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Abstract: More and more scholars are committed to light detection and ranging (LiDAR) as a 

roadside sensor to obtain traffic flow data. Filtering and clustering are common methods to extract 

pedestrians and vehicles from point clouds. This kind of method ignores the impact of 

environmental information on traffic. The segmentation process is a crucial part of detailed scene 

understanding, which could be especially helpful for locating, recognizing, and classifying objects 

in certain scenarios. However, there are few studies on the segmentation of low-channel (16 

channels in this paper) roadside 3D LiDAR. This paper presents a novel segmentation (slice-based) 

method for point clouds of roadside LiDAR. The proposed method can be divided into two parts: 

the instance segmentation part and semantic segmentation part. The part of the instance 

segmentation of point cloud is based on the regional growth method, and we proposed a seed 

point generation method for low-channel LiDAR data. Furthermore, we optimized the instance 

segmentation effect under occlusion. The part of semantic segmentation of a point cloud is realized 

by classifying and labeling the objects obtained by instance segmentation. For labeling static 

objects, we represented and classified a certain object through the related features derived from its 

slices. For labeling moving objects, we proposed a recurrent neural network (RNN)-based model, 

of which the accuracy could be up to 98.7%. The result implies that the slice-based method can 

obtain a good segmentation effect and the slice has good potential for point cloud segmentation. 

Keywords: slice-based segmentation; roadside LiDAR; instance and semantic segmentation; 3D 

point cloud 

 

1. Introduction 

Within the Intelligent Transportation System (ITS), traffic perception which obtains the 

real-time traffic flow parameters by sensors, is the base of ITS application in the areas of traffic 

safety analysis and prevention, traffic surveillance, and traffic control and management. For 

instance, an Autonomous Vehicle (AV) is highly dependent on its sensors to perceive the 

surrounding information. However, it could be a fatal danger if the sensor in the AV makes errors 

or fails to perceive, which could even lead to a serious traffic accident. Tesla and Uber had 

experienced similar fatal accidents during their self-driving tests [1,2]. The Vehicle-to-Infrastructure 

(V2I) system is proposed to provide a wide angle view, Beyond Visual Range (BVR), mutual 

complementation, and microscale traffic data, which can collect the speed and trajectories of each 

road user in second and meter resolution. Through the speed and trajectory analysis and evaluation, 

it can greatly reduce traffic accidents caused by fade areas and sensor faults in AV onboard sensors. 
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Therefore, it also requests that the roadside equipment should have the ability to accurately 

perceive and timely transmit traffic information to AV or other road users. 

Cameras as roadside equipment are widely used for perception in ITS [3,4]. They perceive 

traffic flow and road surface information by processing video images, each pixel of which is 

composed of the brightness of red, green, and blue (RGB). However, the traffic data provided by the 

camera can be easily affected by the weather and sunlight. Especially at night, the accuracy and 

effectiveness is relatively low, even with supplementary illumination. On the contrary, light 

detection and ranging (LiDAR) can directly obtain credible depth information, which has the 

advantages of insensitivity to external light changes and strong adaptability to complex 

environments. In addition, a three-dimensional (3D) LiDAR sensor can be used to obtain 

High-Resolution Micro-scale Traffic Data (HRMTD) such as the location, speed and trajectories of 

each road user within the scanning range, where the spatial resolution can reach centimeter level 

and the temporal resolution can reach millisecond [5]. As to pursue the excellence of LiDAR sensors 

in traffic perception, more and more scholars have taken LiDAR as roadside equipment to obtain 

high-accuracy and information-rich traffic data [6-9].  

Segmentation is an important method in visual information processing, including image 

recognition and 3D point cloud classification. Instance and semantic segmentation are two major 

parts of the segmentation process, each of which has its own advantages and disadvantages. In 

semantic segmentation, the label for each pixel or point is determined while similar objects are 

grouped together. In instance segmentation, similar objects are detected and distinguished. The 

combination of semantic and instance segmentation can help to obtain more abundant information, 

including the location and category information of pedestrians, vehicles, roads, and signs, which are 

of great significance to ITS. 

Nowadays, the segmentation algorithms for visual images have achieved good results, 

especially the algorithms based on a Convolutional Neural Network (CNN) model [10-12]. 

However, compared with the image data, the LiDAR points are sparser and the point density is 

highly variable, so these algorithms cannot be directly applied to the LiDAR point cloud. Although, 

there are some research studies [13] focused on converting point cloud data to image data, and then, 

use these image-based segmentation algorithms to finish the point cloud segmentation. However, 

the transformation process is usually to project the 3D point cloud to a certain plane, which will 

reduce the dimension of the original point cloud data and miss lots of valuable information. 

Scene segments using point cloud data in a direct way can be divided into two categories: 

handcrafted features-based segmentation methods and learning-based segmentation methods. The 

handcrafted features-based segmentation methods need to obtain and deal with the features of point 

cloud data according to the knowledge of experts, in order to realize the point cloud segmentation. 

The learning-based segmentation methods can extract and transform the features of point cloud data 

automatically by constructing a learning model. In this kind of algorithm, there is usually a scoring 

function to measure the segmentation effect of the model, and there is an optimizer to continuously 

make the scoring function obtain the optimal value as to achieve the best segmentation effect. 

Existing handcrafted features-based methods mainly include edge-based methods, 

region-based methods, and graph-based methods. In edge-based methods, the principle is how to 

find the boundary of the object reasonably, and then, obtain the boundary line and object region to 

segment the object in the raw point cloud. Jiang [14] presented a fast segmentation method using the 

scan line grouping technique. Scan lines of the image are split into curves and clustered to represent 

the surfaces. Sappa [15] proposed a new edge detection strategy by extracting close contours from a 

binary edge map for fast segmentation. Although edge based methods allow fast segmentation, they 

have accuracy problems because all of them are very sensitive to noise and uneven density of point 

clouds, situations that commonly occur in point cloud data [16]. 

In region-based methods, the first task is to find the seed points of objects. Based on these 

points, all points belonging to a certain object could be found by adding neighbor points if they 

satisfy a certain criteria. Thus, the selection of seed points directly affects the final segmentation 

effect. Besl [17] identified the seed points based on the curvature of each point and grew them based 
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on predefined criteria such as proximity of points and planarity of surfaces. However, this method is 

very sensitive to noise and time consuming. Several works [18-20] were proposed to overcome these 

defects and improve efficiency. Koster [18] presented an algorithm to generate an irregular graph 

pyramid to store relative information between regions. Rusu [19] used seeded-region methods based 

on smoothness constraints. Tovari [20] proposed a method for growing the seed points based on 

their normal vector and its distance to the growing plane. Fan [21] proposed a self-adaptive 

segmentation method for a point cloud, which can select seed points automatically. However, the 

selection of seed points in the above methods is based on high density point cloud data, which is not 

suitable for low-channel LiDAR data.  

Graph-based methods consider point cloud data in terms of a graph. Golovinskiy [22] used 

K-Nearest Neighbors (KNN) to build a 3D graph on the point cloud. Rusu [23] proposed an 

approach for labeling points with different geometric surface primitives using Conditional Random 

Fields (CRF). Generally, these methods cannot run in real-time scenarios. 

Comparing with handcrafted features-based methods, the learning-based methods have 

stronger adaptability and can remove the dependence on handcrafted features in an end-to-end 

manner. These methods can be broadly divided into two categories in terms of point cloud 

representation: point-based methods and voxel-based methods. The point-based methods directly 

extract discriminative features from point cloud for segmentation, such as PointNet [24] and its 

variant PointNet++ [25]. Due to the features being able to be extracted from the point cloud by the 

learning model, more abundant feature information can be obtained. Therefore, the accuracy of this 

type of method is higher but is lower in efficiency. The voxel-based methods generally transform the 

unstructured point cloud to regular 3D voxels [26-30], which could be efficiently processed by 3D 

Convolutional Neural Networks (CNN) to learn the point cloud for segmentation. However, the 

learning-based methods are usually implemented in a supervised manner, which is labor intensive, 

and time consuming.  

Most of the methods mentioned above are designed for on-board LiDAR or airborne LiDAR 

data. However, it is worth noting that the roadside LiDAR and other LiDARs differ in data quality, 

density, and expected application targets. In particular, on-board LiDAR is designed to detect the 

environment around the vehicle, which needs to work with video cameras, high-resolution 3D 

maps, and high-precision global position system (GPS) to provide supportive data. In contrast, the 

roadside LiDAR works individually to detect wide range traffic flow information, such as a whole 

intersection [31]. Few segmentation methods can work well by using low-channel roadside LiDAR 

data. Therefore, this paper proposed a novel approach to instance and semantic segmentation of 

low-channel roadside LiDAR point cloud.  

In this paper, the roadside LiDAR point cloud segmentation algorithm is mainly divided into 

two parts—the instance segmentation part and the semantic segmentation part. The flow chart is 

shown in Figure 1. Among them, semantic segmentation is based on instance segmentation. We 

divided all objects into road users (pedestrians and vehicles), poles, buildings, and plants to realize 

the semantic segmentation of a raw point cloud after instance segmentation. 
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Figure 1. The flowchart of the light detection and ranging (LiDAR) point cloud segmentation. 

The main work of this paper includes: 

 A novel slice-based segmentation method is proposed. The slice is used as the basic unit to 

segment the point cloud, which can achieve instance and semantic segmentation of 

low-channel LiDAR point cloud data. 

 For instance segmentation, we proposed a novel regional growth method. Furthermore, to 

improve the extraction effect in traffic scene instance segmentation, the extraction method of 

the major part of the object is optimized to solve the occlusion of the traffic objects within the 

scene. 

 A model based on the Intersection-Over-Union (IoU) method using the intersection over 

minimum volume (IOMin) of the object to distinguish the moving and stationary objects, and a 

machine learning model-based recurrent neural network (RNN) was used to learn and classify 

the moving and static objects, which can extract road users from all objects after instance 

segmentation. 

The rest of the paper is structured as follows: Section 2 describes the definition of slice of 

LiDAR point cloud. The proposed instance and semantic segmentation methods are introduced in 

detail in Section 3 and Section 4, respectively. The experiments and case studies are presented in 

Section 5. Section 6 concludes this article with a summary of contributions and limitations, as well as 

perspectives on future work. 

2. Slice of LiDAR Point Cloud  

Slice is the basis of the proposed segmentation method, and it is the concept developed by our 

prior work [6]. This section just briefly introduces the slice with an aim to give readers a systematic 

view of our study without making this paper abundant and duplicative. 

We defined that a slice is a point set containing the points firing on the same object and within 

the same vertical block. Figure 2 shows the schematic diagram of LiDAR slices, where points 𝑎 and 

𝑏 are the points firing on the ground by LiDAR; points 𝑐, d, 𝑒 are the points firing on 𝑂1, forming a 

slice of 𝑂1; points 𝑓, 𝑔 are the points firing on 𝑂2, forming a slice of 𝑂2; points 𝑐′, 𝑑′, 𝑒′ and 𝑓′, 𝑔′ 

are the points after the projection of points 𝑐, d, 𝑒 and 𝑓, 𝑔 to the horizontal plane, respectively. In 

fact, a certain object can be represented by several slices in the same vertical plane, as shown in 

Figures 2a,b. The vertical plane contains all objects’ slices, which are in the same direction, as shown 

in Figure 2c. 
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Figure 2. The schematic diagram of a LiDAR slice. (a) Points and slices within object 𝑂1. (b) Points 

and slices within object 𝑂2. (c) Slices and objects within a vertical plane. 

Generally speaking, objects, such as people, vehicles, and buildings, are vertically aligned with 

the ground. This means that the distance between the points in the same slice after projection is 

much less than that between different slices. Therefore, we can easily find a distance threshold ∆𝑅𝑡ℎ 

to abstract all slices in a raw point cloud. All points in a point cloud can be divided into points 

belonging to a certain slice and a set of single points. In the previous study, we also proposed a 

highly efficient slice extraction and labeling method. Furthermore, the shape of objects in the real 

world is not regular so that there may be deviation when we use slices to represent the shape of 

objects—particularly, at the edges of the object or points of the object is sparse.  

Figure 3 shows an example, where Figure 3a shows a raw point cloud and Figure 3b shows all 

points belonging to the slices when ∆𝑅𝑡ℎ= 0.3m. Comparing Figures 3a,b we can find that the points 

belonging to the slices are usually located in the higher density or relatively central area of this 

object, such as the tree trunk and human trunk, which we call the major part of object. The points 

that belong to this object but belong to the set of single points are generally located on the boundary 

of an object or lower density region, such as leaves and human arms, which we call the additional 

parts. Clearly, the main part of an object has shape stability, while the additional part is variable. 

For example, when walking, the arm swings, but the human trunk can be seen to remain 

unchanged. In addition, in windy conditions, the shape of the tree trunk can be seen to remain 

static, but the leaves are swaying. We can combine the main part and the additional part to 

represent the object accurately. 
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(a) (b) 

Figure 3. All points and all slices in a raw point cloud. (a) The points in a point cloud; (b) The points 

that belong to slices. 

3. Instance Segmentation 

In this section, we will describe the specific content of an instance segmentation algorithm, 

named the Slice Growing (SG) algorithm, which is also a region-based method. In this algorithm, 

the major part of each instance object can be equivalent to seed points in other region-based 

methods. Therefore, the major parts will be found first, and then, the additional parts will be 

checked and assigned by the way of regional growth, to finish the instance segmentation of a raw 

point cloud. 

3.1. Extracting Major Parts of Objects  

3.1.1. Basic Principles of Extraction 

From Figure 3a, it can be seen that a raw point cloud contains a lot of objects, such as road 

users, roads, and plants. Trees are the most special because the distance between its major part 

(trunk) and the additional part (leaves) can be very far, and the area covered by the additional part 

is higher than that of the major part. However, no matter moving road users or the fixed tree trunks, 

their major parts are all close or connected to the ground, which is different from the leaves. 

Therefore, a height 𝐻𝑚𝑝 can be set to find the major part of the object and exclude the leaves as 

much as possible. We call the area between the ground and height 𝐻𝑚𝑝 as the key region.  

For different objects in the traffic scene, the height 𝐻𝑚𝑝 is different, thus the height of the 

major parts is also different. Therefore, it is impossible to find a 𝐻𝑚𝑝 to ensure that all points of the 

major parts are within the range but all points of additional parts are out of the range. However, it 

just needs to find out the major part points of the object in the key region. Within the same slice, the 

major part points out of the key regions belong to the same object. Figure 4 is the schematic 

diagram of this process. Figure 4a shows the schematic point cloud of a tree and car scanned by a 

LiDAR sensor, where the red points belong to major parts within 𝐻𝑚𝑝, blue points belong to major 

parts but above 𝐻𝑚𝑝, and gray points belong to the additional parts. It is obvious that the blue 

points and the red points in the same vertical block belong to the same slice, as shown in Figure 4b. 

Based on Figure 4a and Figure 4b, all points of the major part could be found. 
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(a) (b) 

Figure 4. The schematic diagram of obtaining the major part of the object in the point cloud. (a) The 

point cloud of a tree and car scanned by a LiDAR sensor, where the red points belong to major parts 

within 𝐻𝑚𝑝, the blue points belong to major parts but above 𝐻𝑚𝑝, and the gray points belong to 

additional part. (b) The schematic diagram of slices of the point cloud, where red slices belong to 

major parts and gray slices belong to additional parts.  

3.1.2. Implementation and Limitations 

In this paper, road users (vehicles, pedestrians) are the main target objects of HRMTD that the 

LiDAR sensor wants to collect. Therefore, we should set 𝐻𝑚𝑝 slightly lower than the general height 

of road users, to ensure that most of the major parts can be included, and most of the roadside leaves 

can be excluded. In China, the average height of male adults is about 1.71m, and it is about 1.6m for 

female adults [32]. The height of small cars is generally between 1.6 and 1.8m. Therefore, we set 𝐻𝑚𝑝 

to 1.5m in this paper. In this height range, there are a large number of points belonging to major 

parts and a small number of points belonging to additional parts. Moreover, the points within the 

major parts are denser than those within the additional parts. If projecting all points in this range to 

the ground, it will find out that the point density in the major part is denser, and sparser in the 

additional parts.  

Based on this phenomenon, the Density-Based Spatial Clustering of Applications with Noise 

(DBSCAN) [33] algorithm can be used to extract the major part of objects. DBSCAN is a density 

clustering algorithm with two important parameters: minimum number of points (𝑀𝑖𝑛𝑃𝑡𝑠) and 

epsilon (𝜀). One object will be joined in the clustering area if its point density is higher than or equals 

to a pre-defined 𝑀𝑖𝑛𝑃𝑡𝑠  and its distance to the center is less than a pre-defined 𝜀 . In our 

experiment, we set 𝑀𝑖𝑛𝑝𝑡𝑠 = 3 and 𝜀 = 0.008 m to cluster the projected points in the key region of 

the point cloud shown in Figure 3a. Figure 5a shows the results of DBSCAN clustering, where the 

green scatters are denser points that belong to the major part and the red scatters are sparser points 

that belong to the additional parts. Figure 5b is the corresponding 3D display, where the green 

scatters are the major parts found by clustering, and the gray scatters are all slices of the input point 

cloud. Comparing Figure 3, we can find that some major parts were not found accurately. This can 

be summarized into the following two types of errors: 

 The major part is incomplete (Error 1). The reason for this kind of error is that the major part of 

the objects in the real world is not always regular or vertical to the ground, which will lead to 

the major part points of the object in the non-key region and the major part points of the object 

in the key region not belonging to the same slice. This phenomenon will result in not being 

able to detect the incomplete major part in the non-key region. The red rectangles in Figure 5a 

are typical examples. 

 The major part is missing (Error 2). The reason for this problem is the occlusion. Due to the 

characteristics of the LiDAR sensor scanning, the scanning objects far away from the LiDAR 

sensor are easily obscured by the near objects within the scanning range. The absence of the 

major parts occurs when the major part of the object in the key region is occluded by another 

object. The blue ellipses in Figure 5b are typical examples. 
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(a) (b) 

Figure 5. A snapshot of extracting major parts from the point cloud by clustering points in the key 

region. (a) The results of clustering projected points in the key region. (b) The results of extracting 

major parts in 3D display. 

3.1.3. Improvement 

Comparing the slices with the major part of different objects, the distance of slices within the 

same object is closer than the distance between the different objects. Therefore, we can set a 

threshold distance 𝐷𝑡ℎ to distinguish which slices belong to each object with the incomplete major 

parts, as to solve Error 1. That is, 

IF DS
M < Dth THEN S ∈ M, (1) 

where 𝑆 is a slice; 𝑀 is a major part; 𝐷𝑆
𝑀 is the distance between 𝑆 and 𝑀. The slice and major 

part are both sets of points. Thus, 𝐷𝑆
𝑀 is equal to the minimum distance between the points in 𝑆 

and the points in 𝑀, which is 

DS
M = min{|PiPj|: Pi ∈  S, Pj  ∈  M} ,  (2) 

where |𝑃𝑖𝑃𝑗| is the 3D distances between points 𝑃𝑖 and 𝑃𝑗. 

The working principle of LiDAR is to obtain the distance information of objects by firing and 

receiving laser beams, and it outputs polar coordinate data. Figure 6a and Figure 6b are the 

schematic diagrams for calculating the distance between two adjacent points of the LiDAR in the 

vertical and horizontal directions, respectively. Then, 

 H = 2r*tan(θ/2), (3) 

L =   2r*sin (α/2), (4) 

where 𝐻 is the vertical height between two adjacent points at the same distance r; r is the 2D 

distance between the data point and the LiDAR sensor; 𝐿 is the horizontal distance between two 

adjacent points collected by the same laser beam; θ is the vertical angular resolution of the LiDAR 

sensor (For VLP-16, θ = 2°); 𝛼 is the horizontal angular resolution of the LiDAR sensor (𝛼 = 0.2° 

is set in this paper).  

From Equation (3) and Equation (4), it can be deduced that the value of 𝐻 and 𝐿 increases as 

the distance from the LiDAR sensor to the object increases. 
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(a) (b) 

Figure 6. The schematic diagram for calculating the distance between two adjacent points of LiDAR. 

(a) The distance in vertical direction; (b) The distance in horizontal direction. 

If two slices are adjacent, the maximum distance 𝐷𝑚𝑎𝑥 between the two slices is  

𝐷𝑚𝑎𝑥 =  √H
2 + L2, (5) 

At this time, the difference between the vertical angle and the horizontal angle of the two 

nearest points in the two slices is θ and 𝛼, respectively. Therefore, we can set 𝐷𝑡ℎ equal to 𝐷𝑚𝑎𝑥 

to judge which slices around the incomplete major part also belong to this major part, to reduce the 

impact of Error 1 on the results. In addition, 𝐻 and 𝐿 are both related to 𝑟. Thus, 𝐷𝑚𝑎𝑥 is related 

to r as well. For practical convenience and efficiency, we set 𝑟 to be the average of all 2D distances 

between points in the slice and the LiDAR sensor. 

To solve Error 2, we need to find the absence of major parts within the gray points in Figure 5b, 

where the disturbance of leaves is the biggest. Comparing the leaves with major parts, it can be 

found that there are obvious differences between the two characteristics: 

 Difference 1: the leaves belong to additional parts, and the points in leaves are sparser; 

 Difference 2: the average number of points per slice of the leaf is lower than that of the major 

part. That is because the leaves are relatively sparse and that there are a large number of slices 

formed by two points. 

Therefore, the following two steps were used to finish the extraction of major parts in the 

non-key region: 

Step 1: Like extracting major parts in the key region, we used DBSCAN to cluster the projected 

points to obtain high-density points. However, the leaves are more abundant in the 2D plane, 

which are also considered as high-density points. Figure 7a shows the results, where green scatters 

are high-density points and red scatters are the exclusive points.  

Step 2: Due to Difference 2, we calculated the ratio of slices formed by two points in objects 

clustered by Step 1, as shown in Figure 7c. It can be seen that a ratio of 50% can well divide these 

objects into two parts. The objects have a high ratio and 50% belong to the category of additional 

parts, and the others belong to the major parts. Clearly, if the ratio is high, then some high-density 

leaves would be identified as major parts. 

The results of extracting the major parts in the non-key region are as shown in Figure 7b. The 

colors in Figure 7b are randomly generated, and different colors represent that the two objects do 

not belong to the same class. 
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(a) (b) 

 

(c) 

Figure 7. Extracting major parts in the non-key region. (a) Using density-based spatial clustering of 

applications with noise (DBSCAN) to exclude sparser points, where green scatters are denser points 

and red scatters are sparser points. (b) 2D display of major parts in the non-key region. (c) The ratio 

of slices formed by two points in denser objects clustered by DBSCAN.  

Combining the major parts extracted from the key region and the non-key region, the major 

parts of all objects can be obtained, as shown in the green scatter in Figure 8. Comparing with 

Figure 5b, we can find that the accuracy of obtaining the major part has improved by considering 

Error 1 and Error 2. 

 

Figure 8. 3D display of major parts of point cloud after modifying Error 1 and Error 2. 
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3.2. Fusing Major Parts 

The DBSCAN was used in extracting major parts from the point cloud. Thus, the points 

belonging to major parts are not only extracted, but also clustered. Figure 9a shows the result of 

clustering, where colors are randomly generated, and different colors mean different classes 

(objects). However, we can see that the major parts of an object may be clustered into multiple parts. 

The major parts in the red dashed box in Figure 9a are examples. Thus, we should fuse those major 

parts. 

Figure 9b and Figure 9c show the top main view and the top view of the building in the bottom 

of Figure 9a, respectively. The main part of this building is divided into four parts due to the 

occlusion of the objects in front of it. In this paper, we only consider a small part of the occlusion. 

Otherwise, too much information will be lost for the occluded objects. Figure 9e is a schematic 

diagram of the main view of the obscured building, where the building is divided by the obstacle 

into two parts—the blue part and the red part. Moreover, those parts should belong to the same 

object. Therefore, the nearest two complete slices, such as slice 1 and slice 2 in Figure 9e, are similar 

to each other. We use the number of points in a slice to measure the similarity between the two 

adjacent slices, then,  

∆𝑛 = 𝑛1 − 𝑛2 < 𝑁, (6) 

where 𝑛1 and 𝑛2 is the number of points in slice 1 and slice 2, respectively; ∆𝑛 is the difference 

which can measure the similarity of two slices; 𝑁 is a threshold of the similarity. In general, if the 

same kinds of objects have the same height and same distance from the LiDAR sensor, the point 

number in the slice of the objects would be equal. In this paper, we set 𝑁 = 1. That is, if the 

adjacent slices have the same point number, and they have the same height and the same distance 

from the LiDAR sensor, then the adjacent slices belong to the same object.  

It can be seen from Figure 9c that only the side of the object close to the LiDAR can be detected. 

All slices of an object are projected to the ground, which can be fitted by a curve line. If just a small 

part of the object is selected, the projection of the slice can be fitted with a straight line by using the 

least square method. When only a small part is covered, the change trend of the position of the 

slices adjacent to the missing part should be similar, as shown in Figure 9f. Then, 

∆𝑘 = max{(𝑘𝐴𝐵 − 𝑘𝐶𝐷), (𝑘𝐴𝐵 − 𝑘𝐵𝐶), (𝑘𝐵𝐶 − 𝑘𝐶𝐷)} < 𝐾, (7) 

where 𝑘𝑋𝑌 is the slope of the line from X to Y; ∆𝑘 is the maximum slope difference between the 

missing part and its adjacent parts after fitting; K is the threshold of the change trend. 

It can be deduced from Equation (7) that the value of K is a negative correlation with the flat 

of the object. 

This paper sets 𝐾 = 0.15. In the experiments, if the value of 𝐾 is set too large, adjacent objects 

may be recognized as one object. For instance, two pedestrians are walking together. If 𝐾 is set too 

small, even if only a small part of an object is blocked, this object with an uneven surface may be 

recognized as two objects. 

The missing part is the small part of an object. Therefore, the shortest distance between the two 

ends of the missing part (such as the length of segment BC in Figure 9f will not be too long and 

there will be a limit. According to Equation (4), with the same horizontal angle 𝜔, the farther the 

object from the LiDAR, the larger the missing part will occur. Therefore, this limit should change 

with the distance of the object. Then, 

∆𝑑 < 𝑟/𝐷, (8) 

where ∆𝑑 is the shortest distance between the two ends of the missing part; r is the average of all 

2D distances between points in the slices of major part and LiDAR; 𝐷 is a constant, and the smaller 

the value, the larger the range of occlusion allowed. This paper sets 𝐷 = 20. In the experiments, if 

the value of 𝐷 is set too small, the objects with the same classification which are far away from the 

LiDAR sensor would be recognized as one object, such as adjacent trunks with the same height. If 
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𝐷 is set too large, the object will be divided into two different objects even if there is just a small 

occlusion. 

If Equations (6) to (8) are satisfied, it can assume that the two major parts belong to one object. 

The results of the major part fusing operation are shown in Figure 9b. Although this theory is 

relatively simple, it can achieve better results in the experiments.  

 

Figure 9. Fusing major parts. (a) Before fusing major parts, where colors are randomly generated and 

different colors mean different classes; (b) Main view of the obscured building; (c) Top view of the 

obscured building; (d) After fusing major parts, where colors are also randomly generated; (e) 

Schematic diagram of main view of the obscured building; (f) Schematic diagram of top view of the 

obscured building. 

3.3. Growing 

After extracting the major part of the object, the remaining points in the point cloud are single 

points mostly. These points belong to the additional parts of the object or the ground points. In our 

previous work [6], we proposed a slice-based ground point segmentation method. After removing 

the ground points, the points of the additional parts can determine which major part it belongs to 

according to the distance, as to finish the instance segmentation of a whole point cloud. Generally, 

for an object, the points of its additional part are scattered around its major part. Thus, we can take 

the major part as the center and the radius as 𝑟𝑠 to search for its additional part points from near to 

far. When a point is in the search range of multiple major parts, it belongs to the nearest major part. 

The schematic diagram of the growing points of additional parts is as shown in Figure 10.  
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Figure 10. The schematic diagram points to the growing points of additional parts. 

For VLP-16, the horizontal angular resolution of LiDAR is higher than the vertical angular 

resolution. Therefore, at the same distance, the adjacent two points in the vertical direction are more 

than those in the horizontal direction. To ensure a normal growth process,  𝑟𝑠 should be greater 

than the shortest distance between two adjacent points in the vertical direction. As can be seen from 

Figure 7a, the 2D distance of most of objects in the point cloud is generally less than 30m. In 

addition, at 30m distance, the vertical height between two adjacent points is: 𝐻𝑚𝑖𝑛 = 2𝑟 ∗ 𝑡𝑎𝑛(𝜃/

2) = 2 ∗ 30 ∗ tan (2°/2)  = 1.047𝑚(≈ 1𝑚). Therefore, this paper sets 𝑟𝑠 = 1𝑚. After growing, the 

instance segmentation process is completed, and the results are shown in Figure 11. 

 

Figure 11. The results of instance segmentation, where colors are randomly generated and different 

colors of adjacent objects mean different classes. 

4. Semantic Segmentation 

In instance segmentation, all points belonging to an object have been found. Further classifying 

and labeling the objects in the point cloud will achieve the effect of semantic segmentation. This 

section will illustrate a method to classify and label the objects in the point cloud into four 

categories: road users, poles, buildings, and plants.  

In the traffic scene, the road users are mobile and can appear anywhere in the detection range 

of the point cloud theoretically. At the same time, the other objects such as poles, buildings, and 

plants are relatively fixed. As the detecting object is always far from the LiDAR sensor, less 

information can be obtained [9]. Especially for low-channel LiDAR, using a frame of a point cloud 

cannot even distinguish pedestrians and stones of the same height in the distance. Therefore, in this 

paper, the objects in the point cloud are divided into two steps for semantic labeling. Firstly, the 
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moving road users in the point cloud are labeled by using the timing information of the multi-frame 

point cloud, and then, the remaining static objects are labeled. 

4.1. Labeling Moving Objects 

Axis-aligned bounding box (AABB) is the most commonly used method to represent a 3D 

object. It is a rectangular box with six surfaces which normally parallel with the standard axis. As 

mentioned above, the major part of an object is relatively fixed, while the additional part is 

relatively variable. For example, when the wind blows, the leaves swing against the wind, while the 

trunk is relatively fixed. If we use an AABB formed by all points to represent this object, even if the 

object is static, the bounding box may change greatly. Therefore, to distinguish moving and fixed 

objects stably, this paper uses the AABB formed by the major part to represent a certain object, as 

shown in Figure 12. 

   

(a) (b) (c) 

Figure 12. Using the axis-aligned bounding box (AABB) formed by the major part to represent a 

certain object. (a) AABB of car; (b) AABB of pedestrians; (c) AABB of tree trunks. 

It takes a short time for the LiDAR to rotate around (0.1s for VLP-16). Therefore, no matter 

moving or static objects, there will be an intersection between the two frames of point clouds. As 

shown in Figure 13a, the red point is the car detected in the current frame of the point cloud, and 

the green point is the car in the point cloud of the previous frame. Figure 13b is a schematic 

diagram of this process using AABB. 

 
(a) (b) 

Figure 13. Intersection of a moving object. (a) The intersection of the two sequence frames of point 

cloud data; (b) The intersection formed by the axis-aligned bounding box. 

For a static object, the intersection will be close to the volume of the object; for a moving object, 

the intersection will be much smaller than the volume of the object. Therefore, the intersection can 

be used to distinguish between moving and stationary objects. We used intersection over minimum 

volume (IOMin) to measure and show the intersection, as shown in Equation (9): 

𝐼𝑂𝑀𝑖𝑛 =
𝑉𝑡 ∩ 𝑉𝑡−1

𝑚𝑖𝑛(𝑉𝑡 , 𝑉𝑡−1)
 (9) 

where 𝑉𝑡 is the volume of an object in the point cloud at frame t; 𝑉𝑡−1 is the volume at the last 

frame; 𝑉𝑡 ∩ 𝑉𝑡−1 is the volume of the intersection of 𝑉𝑡 and 𝑉𝑡−1.  

We calculate the IOMin of different objects in the current frame and the first five frames, 

respectively, as shown in Figure 14. It can be seen that different objects can obtain different types of 

curves. For static objects (trees and buildings), the IOMins are usually close to 1 no matter what 

frame it is, such as tree1 and building in Figure 14. For moving objects, the further away they are 

from the current frame, the smaller the IOMin. This is due to the movement of objects. The curves 

of cars and pedestrians in Figure 14 are also different, which is caused by their different shapes. 
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Occlusion in the point cloud is inevitable, which will also affect IOMin. At the t-4 and t-3 frames of 

tree2 in Figure 14, IOMin decreases to a certain extent because the trunk of tree2 is partially covered 

by moving objects. 

 

Figure 14. The intersection over minimum volume (IOMin) of different objects in the current frame 

and the first five frames, respectively. 

To find moving objects from the IOMin sequence, a machine learning model-based recurrent 

neural network (RNN) [34] was developed, as shown in Figure 15.  

 

Figure 15. The intersection over minimum volume (IOMin) of different objects in the current frame 

and the first five frames, respectively. 

In Figure 5, the IOMin sequences are the input cells. Each cell contains 32 neurons whose 

activation function is ReLU. The proposed method only distinguishes moving and static objects. 

Therefore, only one neuron connected with the output in the last step, and the activation function is 

set as a sigmoid function. The timing information of moving objects can be transferred between the 

recurrent cells. In the model training period, the optimizer was Adam, and the batch size was set as 

16. We called this RNN model “IOMin-RNN”. 

In the experiments, we found that the ratio of positive (moving object) and negative (static 

object) samples is not balanced after making about 5500 frames of LiDAR data. The positive sample 

is 1/9 of the negative sample. Therefore, if the cross entropy is used as the loss function, then the 

loss function will bias to the side with more samples during the training, which will make the loss 

function very small, but the classification accuracy is not high for small samples. Thus, we give 

different weights to positive and negative samples to balance the loss of each class. The loss 

function is defined as follows: 
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{
 
 

 
 
𝐿(𝑋, 𝑦) = −𝑊𝑃 ∗ 𝑦 log 𝑝(𝑦 = 1|𝑋)−𝑊𝑁 ∗ (1 − 𝑦) log 𝑝(𝑦 = 0|𝑋)

𝑊𝑁 =
𝑁𝑡𝑜𝑡𝑎𝑙
𝑁𝑁

𝑊𝑃 =
𝑁𝑡𝑜𝑡𝑎𝑙
𝑁𝑝

 (10) 

where 𝑋 is the input of samples; 𝑦 is the category of the output; 𝑊𝑁 is the weight of negative 

samples; 𝑊𝑃 is the weight of positive samples; 𝑊𝑃 ∗ 𝑦 log 𝑝(𝑦 = 1|𝑋) is the loss of positive samples; 

𝑊𝑁 ∗ (1 − 𝑦) log 𝑝(𝑦 = 0|𝑋) is the loss of negative samples; 𝑁𝑡𝑜𝑡𝑎𝑙 is the total number of samples; 

𝑁𝑁 is the number of negative samples; 𝑁𝑃 is the number of positive samples.  

To overcome the overfitting issue, 80% of the datasets were used to train and 20% of the 

datasets were used to validate. After 10 epochs, the accuracy of road user identification can be up to 

98.7% and the recall can be up to 99.9%, as shown in Figure 16a. Figure 16b shows the results of 

labeling road users. 

 

 

(a) (b) 

Figure 16. The results of model training and prediction. (a) Overall accuracy and recall of labeling 

road users by the proposed model; (b) The results of labeling road users in the point cloud, where 

blue objects are road users and gray objects are static objects. 

4.2. Labeling Static Objects 

After excluding the moving objects in the point cloud, attention can now be directed to the 

classification of different static objects, including buildings, poles, and plants. For this purpose, 

three features were extracted from the static objects: 

 Feature 1: the ratio of major part points to all points. The calculation equation is shown as 

Equation (11): 

𝐹𝑒𝑎𝑡𝑢𝑟𝑒1 =  
𝑀

𝑁
 (11) 

where 𝑀 is the point number contained in the major part of an object; 𝑁 is the point number 

contained in this object. 

 Feature 2: volume of the major part. The calculation equation is shown as Equation (12): 

𝐹𝑒𝑎𝑡𝑢𝑟𝑒2 = 𝐻 ∗𝑊 ∗ 𝐿 (12) 

where 𝐻 is the height of the AABB of an object; 𝑊 is the width of the AABB of the object; 𝐿 is the 

length of the object. 

 Feature 3: the height of the major part divided by the width. The calculation equation is shown 

as Equation (13): 

𝐹𝑒𝑎𝑡𝑢𝑟𝑒3 =
𝐻

𝑊
 (13) 

where 𝐻 is the height of the AABB of the major part of an object; 𝑊 is the width of the AABB of 

the major part of the object. 
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The points of the major part of an object are relatively fixed, so the above three features are 

based on the major part features.  

If a tree has a large number of leaves, the value of Feature 1 will be smaller, while other static 

objects will be larger. Therefore, we can use Feature 1 to divide the objects in the point cloud into 

sparse and high-density objects. The sparse objects belong to plants, and the high-density objects 

include buildings, poles, and a small number of short and leafy shrubs. Buildings are usually far 

away from LiDAR and are very large. The poles are thin and long. Therefore, combined with 

Feature 2 and Feature 3, high-density objects can be reasonably divided into three categories, in 

which the objects whose volume is very large belong to the building, the objects whose height 

divided by the width is very large belong to the pole, and the remaining objects belong to the plant. 

To sum up, the process of labeling static objects is shown in Figure 17. 

 

Figure 17. The process of labeling static objects. 

After labeling moving objects and static objects, we have completed the semantic segmentation 

of all objects in the point cloud, and the results are shown in Figure 18. This paper does not separate 

pedestrians and cars from road users. This is because it is difficult to obtain good results only by 

moving the characteristics of objects. In future work, we will separate them from other features, such 

as point number and shape of each road user. 

 

Figure 18. The results of semantic segmentation, where green objects belong to plants, violet objects 

belong to buildings, blue objects belong to the road users, and the red objects belong to poles. 
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5. Experiment 

The data used in this work were obtained from a previous study on the background point 

filtering of low-channel infrastructure-based LiDAR data [6]: we collected approximately 1200 

frames of point cloud data by the Velodyne VLP-16 LiDAR sensor at Central Avenue, Nanling 

campus, Jilin University. The location (Location 1) of the LiDAR sensor is latitude 43.85° N, 

longitude 125.33° W. An aerial photograph of the corresponding location is shown in Figure 19. In 

the experiments, the detection range of the LiDAR is 100m, the vertical angular resolution of the 

LiDAR sensor is 2°, the horizontal angular resolution of the LiDAR sensor is 0.2°, and the 

rotational speed is 10 rotations per second. 

 

Figure 19. Aerial photography of the installation site. 

5.1. Instance Segmentation Evaluation 

To evaluate the instance segmentation algorithm described in Section 3, we compared it to a 

Euclidean-based segmentation algorithm [35] and the regional growth algorithm in Point Cloud 

Library (PCL) [36]. For Euclidean-based segmentation, we set the search radius of the cluster to 1m, 

set the minimum number of points required for a cluster to 10, and set the search mode to KD-Tree. 

Figure 20b shows the results of the Euclidean-based segmentation algorithm. For the regional 

growth algorithm in PCL, the selection of seed points is based on normal and curvature, the growth 

process is compared by the curvature and normal of the seed and its surrounding adjacent points. 

We set the threshold of curvature to 1 𝑚−1 and the threshold of normal to 45°. Figure 20c shows 

the results of the regional growth segmentation algorithm in PCL. 

Figure 20d shows the results of the proposed algorithm. By comparison, it can be found that 

the proposed algorithm can reasonably segment the point cloud. While the Euclidean-based 

segmentation algorithm and the regional growth algorithm segment multiple objects into one object 

(under segmentation), the objects within the red ellipse region are examples. The density of the 

low-channel LiDAR point cloud is lower. There, in the open environment, the Euclidean-based 

segmentation algorithm will cause a small volume object to go missing, as shown in the yellow box 

in Figure 20b. 

We also count the actual number of objects in the original point cloud and the number of 

objects obtained by the three segmentation algorithms, as shown in Table 1. It can be found that the 

algorithm proposed in this paper is closest to the truth value. In contrast, the number of objects 

obtained using the other two algorithms is far less than the truth value, which is due to their serious 

segmentation. The number of objects after segmentation by the proposed method is less than the 

truth, which indicates that there are a small number of objects that are not successfully segmented. 
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This is due to occlusion, which causes the major part of these objects to be completely occluded, 

leaving only the additional part—the leaves in the white box in Figure 20d are the example.  

 

 

(a) (b) 

 

 

(c) (d) 

Figure 20. The results of different segmentation algorithms on an example point cloud are shown in 

LiDAR 360 software. Different colors in the original point cloud mean different heights. Different 

colors in the segmentation result mean different objects. (a) The raw point cloud before 

segmentation; (b) The results of instance segmentation by a Euclidean-based segmentation; (c) The 

results of instance segmentation by the regional growth algorithm in the Point Cloud Library (PCL); 

(d) The results of instance segmentation by the proposed algorithm. 
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Table 1. The number of objects before and after segmentation. 

Algorithms  
Truth Number of objects 

in the original point cloud  

Number of objects  

after segmentation 

Euclidean-based 

59 

12 

Regional growth in PCL 29 

Our work 51 

5.2. Semantic Segmentation Evaluation 

In this paper, the result of semantic segmentation is obtained by classifying the objects and labeling the 

objects obtained by instance segmentation, as shown in Figure 21. 

 

 

(a) (b) 

Figure 21. The results of semantic segmentation. (a) Original point cloud, where color means the 

height of points; (b) The results of semantic segmentation, where green objects belong to plants, 

violet objects belong to buildings, blue objects belong to the road users, and the red objects belong to 

poles. 

5.2.1. Moving Objects 

In the process of semantic segmentation, we first extract road users by the IOMin-RNN model. 

This model is based on RNN, and the input feature of this model is the IOMin sequences. This 

paper tests the effect of different IOMin sequence length on road user detection by using accuracy 

[37], precision [38], recall [39], and Area Under Curve (AUC) [40], as shown in Table 2. It can be 

seen that the identification of road users is more accurate with the increase in sequence length. 

However, when the sequence length is 5 or 6, their recognition effects are similar. Furthermore, it is 

obvious that when the sequence length is 6, more computing resources are needed. Therefore, the 

most suitable sequence length is 5. 
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Table 2. The effect of different IOMin sequence length on road user detection. 

IOMin sequence length Accuracy Precision Recall AUC 

1 0.7382 0.3391 0.8939 0.8445 

2 0.8155 0.4306 0.9394 0.943 

3 0.8991 0.5872 0.9697 0.9769 

4 0.9464 0.7253 0.99 0.9889 

5 (selected) 0.9871 0.9167 0.9903 0.9952 

6 0.9883 0.9228 0.9921 0.9934 

We also evaluated the results of different algorithms, including K-means [41], spectral 

clustering [42], support vector machine (SVM) [43], isolation forest [44], artificial neural network 

(ANN) [45], and the proposed IOMin-RNN model, as shown in Table 3. It can be seen that the 

IOMin-RNN proposed in this paper has the best effect.  

Table 3. The effect of different algorithms. 

Algorithm Accuracy Precision Recall AUC 

K-means 0.9112 0.6077 0.8874 0.901 

Spectral Clustering 0.9373 0.7294 0.8212 0.8879 

Support Vector Machine 

(SVM) 0.8283 0.2888 0.2219 0.5702 

Isolation Forest 0.7974 0.3893 0.99 0.8794 

Artificial Neural Network 

(ANN) 0.9678 0.8148 0.99 0.993 

Our work 0.9871 0.9167 0.9903 0.9952 

5.2.2. Static Objects 

In the collected point cloud data, static objects include buildings, poles, and plants. Because we 

have defined the categories of static objects in advance and the characteristics between them are 

very clear (the three features in Section 4.2), we chose unsupervised learning to classify the static 

objects, which can avoid manual annotation. In Table 4, we evaluate K-means and spectral 

clustering by the average precision (AP) of the three objects. It can be seen that the precision of 

K-means is higher. 

Table 4. The Average Precision (AP) comparison of two unsupervised methods. 

Algorithm Plant Pole Building 

Spectral Clustering 0.9573 0.8394 0.8012 

K-means (selected) 0.9638 0.8646 0.826 

5.3. Robustness 

To further prove the robustness of the proposed method, we test the method in another study 

area in the express way, at Yatai Street, Changchun City, Jilin Province, China. The traffic flow in 

this area is larger. The location (Location 2) of the LiDAR sensor is latitude 43.856° N, longitude 

125.34° W. We collected approximately 1500 frames of point cloud data.  

Figure 22b and Figure 22c show an example of the collected point cloud and the results of 

instance segmentation, respectively. We counted the actual number of objects in the original point 

cloud and the number of objects obtained by the instance segmentation algorithm within a 30m 

radius, as shown in Table 5. It can be seen that some environmental objects (plants, poles, and 

buildings) may be segmented incorrectly. This is because vehicles will block the points in the key 

regions of the environment object in the case of dense traffic, resulting in missing of these objects. 
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Figure 22d shows the results of classifying the objects obtained by instance segmentation, that 

is, the result of semantic segmentation. We calculated the average precision of classifying objects, as 

shown in Table 6. It can be seen that the average precision of road users is higher than that in 

Location 1. This is because there are more vehicles in Location 2 and the vehicles’ speeds are 

relatively fixed in this range. On the contrary, the average precision of plants, poles, and buildings 

are lower than that in Location 1. This is because there are less environmental objects in Location 2 

and vehicles can block these objects. However, the environmental objects do not change 

infrequently. The environmental objects can be recorded when the traffic volume is small, and then 

used when the traffic volume is large. This can solve the problem of low precision caused by large 

traffic volume. 

  

(a) (b) 

  

(c) (d) 

Figure 22. The results of the robustness experiment. (a) Aerial photography of the installation site at 

Location 2; (b) Original point cloud, where color means the height of points; (c) Results of instance 

segmentation, where colors are randomly generated and different colors of adjacent objects mean 

different classes; (d) Results of semantic segmentation, where green objects belong to plants, violet 

objects belong to buildings, blue objects belong to the road users, and the red objects belong to 

poles. 

Table 5. The number of objects before and after instance segmentation. 

Object  Before  After 

Road users 7 7 

Plant 3 2 

Pole 5 3 

Building 4 4 
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Table 6. The average classification precision of each object. 

Object Average Precision 

Road users 0.9902 

Plant 0.821 

Pole 0.8507 

Building 0.7562 

6. Conclusions 

Reliable, accurate, and comprehensive high-resolution microscale traffic data (HRTMD) can be 

used to avoid collisions and improve traffic control and management effectively. The segmentation 

process is a crucial means to obtain such information, which could be especially helpful for locating, 

recognizing, and classifying objects in a traffic scene. This paper presents an instance and semantic 

segmentation method for low-channel roadside LiDAR. For instance segmentation, we proposed a 

regional growth method based on slice units. In this method, we used the attributes of slices to 

extract the major part of each object as the seed point. In addition, we proposed a method to fuse 

multi-major parts to an object, which can improve the accuracy of instance segmentation under 

occlusion. Semantic segmentation in this paper is based on instance segmentation. The semantic 

segmentation of the point cloud is realized by classifying the objects and labeling the objects 

obtained by instance segmentation. For labeling moving objects, we proposed the IOMin-RNN 

prediction model. Comparing with other algorithms, the IOMin-RNN can achieve the best 

performance in indicators including: accuracy (98.71%), precision (91.67%), recall (99.03%), and area 

under the curve (99.52%). For labeling static objects, we represented and classified a certain object 

through the related features derived from its slices. After that, the location and category information 

of pedestrians, vehicles, and the surrounding environment in the point cloud were accurately 

perceived. 

However, the present study and its methodological approach are not free from limitations. (1) 

When the major part of an object is completely occluded, its remaining additional parts will be 

filtered out as noise. (2) The results of segmentation are affected by instance segmentation, since 

instance segmentation is the foundation. For example, in the case of large traffic volume, the 

recognition accuracy of environmental objects is relatively low. 

Furthermore, there are some topics that remain to be studied. Further research work includes 

the following. (1) At present, point cloud segmentation based on machine learning can be broadly 

divided into two categories in terms of point cloud representation—point-based methods and 

voxel-based methods. Our study shows that the slice can be used as the basic unit of point cloud 

segmentation. Therefore, for further studies, we will address building of a slice-based machine 

learning method to realize the end-to-end instance and semantic segmentation of point clouds. (2) 

The location recognition and classification information of objects has been obtained by 

segmentation. It is also part of our future work to study the trajectory and tracking of pedestrians 

and vehicles. (3) Road users should be further divided, because different objects in the traffic field 

have different impacts on traffic. For pedestrians, this can be classified as adults and children. For 

vehicles, this can be classified as trucks, buses, automobiles, and bicycles. (4) Furthermore, in this 

paper, the thresholds in the semantic segmentation are obtained by constant experimental testing. 

We used the threshold value, which has good semantic segmentation results; however, it lacks 

rigorous theoretical reasoning and analysis. In future work, the influence and sensitivity of the 

threshold value and its setting in different traffic scenarios will need to be analyzed. 
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