and 𝑔ො represent the coordinate offsets of the predicted bounding box and the referenced
bounding box, respectively. Both 𝑙መ and 𝑔ො have four parameters: 𝑥 for the offset along the x-axis, 𝑦
for the offset along the y-axis, 𝑤 for the box width, and ℎ for the box height.

The target confidence score indicates the probability that the predicted box contains the target,
which is computed as: 𝐿௖௢௡௙(𝑜, 𝑐) = −∑(𝑜௜ 𝑙𝑛(𝑐̂௜) + (1 − 𝑜௜) 𝑙𝑛(1 − 𝑐̂௜)). (6)

The function 𝐿௖௢௡௙ uses the binary cross-entropy loss, where 𝑜௜ ∈ {0, 1} indicates whether the
target actually exists in the predicted rectangle 𝑖. The 1 value means yes, and the 0 value means no. 𝑐௜ ∈ [0,1] denotes the estimated probability that there is a target in the rectangle 𝑖.

The formulation of the target classification error in this study slightly differs from that in the
YOLOv3 network. In the YOLOv3 network, the authors still used the binary cross-entropy loss
function, as the author thought the object was possibly classified into more than one category in
complicated reality scenes. However, in this study, the categories of the pavement markings were
mutually exclusive. Thus, the multi-class cross-entropy loss function was used to measure the target
classification error, the mathematical expression of which is: 𝐿௖௟௔(𝑂, 𝐶) = − ෍ ෍ ൫𝑂௜௝ 𝑙𝑛൫𝐶መ௜௝൯ + ൫1 − 𝑂௜௝൯ 𝑙𝑛൫1 − 𝐶መ௜௝൯൯,௝∈௖௟௔௜∈௣௢௦ (7)

where 𝑂௜௝ ∈ {0, 1} indicates if the predicted box 𝑖 contains the object 𝑗, and 𝐶መ௜௝ ∈ [0,1] represents
the estimated probability occurring in the aforementioned event.

Pan and Yang (2010) found that in the machine learning field, the knowledge gained while
solving one problem can be applied to another different but related problem, which is called transfer
learning [36]. For instance, the knowledge obtained while learning to recognize cars could be useful
for recognizing trucks. In this study, the pavement marking detection network was not trained from
scratch. Instead, a pre-trained model learning to recognize objects in the MS COCO dataset was used
for the initialization. The MS COCO dataset, published by Lin et al., contains large-scale object
detection data and annotations [37]. The model pre-trained from the COCO dataset can provide the
machine with some general knowledge on object detection tasks. Starting from the pre-trained
network, a fine-tuned procedure is conducted by feeding the collected data to the machine to make
it capable of recognizing pavement markings. The total training process runs for a total of 50 epochs.

With the help of the TensorBoard integrated into the TensorFlow platform, users can monitor
the training progress in real time. It can export figures to indicate the trends of specific parameters or
predefined metrics. Figure 10 shows the trend of three different losses during the training process.
The figure shows a decreasing trend for all the losses.

Figure 10. The trends of various loss functions during the training process monitored by TensorBoard.

4.3. Model Inference and Performance

Figure 10. The trends of various loss functions during the training process monitored by TensorBoard.

4.3. Model Inference and Performance

After the training, the produced model is evaluated on the testing dataset. At the end of each
training epoch, the network structure and the corresponding parameters are stored as the checkpoint
file. For the evaluation, the checkpoint file with the least loss is chosen to be restored. The testing
sample images are directly fed to the model as the inputs, and then the machine will automatically
detect and locate the pavement markings in the image. Once the arrow-like pavement markings are
recognized in the image, the detected areas are extracted to perform the visibility analysis. In this
study, the function of the visibility analysis module was integrated into the evaluation of the pavement
marking detection module. Thus, for each input image, the model drew the predicted bounding boxes,
and added text to indicate the estimated category, the confidence score, and the contrast score on the
image. Some examples of the evaluation of testing images are shown in Figure 11.

Remote Sens. 2020, 12, x FOR PEER REVIEW 12 of 17

After the training, the produced model is evaluated on the testing dataset. At the end of each
training epoch, the network structure and the corresponding parameters are stored as the checkpoint
file. For the evaluation, the checkpoint file with the least loss is chosen to be restored. The testing sample
images are directly fed to the model as the inputs, and then the machine will automatically detect and
locate the pavement markings in the image. Once the arrow-like pavement markings are recognized in
the image, the detected areas are extracted to perform the visibility analysis. In this study, the function
of the visibility analysis module was integrated into the evaluation of the pavement marking detection
module. Thus, for each input image, the model drew the predicted bounding boxes, and added text to
indicate the estimated category, the confidence score, and the contrast score on the image. Some
examples of the evaluation of testing images are shown in Figure 11.

Figure 11. Visual results were evaluated on the testing samples.

From the figure, it can be seen that most of the pavement markings are correctly located and
classified, and the contrast value provides a good measure of the visibility of the markings. The two
subfigures on the left belong to the cloudy scenario, and the two on the right represent the sunny
case. The pavements in the two subfigures on the left are both dark; but due to the poor marking
condition, the contrast values of the top subfigure (i.e., 1.0, 0.4) are much lower than those at the
bottom (i.e., 2.1, 1.9, 2.3). It can be observed that the pavement markings in the bottom subfigure are
much more recognizable than those in the top subfigure, which validates the effectiveness of the
contrast value for analyzing the visibility of pavement markings. Similarly, for the two subfigures on
the right, all the detected pavement markings are in good condition; nevertheless, the contrast value
of the bottom subfigure (i.e., 0.9, 1.1) is higher than that of the top subfigure (i.e., 0.2, 0.3), because the
pavement in the bottom image is darker. This means the markings in the bottom-right subfigure are
easier to identify than those in the top-right subfigure. The high brightness of the pavement could
reduce the visibility of the markings on it, as the markings are generally painted white.

For the quantitative evaluation of the performance of the pavement marking detection model in
this study, the mean average precision (mAP) was used. The results of the object detection system
were divided into the following four categories by comparing the estimation with the reference label:
true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN). Table 1 defines
these four metrics.

Table 1. Four categories of the metrics.

 Positive Predication Negative Prediction
Positive Label TP FN

Negative Label FP TN

Figure 11. Visual results were evaluated on the testing samples.

From the figure, it can be seen that most of the pavement markings are correctly located and
classified, and the contrast value provides a good measure of the visibility of the markings. The two
subfigures on the left belong to the cloudy scenario, and the two on the right represent the sunny
case. The pavements in the two subfigures on the left are both dark; but due to the poor marking
condition, the contrast values of the top subfigure (i.e., 1.0, 0.4) are much lower than those at the
bottom (i.e., 2.1, 1.9, 2.3). It can be observed that the pavement markings in the bottom subfigure
are much more recognizable than those in the top subfigure, which validates the effectiveness of the
contrast value for analyzing the visibility of pavement markings. Similarly, for the two subfigures on

Remote Sens. 2020, 12, 3837 13 of 17

the right, all the detected pavement markings are in good condition; nevertheless, the contrast value of
the bottom subfigure (i.e., 0.9, 1.1) is higher than that of the top subfigure (i.e., 0.2, 0.3), because the
pavement in the bottom image is darker. This means the markings in the bottom-right subfigure are
easier to identify than those in the top-right subfigure. The high brightness of the pavement could
reduce the visibility of the markings on it, as the markings are generally painted white.

For the quantitative evaluation of the performance of the pavement marking detection model in
this study, the mean average precision (mAP) was used. The results of the object detection system
were divided into the following four categories by comparing the estimation with the reference label:
true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN). Table 1 defines
these four metrics.

Table 1. Four categories of the metrics.

Positive Predication Negative Prediction

Positive Label TP FN
Negative Label FP TN

The precision refers to the proportion of the correct results in the identified positive samples,
and the recall denotes the ratio of the correctly identified positive samples to all the positive samples.
The formulas for these two metrics are as follows.

Precision =
TP

TP + FP
Recall =

TP
TP + FN

(8)

To determine if a prediction box correctly located the target, an IoU threshold was predefined
before the model was evaluated. For as long as the IoU value between the estimated bounding box
and the ground truth was bigger than the threshold, this prediction was considered a correct detection.
When the threshold value was adjusted, both the precision and the recall changed. As the threshold
decreased, the recall value continued to increase, and the accuracy decreased after reaching a certain
level. According to this pattern, the precision-recall curve, i.e., the PR curve, was drawn [38]. The AP
value refers to the area under the PR curve, and the mAP value indicates the average AP among the
multiple categories.

Figure 12 shows the results of the quantitative validation of the detection model on the testing
dataset. As shown in the top-left subfigure, there are 203 sample images and 223 pavement marking
objects included in the evaluation dataset. It can be seen that the distribution of different pavement
markings is imbalanced. Thus, collecting more images and enlarging the dataset are the future
study orientations for this proposal. The bottom-left subfigure demonstrates the number of true/false
predictions upon the testing samples for each category, where the red portion represents the false
predictions and the green potion refers to the true predictions. Given the number shown in the figure,
it can be surmised that the detection model is working properly since most of the identified pavement
markings were correctly classified. The right subfigure provides the average precision values for
each category. The mAP value can reflect the overall performance of the detection module. However,
the low mAP value indicates that there are some spaces to further improve the model.

From the validation results on testing samples, it is observed that some left-turn and right-turn
markings are misclassified as the other category. By exploring the whole project, the reason causing this
issue is finally found: a code issue. Since YOLOv3 is a representative framework in the object detection
field, there are many open-source implementation codes. In this project, the detection model upon
pavement markings is also trained with the open-source codes. Within the data preprocessing step of
the codes, the author randomly chooses some training samples and flips them horizontally to enhance
the diversity of the training data. Actually, this is a common and useful operation to achieve data
augumentation. However, it does not fit for this pavement marking detection task. For general objects,
the horizontal flipping would not change its category so that this operation is valid. But in terms of

Remote Sens. 2020, 12, 3837 14 of 17

pavement markings, the flip process may transform the marking into another type, e.g., left-turn to
right-turn. Thus, the flip operation within the codes generates wrong training samples, misleads the
machine and hinders the performance of the model.

Remote Sens. 2020, 12, x FOR PEER REVIEW 13 of 17

The precision refers to the proportion of the correct results in the identified positive samples,
and the recall denotes the ratio of the correctly identified positive samples to all the positive samples.
The formulas for these two metrics are as follows. 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃𝑇𝑃 + 𝐹𝑃 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃𝑇𝑃 + 𝐹𝑁 (8)

To determine if a prediction box correctly located the target, an IoU threshold was predefined
before the model was evaluated. For as long as the IoU value between the estimated bounding box
and the ground truth was bigger than the threshold, this prediction was considered a correct
detection. When the threshold value was adjusted, both the precision and the recall changed. As the
threshold decreased, the recall value continued to increase, and the accuracy decreased after reaching
a certain level. According to this pattern, the precision-recall curve, i.e., the PR curve, was drawn [38].
The AP value refers to the area under the PR curve, and the mAP value indicates the average AP
among the multiple categories.

Figure 12 shows the results of the quantitative validation of the detection model on the testing
dataset. As shown in the top-left subfigure, there are 203 sample images and 223 pavement marking
objects included in the evaluation dataset. It can be seen that the distribution of different pavement
markings is imbalanced. Thus, collecting more images and enlarging the dataset are the future study
orientations for this proposal. The bottom-left subfigure demonstrates the number of true/false
predictions upon the testing samples for each category, where the red portion represents the false
predictions and the green potion refers to the true predictions. Given the number shown in the figure,
it can be surmised that the detection model is working properly since most of the identified pavement
markings were correctly classified. The right subfigure provides the average precision values for each
category. The mAP value can reflect the overall performance of the detection module. However, the
low mAP value indicates that there are some spaces to further improve the model.

Figure 12. The quantitative evaluation information on the testing dataset of the trained model.

From the validation results on testing samples, it is observed that some left-turn and right-turn
markings are misclassified as the other category. By exploring the whole project, the reason causing
this issue is finally found: a code issue. Since YOLOv3 is a representative framework in the object
detection field, there are many open-source implementation codes. In this project, the detection
model upon pavement markings is also trained with the open-source codes. Within the data

Figure 12. The quantitative evaluation information on the testing dataset of the trained model.

By removing the codes and re-training the model, the new quantitative validation results are
shown in Figure 13. Comparing the Figures 12 and 13, the performance of the model is greatly
enhanced, i.e., there is a 24% increment on the mAP value. The evaluation results fully prove the
effectiveness of the YOLOv3 model in the pavement marking recognition task.

Remote Sens. 2020, 12, x FOR PEER REVIEW 14 of 17

preprocessing step of the codes, the author randomly chooses some training samples and flips them
horizontally to enhance the diversity of the training data. Actually, this is a common and useful
operation to achieve data augumentation. However, it does not fit for this pavement marking
detection task. For general objects, the horizontal flipping would not change its category so that this
operation is valid. But in terms of pavement markings, the flip process may transform the marking
into another type, e.g., left-turn to right-turn. Thus, the flip operation within the codes generates
wrong training samples, misleads the machine and hinders the performance of the model.

By removing the codes and re-training the model, the new quantitative validation results are
shown in Figure 13. Comparing the Figures 12 and 13, the performance of the model is greatly
enhanced, i.e., there is a 24% increment on the mAP value. The evaluation results fully prove the
effectiveness of the YOLOv3 model in the pavement marking recognition task.

Figure 13. The quantitative evaluation information on the testing dataset of the improved model.

5. Conclusions

To identify issues with the detection and visibility of pavement markings, relevant studies were
reviewed. The automated condition analysis framework for pavement markings using machine
learning technology was proposed. The framework has three modules: a data processing module, a
pavement marking detection module, and a visibility analysis module. The framework was validated
through a case study of pavement marking training data sets in the U.S. From the quantitative results
in the experimental section, the precision of the pavement marking detection module was pretty high,
which fully validates the effectiveness of the YOLOv3 framework. Meanwhile, observing the visual
results, all the pavement markings are correctly detected with the rectangle boxes and classified with
the attached text in the road-scene images. In addition, the visibility metric of pavement markings
was defined and the visibility within the proposed framework was confirmed as an important factor
of driver safety and maintenance. The computed visibility values were also attached besides the
detected pavement markings in the images. If the proposed study is used properly, pavement
markings can be detected accurately, and their visibility can be analyzed to quickly identify places
with safety concerns.

From the distribution of the testing samples, it can be inferred that the proportions of the straight
markings, the right straight markings, and the left straight markings could be very low. Enlarging
and enriching the training dataset could be a goal for future research.

Author Contributions: Conceptualization, K.K., T.K. and J.K.; Data curation, K.K.; Formal analysis, K.K., D.C.
and C.P.; Investigation, D.K. and J.K.; Methodology, K.K., D.K., T.K. and J.K.; Project administration, T.K.;
Resources, T.K.; Software, K.K., D.C., C.P. and T.K.; Writing—review & editing, K.K. and T.K. All authors have
read and agreed to the published version of the manuscript.

Figure 13. The quantitative evaluation information on the testing dataset of the improved model.

Remote Sens. 2020, 12, 3837 15 of 17

5. Conclusions

To identify issues with the detection and visibility of pavement markings, relevant studies were
reviewed. The automated condition analysis framework for pavement markings using machine
learning technology was proposed. The framework has three modules: a data processing module,
a pavement marking detection module, and a visibility analysis module. The framework was validated
through a case study of pavement marking training data sets in the U.S. From the quantitative results
in the experimental section, the precision of the pavement marking detection module was pretty high,
which fully validates the effectiveness of the YOLOv3 framework. Meanwhile, observing the visual
results, all the pavement markings are correctly detected with the rectangle boxes and classified with
the attached text in the road-scene images. In addition, the visibility metric of pavement markings was
defined and the visibility within the proposed framework was confirmed as an important factor of
driver safety and maintenance. The computed visibility values were also attached besides the detected
pavement markings in the images. If the proposed study is used properly, pavement markings can be
detected accurately, and their visibility can be analyzed to quickly identify places with safety concerns.

From the distribution of the testing samples, it can be inferred that the proportions of the straight
markings, the right straight markings, and the left straight markings could be very low. Enlarging and
enriching the training dataset could be a goal for future research.

Author Contributions: Conceptualization, K.K., T.K. and J.K.; Data curation, K.K.; Formal analysis, K.K., D.C.
and C.P.; Investigation, D.K. and J.K.; Methodology, K.K., D.K., T.K. and J.K.; Project administration, T.K.;
Resources, T.K.; Software, K.K., D.C., C.P. and T.K.; Writing—review & editing, K.K. and T.K. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was supported by a grant (KICT 2020-0559) from the Remote Scan and Vision Platform
Elementary Technology Development for Facility and Infrastructure Management funded by KICT (Korea Institute
of Civil Engineering and Building Technology) and a grant (20AUDP-B127891-04) from the Architecture and
Urban Development Research Program funded by the Ministry of Land, Infrastructure, and Transport of the
Korean government.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. U.S. Department of Transportation Federal Highway Administration. Available online: https://www.fhwa.
dot.gov/policyinformation/statistics/2018/hm15.cfm (accessed on 27 August 2020).

2. Ceylan, H.; Bayrak, M.B.; Gopalakrishnan, K. Neural networks applications in pavement engineering:
A recent survey. Int. J. Pavement Res. Technol. 2014, 7, 434–444.

3. El-Basyouny, M.; Jeong, M.G. Prediction of the MEPDG asphalt concrete permanent deformation using
closed form solution. Int. J. Pavement Res. Technol. 2014, 7, 397–404. [CrossRef]

4. Eldin, N.N.; Senouci, A.B. A pavement condition-rating model using backpropagation neural networks.
Comput. Aided Civ. Infrastruct. Eng. 1995, 10, 433–441. [CrossRef]

5. Hamdi; Hadiwardoyo, S.P.; Correia, A.G.; Pereira, P.; Cortez, P. Prediction of Surface Distress Using Neural
Networks. In AIP Conference Proceedings; AIP Publishing LLC: College Park, MD, USA, 2017; Volume 1855,
p. 040006. [CrossRef]

6. Li, B.; Wang, K.C.P.; Zhang, A.; Yang, E.; Wang, G. Automatic classification of pavement crack using deep
convolutional neural network. Int. J. Pavement Eng. 2020, 21, 457–463. [CrossRef]

7. Nhat-Duc, H.; Nguyen, Q.L.; Tran, V.D. Automatic recognition of asphalt pavement cracks using metaheuristic
optimized edge detection algorithms and convolution neural network. Autom. Constr. 2018, 94, 203–213.
[CrossRef]

8. Xu, G.; Ma, J.; Liu, F.; Niu, X. Automatic Recognition of Pavement Surface Crack Based on B.P. Neural
Network. In Proceedings of the 2008 International Conference on Computer and Electrical Engineering,
Phuket, Thailand, 20–22 December 2008; pp. 19–22. [CrossRef]

9. Yamamoto, J.; Karungaru, S.; Terada, K. Road Surface Marking Recognition Using Neural Network.
In Proceedings of the 2014 IEEE/SICE International Symposium on System Integration; SII, Tokyo, Janpan,
13–15 December 2014; pp. 484–489. [CrossRef]

https://www.fhwa.dot.gov/policyinformation/statistics/2018/hm15.cfm
https://www.fhwa.dot.gov/policyinformation/statistics/2018/hm15.cfm
http://dx.doi.org/10.6135/ijprt.org.tw/2014
http://dx.doi.org/10.1111/j.1467-8667.1995.tb00303.x
http://dx.doi.org/10.1063/1.4985502
http://dx.doi.org/10.1080/10298436.2018.1485917
http://dx.doi.org/10.1016/j.autcon.2018.07.008
http://dx.doi.org/10.1109/ICCEE.2008.96
http://dx.doi.org/10.1109/SII.2014.7028087

Remote Sens. 2020, 12, 3837 16 of 17

10. Zhang, L.; Yang, F.; Yimin, D.Z.; Zhu, Y.J. Road Crack Detection Using Deep Convolutional Neural Network.
In Proceedings of the 2016 IEEE international conference on image processing (ICIP), Phoenix, AZ, USA,
25–28 September 2016; Volume 2016, pp. 3708–3712. [CrossRef]

11. Meignen, D.; Bernadet, M.; Briand, H. One Application of Neural Networks for Detection of Defects
Using Video Data Bases: Identification of Road Distresses. In Proceedings of the International
Conference on Database and Expert Systems Applications, 8th International Conference, Toulouse, France,
1–5 September 1997; pp. 459–464. [CrossRef]

12. Zhang, A.; Wang, K.C.P.; Fei, Y.; Liu, Y.; Chen, C.; Yang, G.; Li, J.Q.; Yang, E.; Qiu, S. Automated pixel-level
pavement crack detection on 3D asphalt surfaces with a recurrent neural network. Comput.-Aided Civ.
Infrastruct. Eng. 2019, 34, 213–229. [CrossRef]

13. Chen, T.; Chen, Z.; Shi, Q.; Huang, X. Road marking detection and classification using machine
learning algorithms. In Proceedings of the 2015 IEEE Intelligent Vehicles Symposium (IV), Seoul, Korea,
28 June–1 July 2015; Volume 2015, pp. 617–621. [CrossRef]

14. Gurghian, A.; Koduri, T.; Bailur, S.V.; Carey, K.J.; Murali, V.N. DeepLanes: End-To-End Lane Position
Estimation Using Deep Neural Networks. In Proceedings of the 2016 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition Workshops, Las Vegas, NV, USA, 26 June–1 July 2016. [CrossRef]

15. Lee, S.; Kim, J.; Yoon, J.S.; Shin, S.; Bailo, O.; Kim, N.; Lee, T.H.; Hong, H.S.; Han, S.H.; Kweon, I.S. VPGNet:
Vanishing Point Guided Network for Lane and Road Marking Detection and Recognition. In Proceedings of
the 2017 IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017. [CrossRef]

16. Geiger, A.; Lenz, P.; Stiller, C.; Urtasun, R. Vision meets robotics: The KITTI dataset. Int. J. Robot. Res.
2013, 32, 1231–1237. [CrossRef]

17. Griffin, G.; Holub, A.; Perona, P. Caltech-256 object category dataset. Caltech Mimeo 2007, 11. Available
online: http://authors.library.caltech.edu/7694 (accessed on 27 August 2020).

18. Yu, F.; Chen, H.; Wang, X.; Xian, W.; Chen, Y.; Liu, F.; Madhavan, V.; Darrell, T. BDD100K: A Diverse
Driving Dataset for Heterogeneous Multitask Learning. In Proceedings of the 2020 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020. [CrossRef]

19. GitHub Repository. Available online: https://github.com/microsoft/VoTT (accessed on 27 August 2020).
20. Liu, L.; Ouyang, W.; Wang, X.; Fieguth, P.; Chen, J.; Liu, X.; Pietikäinen, M. Deep learning for generic object

detection: A survey. Int. J. Comput. Vis. 2020, 128, 261–318. [CrossRef]
21. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and

Semantic Segmentation. In Proceedings of the 2014 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [CrossRef]

22. Girshick, R. Fast R-CNN. In Proceedings of the 2015 IEEE International Conference on Computer Vision,
Santiago, Chile, 7–13 December 2015; pp. 1440–1448.

23. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal
networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [CrossRef] [PubMed]

24. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection.
In Proceedings of the 2016 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
Vegas, NV, USA, 27–30 June 2016; Volume 2016. [CrossRef]

25. Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. Available online: http://pjreddie.com/yolo9000/

(accessed on 23 November 2020).
26. Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. Available online: http://arxiv.org/abs/1804.

02767 (accessed on 23 November 2020).
27. Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal

Covariate Shift. In Proceedings of the 32nd International Conference on Machine Learning, Lille, France,
6–11 July 2015; Volume 1, pp. 448–456. Available online: https://arxiv.org/abs/1502.03167v3 (accessed on
23 November 2020).

28. Zhong, Y.; Wang, J.; Peng, J.; Zhang, L. Anchor Box Optimization for Object Detection. In Proceedings
of the 2020 IEEE Winter Conference on Applications of Computer Vision, Snowmass Village, CO, USA,
1–5 March 2020. [CrossRef]

29. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the
2016 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vegas, NV, USA,
27–30 June 2016; Volume 2016, pp. 770–778. [CrossRef]

http://dx.doi.org/10.1109/ICIP.2016.7533052
http://dx.doi.org/10.1109/dexa.1997.617332
http://dx.doi.org/10.1111/mice.12409
http://dx.doi.org/10.1109/IVS.2015.7225753
http://dx.doi.org/10.1109/CVPRW.2016.12
http://dx.doi.org/10.1109/ICCV.2017.215
http://dx.doi.org/10.1177/0278364913491297
http://authors.library.caltech.edu/7694
http://dx.doi.org/10.1109/cvpr42600.2020.00271
https://github.com/microsoft/VoTT
http://dx.doi.org/10.1007/s11263-019-01247-4
http://dx.doi.org/10.1109/CVPR.2014.81
http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://www.ncbi.nlm.nih.gov/pubmed/27295650
http://dx.doi.org/10.1109/CVPR.2016.91
http://pjreddie.com/yolo9000/
http://arxiv.org/abs/1804.02767
http://arxiv.org/abs/1804.02767
https://arxiv.org/abs/1502.03167v3
http://dx.doi.org/10.1109/WACV45572.2020.9093498
http://dx.doi.org/10.1109/CVPR.2016.90

Remote Sens. 2020, 12, 3837 17 of 17

30. Suzuki, S.; Be, K.A. Topological structural analysis of digitized binary images by border following. Comput. Vis.
Graph. Image Process. 1985, 30, 32–46. [CrossRef]

31. Bradski, G. The OpenCV Library. Dr. Dobbs J. Softw. Tools 2000, 25, 120–125. [CrossRef]
32. Liang, J.I.; Piper, J.; Tang, J.Y. Erosion and dilation of binary images by arbitrary structuring elements using

interval coding. Pattern Recognit. Lett. 1989, 9, 201–209. [CrossRef]
33. Klein, S.A.; Carney, T.; Barghout-Stein, L.; Tyler, C.W. Seven models of masking. In Human Vision and Electronic

Imaging II.; International Society for Optics and Photonics: Bellingham, WA, USA, 1997; Volume 3016,
pp. 13–24.

34. Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.;
Devin, M.; et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems;
Distributed, Parallel and Cluster Computing. Available online: http://arxiv.org/abs/1603.04467 (accessed on
23 November 2020).

35. Longadge, R.; Dongre, S. Class imbalance problem in data mining review. Int. J. Comput. Sci. Netw. 2013, 2.
Available online: http://arxiv.org/abs/1305.1707 (accessed on 23 November 2020).

36. Pan, S.J.; Yang, Q. A survey on transfer learning. In IEEE Transactions on Knowledge and Data Engineering;
IEEE: Piscataway, NJ, USA, 2010; Volume 22, pp. 1345–1359. [CrossRef]

37. Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft COCO:
Common objects in context. In European Conference on Computer Vision; Springer: Cham, Switzerland,
2014; 8693 LNCS (PART 5); pp. 740–755. [CrossRef]

38. Davis, J.; Goadrich, M. The relationship between precision-recall and ROC curves. In ACM International
Conference Proceeding Series; ACM: New York, NY, USA, 2006; Volume 148, pp. 233–240. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/0734-189X(85)90016-7
http://dx.doi.org/10.1111/0023-8333.50.s1.10
http://dx.doi.org/10.1016/0167-8655(89)90055-X
http://arxiv.org/abs/1603.04467
http://arxiv.org/abs/1305.1707
http://dx.doi.org/10.1109/TKDE.2009.191
http://dx.doi.org/10.1007/978-3-319-10602-1_48
http://dx.doi.org/10.1145/1143844.1143874
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Studies
	Methodology
	Data Processing Module
	Data Acquisition
	Data Annotation

	Pavement Markings Detection Module
	Demonstration of the YOLO Framework
	Structure of YOLOv3

	Visibility Analysis Module
	Finding Contours
	Construct Masks
	Computing the Intensity Contrast

	Experimental Validation of the Framework
	Experiment Settings
	Model Training
	Model Inference and Performance

	Conclusions
	References

