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Abstract: Azimuth multi-channel Synthetic Aperture Radar (SAR) system operated in burst mode
makes high-resolution ultrawide-swath (HRUS) imaging become a reality. This kind of imaging
mode has excellent application value for the maritime scenarios requiring wide-area monitoring. This
paper suggests a moving target detection (MTD) method of marine scenes based on sparse recovery,
which integrates detection, velocity estimation, and relocation. Firstly, the typical phenomenon of
scene folding in the coarse-focused domain is introduced in detail. Given that the spatial distribution
of moving vessels is highly sparse, the idea of sparse recovery is utilized to acquire the azimuth
time characterizing the position of the moving target reasonably. Subsequently, the radial velocity
and position information about the targets are obtained simultaneously. What makes the proposed
method effective are two characteristics of the moving targets in ocean scenes, high signal-to-clutter
ratio (SCR) and sparsity of the spatial distribution. Then, estimation performances under different
SCR are analyzed by Monte Carlo experiments. And the actual SCR of the vessels in the ocean
scene obtained by GaoFen-3 dual-receive channel mode is invoked as a reference value to verify the
effectiveness. Besides, some simulation experiments demonstrate the capability to indicate marine
moving targets.

Keywords: high-resolution and ultrawide-swath; multi-channel ScanSAR; marine moving targets
detection; target relocation; velocity estimation

1. Introduction

Owing to the advantages of all-weather and all-day, the Synthetic Aperture Radar (SAR) has
always played a pivotal role in the field of remote sensing. However, the conventional single-channel
SAR is incapable of imaging a high-resolution and wide-swath (HRWS) product [1–3]. In other words,
it can only satisfy the requirements of either high azimuth resolution or wide swath, rather than
both of them. Scientists have found an effective way to cope with this inherent limitation, which is
to adopt multiple receive channels [4,5]. The basic idea is to split the entire antenna into multiple
sub-apertures receiving signals at the same time. It allows for a reduced pulse repetition frequency
(PRF) on transmitting. In combination with additional digital processing, the multi-channel echo
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data transforms into an equivalent single-channel echo with an increased effective sampling rate on
receiving. Consequently, the multi-channel system will enable a wide swath without degrading the
resolution, under the condition of uniform sampling. Otherwise, a reconstruction algorithm needs to
be applied to recover the unambiguous azimuth spectrum [6,7].

The future SAR missions will require ultrawide swath imaging capabilities with a reasonable
geometric resolution to reduce the revisit time, as well as observe the Earth wholly and efficiently.
There is an example in Reference [8] showing that a complete observation of the Earth with a weekly
revisit time requires a swath width of 400 km. A multi-channel system operated in stripmap mode
requires a maximum PRF around 400 Hz. The number of receive channels may need to reach several
dozen to ensure a geometric resolution of not less than 10 m, which increases the complexity of the
system and the difficulty of signal processing undoubtedly. However, the new concept of combining a
multi-channel SAR system with scan mode (burst mode) has great potential to provide a high-resolution
ultrawide-swath (HRUS) image by switching the antenna footprint between several sub-swathes [8–11].
Even though imaging an ultrawide-swath area is at the expense of azimuth resolution, it is an attractive
option for imaging marine scenes that require wide-area monitoring [12].

The configuration of multiple channels provides more degrees of freedom for moving target
detection (MTD). But, the echo of each channel cannot be imaged separately due to under-sampling.
It makes traditional MTD methods based on the image domain no longer applicable, for instance,
displaced phase center antenna (DPCA) [13,14], along-track interferometry (ATI) [15,16], space-time
adaptive processing (STAP) [17,18], Velocity SAR (VSAR) [19,20], etc. Due to the difference of steering
vectors between moving targets and stationary ones, the azimuth ambiguity of moving targets still
exists. It reflects in the image as several pairs of false targets. In contrast, the imaging result of
the static targets is free from ambiguity after reconstruction [21,22]. If the moving target detection
works in the image domain, the false alarm rate will increase considerably. At present, many scholars
have paid great attention to the problem of moving target detection in the multi-channel SAR system
under the condition of low PRF. In Reference [23], the authors obtained two sets of ambiguous-free
echoes by multiplying the number of receiving channels and required the system to meet DPCA
conditions strictly. The concept of a virtual multi-channel (VMC) proposed in Reference [24] is to obtain
an equivalent single-channel full-sampling signal by reconstructing the echo of multiple channels.
Then, moving target detection is achieved based on the VMC scheme and the clutter suppression
interferometry (CSI) technique, which is called VMC-CSI. Besides, two different clutter suppression
algorithms, HRWS-DPCA and HRWS-STAP, introduced in Reference [25] are also on the premise of
increasing the receiving channel. Although the principles of these methods are simple, it increases
the complexity and cost of the system. Besides that, there are some moving target detection methods
based on STAP in the echo domain. Since the prior knowledge of the radial velocity is unknown, it is
necessary to search for each hypothetical velocity to extract the respective ambiguous components of
the signals [24,26,27]. Though no extra channels are needed, the huge amount of calculation makes it
difficult to achieve real-time indicators. A robust MTD method suggested in Reference [28] avoided the
velocity traversal process. But, for those targets in which velocities cannot match the filter, the energy
will be weakened certainly, and the radial velocity information needs additional steps to obtain.
Another scheme introduced in Reference [29] applied two two-look processing techniques to indicate
moving targets by comparing the difference between the two looks. While successfully detecting the
target, it cannot accurately reposition the moving target from the wrong location.

What is more, the methods mentioned above are more applicable to the stripmap mode in
the multi-channel system. In the scan mode, Doppler ambiguity of the targets has its particularity.
Although the entire scene is still affected by Doppler ambiguity, for a single target, all the ambiguity
components in a burst data will not appear at the same time. To the authors’ knowledge, there are few
related literatures published. Given that the spatial distribution of moving targets of the ocean scene is
highly sparse, it is reasonable to detect moving targets with the idea of sparse recovery. This paper will
introduce a novel method of MTD in the marine scenes based on the multi-channel ScanSAR system in
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detail. It integrates detection, velocity estimation, and relocation, avoiding velocity iteration, as well
as without increasing system complexity. The proposed method is more efficient to realize moving
target detection and information acquisition, which is of great significance in the field of wide-area
monitoring of ocean scenes.

It is also worth mentioning that neither the channel imbalance nor the along-track velocity of
the targets will take into account in this paper. Because there are many sophisticated methods to
estimate the imbalance between channels, these techniques will be completed in advance by the data
preprocessing process [30–32]. In addition, the along-track velocity will only cause the defocus of the
target and has no impact on the relocation like the radial velocity [33,34]. Moreover, the unfocused
moving target can be well refocused in the image domain by the autofocus technique [35,36].

This paper is organized as follows. In Section 2, we first introduce the system model of the
multi-channel ScanSAR and formulate the problem. Section 3 describes the proposed MTD method
in detail. Some simulation experiments are designed in Section 4. Then, Section 5 summarizes the
performances of the proposed method. Section 6 shows some conclusions and outlook.

2. Problem Formulation

This section first establishes the geometric model of the multi-channel ScanSAR and formulates
the echo signal to facilitate the introduction of the proposed MTD method.

2.1. Geometry Model

The working mechanism of the multi-channel ScanSAR system is shown in Figure 1, taking
6-channel and 3-subswath as an example. The antenna footprint switches periodically between three
subswathes, and the illumination time of a single burst of each subswath is expressed as Tb,1, Tb,2,
and Tb,3. Tc is the time interval required to switch from one subswath to another. The time between
two subsequent illuminations of the same subswath named the cycle time Tp, and it can be written as

Tp =
∑NB

i=1
Tb,i + Tc, (1)

where NB defines the number of subswath. If Tc � Tb,i, it can be ignored here. For convenience,
the difference between Tb,i is negligible, and Tb will represent Tb,i without distinction. Then, the cycle
time Tp is approximated as the following equation.

Tp = NB · Tb. (2)
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In addition, to ensure for every single target a continuous illumination, the synthetic aperture
time Ts needs to meet the following condition:

Ts ≥ Tp + Tb. (3)

As each burst needs to be processed separately before splicing, we are highly concerned about
the signal acquisition within a burst. Within the duration of a burst, the whole antenna transmits
the linear frequency modulation (LFM) signal, and multiple actual phase centers (APC) receive the
echo simultaneously, forming a working mechanism of one-transmit-multiple-receive. The distance
between adjacent APCs is d. However, by compensating a constant phase term, the received data
can be converted into the equivalent self-transmitting and self-receiving data corresponding to the
effective phase center (EPC) [37], which is indicated as Figure 2. In this case, the distance between two
adjacent EPCs reduces to half of the actual distance d. Suppose that there is a moving target in the
scene, its position moves from position 1 to position 2 in the time interval of azimuth time η1 ∼ η2.
va and vr denote the velocities along the azimuth direction and the slant range direction, respectively.
And the range direction mentioned in this paper refers to the slant range direction rather than the
range direction along the ground. We assume that the velocity of the target remains constant for a
short period of illumination.
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Let us explain the operations used in this manuscript first to facilitate the formulation of the
problem. All bold letters represent vectors or matrices. And (·)T denotes the vector transpose operation.
Rp×q represents a vector or a matrix of p rows and q columns.

2.2. Mathematical Model

While the platform speed is vs, the coordinate of the first channel (reference channel) in the
azimuth-range plane at η1 = 0 is (0, 0) and (vsη, 0) at η2 = η. The position of the moving target at the
initial moment is (x0, R0). Similar to the strip mode, the echo of the nth channel sn(τ, η) is expressed as

sn(τ, η) = σ(x0, R0)ωr

(
τ−

2Rn(η)
c

)
ωa(η− ηc) · exp

(
j2π f0τ−

2Rn(η)
c

)
·

exp
(
+ jπKr

(
τ−

2Rn(η)
c

)2
)
, n = 1, 2 · · · · · · , N,

(4)

where τ and η represent range fast time and azimuth slow time, respectively. σ(x0, R0) is the reflection
coefficient of the moving target, and ωr(·) and ωa(·) are the weight coefficient of the antenna patterns
in range and azimuth direction, respectively. Kr denotes chirp rate of the transmitted signal, in which
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carrier frequency is f0. And c is the speed of light. The instantaneous slant range Rn(η) between the
nth EPC and the moving target ignoring higher-order terms is approximately expressed as

Rn(η) ≈ R0 + vr(η− ηc) +
(vs − va)

2

2R0
(η− ηc + (n− 1)Td)

2, (5)

where ηc is a parameter that deserves as much attention as possible, characterizing the position of the
moving target. It also indicates the azimuth time of the target appearance.

ηc =
x0

vs − va
. (6)

Td means the azimuth time interval between two adjacent EPCs, given as:

Td =
d

2vs
. (7)

After range compression and down-conversion, the received signal (4) becomes

sn(τ, η) = σ′(x0, R0)sinc
{

Br

(
τ−

2Rn(η)

c

)}
·ωa(η− ηc) · exp

(
− j ·

4π
λ

Rn(η)
)
, (8)

where Br is the signal bandwidth, and λ is the wavelength. Substituting (5) into (8), the signal of nth
channel after range compression is given by the following equation.

sn(τ, η) = σ′(x0, R0)sinc
{

Br

(
τ−

2Rn(η)

c

)}
·ωa(η− ηc) · exp

(
− j ·

4π
λ

R0

)
Q(η,υt), (9)

where
Q(η,υt) = exp(− j2π fdc(η− ηc)) · exp

(
jπKa,t(η− ηc + (n− 1)Td)

2
)

(10)

We use υt describe the moving target parameter vector.

υt = [vr, va, ηc]
T (11)

fdc and Ka,t are the Doppler center frequency and chirp rate related to the motion parameters,
respectively.

fdc =
2vr

λ
, (12)

Ka,t = −
2(vs − va)

2

λR0
. (13)

For stationary targets, the parameter vector can be written as

υc = [0, 0, ηc]
T . (14)

And
Q(η,υc) = exp

(
jπKa,c(η− ηc + (n− 1)Td)

2
)

. (15)

In fact, due to the azimuth velocity va of the moving target, the Doppler chirp rate of the moving
target Ka,t is different from that of the stationary target Ka,c, but in the spaceborne multi-channel system
model, the platform velocity vs is much faster than the along-track velocity va of the target. Besides,
its influence on the defocusing of moving targets will be eliminated by autofocus technology after
imaging. Therefore, in this manuscript, this difference between Ka,t and Ka,c is ignored, which has little
effect on the moving target detection method described below. The Doppler chirp rate mentioned next
is denoted by Ka.
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3. Moving Target Detection

This section introduces the marine MTD method in detail. First of all, we analyze the unique
scene folding phenomenon in multi-channel ScanSAR. Then, taking advantage of the sparse spatial
distribution of moving targets in ocean scenes, the idea of sparse recovery is used to estimate the
azimuth moments when the targets appear. Finally, based on the results of sparse recovery, the process
of acquiring the velocity and position information about the moving target is introduced.

3.1. Coarse-Focused Image Domain

Dechirp operation is a mature technique for coarse focusing of LFM signals [38]. As shown in
(9) and (10), the received signal of each channel is an LFM signal in the azimuth direction after Range
compression. The reference function of the azimuth dechirp of nth channel is shown as follow:

Sre f ,n(η) = exp
(
− jπKa(η+ (n− 1)Td)

2
)

. (16)

The result of multiplying the signal (9) and the reference function (16) can be expressed as

sn(τ, η) = σ′(x0, R0)sinc
{
Br

(
τ−

2Rn(η)
c

)}
·ωa(η− ηc) · exp

(
− j · 4π

λ R0
)

·exp(− j2πKaηc(n− 1)Td)P(η,υt) ,
(17)

where
P(η,υt) = exp( j2π fdcηc)exp

(
jπKaη

2
c

)
exp(− j2π fdcη)exp(− j2πKaηcη). (18)

Subsequently, transform the signal (17) into the range-Doppler domain to get a coarse-focused image.

sn(τ, fa) = σ′′ (x0, R0)sinc
{
Br

(
τ−

2Rn( fa)
c

)}
·W fa( fa + fdc + Kaηc) · exp

(
− j · 4π

λ R0
)

·exp(− j2πKaηc(n− 1)Td) · F( fa,υt),
(19)

where
F( fa,υt) = exp(− j2π fdcηc)exp

(
jπKaη

2
c

)
exp(− j2πηc fa). (20)

From (19), the moving target focuses roughly on the azimuth frequency point fa, which is closely
related to the azimuth time ηc and the radial velocity vr of the target.

fa = − fdc −Kaηc, fa ∈
[
−

fr
2

,
fr
2

]
. (21)

The PRF of each channel is denoted by fr. In a multi-channel system operating in burst mode, the
relatively low PRF ensures an unambiguous wide swath. As a result, as long as the target focusing
frequency fa exceeds the limit of PRF, this frequency points will be ambiguous, that is to say, two targets
at different positions may focus on the same point in the coarse-focused image domain. This typical
phenomenon is called the scene folding in this paper. According to (21), when the azimuth moment
ηc characterizing the position of a stationary target exceeds a specific interval, i.e., [− fr/2Ka , fr/2Ka],
the scene will be folded. Therefore, taking the size of the scene into account, (21) is more accurately
expressed as

fa + i · fr = − fdc −Kaηc, fa ∈
[
−

fr
2

,
fr
2

]
and i = −l, −l + 1 · · · · · · , l− 1, l, (22)

where K = 2l + 1 is the number of folding times.
The time-frequency relationship, according to (22), is shown in Figure 3, taking the scene folding

five times as an example. The dotted line shows that the stationary targets, e.g., clutter, located at
different positions in the scene, will focus on different azimuth frequencies when the system PRF is high
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enough, and the scene is not superimposed. Furthermore, the solid line represents the time-frequency
relationship in the multi-channel ScanSAR system operating in the low PRF. In this way, clutter
scattering units located in different positions will focus on the same azimuth frequency point fa in
the coarse-focused image domain at the same time. And there is a distinguishing feature worthy of
attention, in which the distribution of these clutter units is equidistant. What is more, owing to the
time-frequency relationship of the stationary target is known, it is easy to calculate the azimuth time of
clutter units following (22) as

ηc = −
fa

Ka
+ i ·

fr
Ka

, i = −l, −l + 1 · · · · · · , l− 1, l. (23)
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Then, we consider the situation with moving targets in the scene, represented with an unbroken
red circle in Figure 3. Although the moving target focuses on the same position with several stationary
clutter units in the coarse-focused domain, the movement of the target will make it to have an offset
along with the Doppler frequency, i.e., fdc. Similarly, ambiguity still exists when the frequency exceeds
the limitation of a PRF. Which frequency point of the moving target will focus on in the coarse-focused
domain is determined by the actual position and velocity of the target together. Unfortunately,
we cannot obtain any prior knowledge about such non-cooperative targets as ships. Neither the
velocity nor position is known in reality. We, therefore, cannot determine in advance where the moving
target will appear. And, in this regard, it is very different from the static clutter unit with a definite
time-frequency relationship. What is more, when the energy of the clutter scattering unit is almost
equal to or higher than that of the moving target, we need to judge whether there is a moving one. It is
precisely the problem solved by the method proposed in this article.

3.2. Scene Folding Times

Before introducing the MTD method, it is necessary to analyze the number of scenes folding
times of the echo received by a burst. It tells in Figure 4 that the antenna beam coverage at the start
time and end time of a burst illumination time Tb. Within this period, the duration corresponding to
the complete area illuminated is Ts + Tb. Likewise, the length of time corresponding to the effective
imaging area is Ts − Tb. In the coarse-focused image domain, the size of the scene unfolded is given by

∆η =
fr

Ka
. (24)
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Consequently, if we only consider the effective imaging area, the number of scene folding times is
calculated by

K =
(Ts − Tb)

fr
·Ka. (25)

From (2) and (3), the relationship between Tb and the synthetic aperture time Ts is approximately
expressed as

Tb =
Ts

NB + 1
. (26)

And Ba = Ts ·Ka is defined as the Doppler bandwidth of the entire scene. Nambi = Ba/ fr represents
the number of the main Doppler spectrum ambiguity [33]. Thus, the relationship between the number
of folding times K and the Doppler ambiguity Nambi can be expressed as

K = Nambi −
1

NB + 1
Nambi. (27)

The multi-channel system requires that the Doppler spectrum ambiguity number Nambi should be
less than the number of channels to achieve unambiguous imaging. The number of folding times must
be less than the number of channels, as well.
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3.3. MTD Based on Sparse Recovery

We assume that there are I moving targets in a particular unit (τ0, f0) in the coarse focus domain.
Furthermore, the above analysis shows that there are at most K clutter scattering units. According to
(19), the signal of the nth channel is expressed as:

sn(τ0, f0) = sn,t(τ0, f0) + sn,c(τ0, f0), (28)

where
sn,t(τ0, f0) =

∑I

l=1
σ̃(xl, R0)F

(
f0,υ(l)t

)
exp

(
− j2πKaη

(l)
c (n− 1)Td

)
, (29)

sn,c(τ0, f0) =
∑K

i=1
σ̃(xi, R0)F

(
f0,υ(i)c

)
exp

(
− j2πKaη

(i)
c (n− 1)Td

)
, (30)

and σ̃
(
xi(l), R0

)
can be regarded as a complex constant for a moving target or a clutter unit, where

σ̃(xl, R0) = σ′′ (xl, R0)sinc
{

Br

(
τ−

2Rn( fa)
c

)}
·W fa

(
fa + f (l)dc + Kaη

(l)
c

)
· exp

(
− j ·

4π
λ

R0

)
. (31)

Considering in a noisy environment, we express the multi-channel signal (28) in matrix form as

S = Atσt + Acσc + n, (32)
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where
S = [S1(τ0, f0), S2(τ0, f0), · · · · · · , SN(τ0, f0)]

T
∈ RN×1, (33)

n = [n1(τ0, f0), n2(τ0, f0), · · · · · · , nN(τ0, f0)]
T
∈ RN×1, (34)

At = [α1,t,α2,t, · · · · · · ,αI,t] ∈ RN×I, (35)

Ac = [α1,c,α2,c, · · · · · · ,αK,c] ∈ RN×K. (36)

In addition, αl,t and αi,c are the steering vectors of the moving target at η(l)c and the stationary

clutter unit at η(i)c , respectively. Both of them have the same form of expression written as

αi =



1

exp
(
− j2πKaη

(i)
c Td

)
...

exp
(
− j2πKaη

(i)
c (N − 1)Td

)


, (37)

σt = [σ1,t, σ2,t, · · · · · · , σI,t]
T
∈ RI×1, (38)

σc = [σ1,c, σ2,c, · · · · · · , σK,c]
T
∈ RK×1, (39)

σi,t = σ̃(xi, R0)F
(

f0,υ(i)t

)
, (40)

σi,c = σ̃(xi, R0)F
(

f0,υ(i)c

)
. (41)

To detect moving targets in the entire effective imaging scene, we divide the effective illumination
time Ts − Tb into P grids equidistantly. Then, a signal model based on sparse framework is given by

S = Aσ+ n, (42)

where
A = [α1,α2, · · · · · · ,αP] ∈ RN×P, (43)

σ = [σ1, σ2, · · · · · · , σP] ∈ RP×1. (44)

In this case, σ is the vector to be recovered, A denotes the over-complete dictionary, which implies
all potential locations of targets and clutter units. The number of clutter units is known as K, and we
believe that moving targets are highly sparse in spatial distribution on the ocean surface. They reflect
in the vector σ, which has a finite number of non-zero values, and all others are zero. Then, η(i)c
corresponding to the non-zero value is the location of the moving target or the clutter unit. The sparse
vector σ is obtained by solving the following problem.

min ‖ σ ‖l0 subject to ‖ S−Aσ ‖l2< ε, (45)

where ‖ · ‖li means li-norm, and ε is noise power. As we all know, it is a non-deterministic polynomial
(NP-hard) problem. Chen, Donoho, and Saunders [39] proposed the method of basis pursuit (BP) to
transform the problem of minimizing the l0-norm to minimizing the l1-norm when A meets restricted
isometry property (RIP) condition.

min ‖ σ ‖l1 subject to ‖ S−Aσ ‖l2< ε. (46)

Then, it becomes a convex optimization problem, which can be solved using a linear
programming method.
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If the number of non-zero values of the signal σ is Ks, it is called Ks-sparse signal. In theory, the
sparsity of the signal Ks should be less than or equal to the sum of the number of moving targets I and
the scene folding times K, i.e.,

Ks ≤ I + K. (47)

There are several cases shown in Figure 5:
Case 1: If there are no moving targets and obvious strong point targets in a uniform scene, such as

the sea surface without ships, tropical rainforest, etc., the sparsity Ks is exactly equal to the scene
folding times K, i.e., Ks = K.

Case 2: If there are moving targets in the scene, and its signal-to-clutter ratio (SCR) is relatively
high, such as the sea surface with several moving vessels, the sparsity Ks depends on the targets in a
specific unit of the coarse-focused image. Given that the high sparseness of moving targets in ocean
scenes, there is little possibility of two moving targets focusing on the same point in the coarse focus
domain. Consequently, Ks = 1.

Case 3: If the imaging area is the junction of sea and land, or there is an island in the scene,
the moving target may superimpose on the strong clutter in the coarse-focused image domain. It makes
us get not only the azimuth time of the moving target but also that of the clutter units from the sparse
recovery results. Thus, the number of clutter units is less than the times of scene folding since the
spatial distribution of the island is discontinuous. Accordingly, 1 < Ks < K.

Case 4: If there are moving targets in the scene, but the energy of clutter is relatively high,
even equivalent to that of moving targets, such as ground moving targets detection from heavy clutter
environment, the sparsity Ks is more than the scene folding times K, i.e., Ks > K.
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In this manuscript, we are concerned about the detection of moving ships in ocean scenes with or
without the island, that is, case 2 and case 3. The proposed method can indicate moving targets more
effectively and accurately, benefiting from the advantages of sparse spatial distribution and high signal
energy of such ocean scenes.

Next, we will pay attention to how to distinguish moving targets and stationary ones from sparse
recovery results. Assuming that f0 is the selected azimuth frequency point containing the moving
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target possibly, the fixed time-frequency relationship of stationary clutter as (23) makes it easy to
calculate their azimuth times. For convenience, we express the calculated results again as

ηci,cal = −
fa

Ka
+ i ·

fr
Ka

, i = −l, −l + 1 · · · · · · , l− 1, l. (48)

We can get K values through calculation, and ηci,cal indicates the correct azimuth position of the
stationary target. Meanwhile, we get Ks estimated results from sparse recovery. Because the real
position of the moving target focused on the selected azimuth frequency point f0 is different from the
calculated position of the stationary targets, we can identify which is the moving target by comparing
each estimated result with the calculated results. In practice, the calculated value and the estimated
one cannot be consistent absolutely. This acceptable error is closely related to the expected velocity
and positioning accuracy. And the next part will solve this problem.

3.4. Radial Velocity Estimation and Positioning

Supposing that a moving target locates at f0, for convenience of description, the estimation results
of the sparse recovery can be written as

ηci,est = ηc0,est + i ·
fr

Ka
, ηc0,est ∈

[
−

fr
2Ka

,
fr

2Ka

]
and i = −l,−l + 1 · · · · · · , l− 1, l, (49)

where ηc0,est is a baseband azimuth time free from ambiguous. Of course, the azimuth time when the
target appears is still represented by ηci,est. From (6), the azimuth coordinates of the moving target are
calculated by

x0 = ηci,est · vs. (50)

We can also obtain its radial velocity information according to (12), (22), and (49).

vr =
λ
2
(− fa −Kaηc0,est), fa ∈

[
−

fr
2

,
fr
2

]
. (51)

Then, an inequality is derived from (51) as

−
fr
2
≤ −

2vr

λ
−Kaηc0,est ≤

fr
2

, m(ηc0,est) − vmax ≤ vr ≤ m(ηc0,est) + vmax, (52)

where

vmax =
frλ
4

, (53)

m(ηc0) = −
Kaηc0,estλ

2
. (54)

Notably, the range of detectable velocity is related to the azimuth time of the target, implied in
Figure 6a. The rectangular is the area where the estimated velocity value is located. The light shadow
area between the two red lines is the correct velocity estimation range, while the estimated results
of two dark triangle shadow areas will be ambiguous. The Doppler frequency shift caused by radial
velocity cannot exceed PRF of the system. Accordingly, the equation for calculating the radial velocity
given by (51) equation requires the moving target to fall in the region without ambiguity, i.e., the light
shadow area. Unfortunately, if the position of the target just falls in the ambiguous velocity area,
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additional modification of the estimated result is needed. Taking the negative azimuth chirp rate
(Ka < 0) as an example, the correction process is expressed as

vr =


vr + vmax ηc > 0

vr ηc = 0

vr − vmax ηc < 0

. (55)
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Figure 6. (a) The detectable velocity range before modification, which is related to the azimuth position
of the target; (b) the detectable velocity range after modification.

The whole modification process is illustrated in Figure 6b, which is equivalent to shifting the
position of two dark triangle areas along the frequency axis. In that case, the range of estimated radial
velocity is identical no matter where it is, i.e.,

|vr| ≤ vmax (56)

Consequently, the maximum detectable velocity (MDV) is vmax, which is depend on PRF and
wavelength only.

Finally, let us discuss the acceptable errors mentioned in the previous section. If the error of
the sparse recovery results is ±ηc,error, the error of the estimated target position x0,error is calculated as
±

∣∣∣ηc,error · vs
∣∣∣, and the error of the estimated velocity vr,error is calculated as ±

∣∣∣ηc,error ·Ka
∣∣∣ · λ/2. In the

practical application, the desired velocity or positioning accuracy determines the acceptable error.
Finally, the detailed processing flow chart of the proposed MTD method is summarized in Figure 7.
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4. Simulation Results

The effectiveness of the proposed MTD approach is verified in this section using a simulation
system. The relevant system parameters are listed in Table 1.

Table 1. Parameters of the simulation system.

Symbol Parameter Value

λ Wavelength 0.055517 m
Br Signal bandwidth 120 MHz
Fs Sampling rate 150 MHz
Tr Pulse width 30 µs
N Channel number 6
d Baseline 1.4 m
vs Platform velocity 7508 m/s
R0 Reference slant range 800 Km
fr PRF 1340.7 Hz
Ts Synthetic aperture time 2.11 s
Tb Dwell time of a burst 0.52 s
Ba Doppler bandwidth 5362.9 Hz
K Scene folding times 3

The first thing we will talk about is what is an acceptable error in the simulation system in
which parameters are listed in Table 1. If we expect to control the radial measurement error within
±0.5 m/s and the positioning error within ±50 m/s, then the result error of the sparse recovery must be
controlled within 0.007 s. Hence, the target is considered as a moving one when the difference between
the calculated value ηci,cal and the actual result of sparse recovery ηci,est exceeds 0.007 s. And from (53),
the MDV is 18.61 m/s.
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4.1. Different Scenes

To verify the detection ability of the proposed method in different situations, we set up three
typical scenarios. Scene 1 is static clutter without any moving targets, shown in Figure 8a. It should be
noted that the multi-channel echoes of the sea clutter background or island in the following simulation
scenarios are the result of the convolution of a part of backscattering coefficients on GaoFen-3 (GF-3)
image and the multi-channel echo of the stationary point target. In Scene 2, there is a moving target
on the clutter background. However, from Figure 8b, there are two false targets (also called ghost
targets) on both sides of the real one. In the multi-channel system, the unambiguous imaging algorithm
is developed for static scenes. But, for moving targets, azimuth Doppler ambiguity still exists after
imaging [34]. The moving target detection method operating in the coarse-focused domain proposed
in this paper avoids the adverse effect of Doppler ambiguity. In the actual SAR data processing process,
we often encounter the situation that there are islands in the ocean scenes. In addition, the energy of
the island is stronger than that of the clutter and is the nearest equivalent to the moving target energy,
which is the reason why we simulate Scene 3, just as Figure 8c. In this scenario, there is a moving
target and a stationary target to simulate a strong scattering point on the island. For clarity, the specific
design scheme of each scene is listed in Table 2. Parameter ηc in the table is the azimuth time related to
the target position, as shown in (6).
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Figure 8. Three simulation scenarios: (a) imaging results of scene 1; (b) imaging results of scene 2;
(c) imaging results of scene 3. (d) Coarse-focused imaging of scene 1; (e) coarse-focused imaging of scene
2; (f) coarse-focused imaging of scene 3; (g) sparse recovery result of scene 1 at fa = 0 Hz; (h) sparse
recovery result of scene 2 at fa = 441.22 Hz; (i) sparse recovery result of scene 3 at fa = 58.70 Hz.
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Table 2. Design schemes of the three scenes.

Scene Number Design Scheme

1 Stationary clutter

2 Stationary clutter
A moving target: ηc = −0.2238 s, vr = 3.5 m/s

3
Stationary island

A moving target: ηc = −0.0746 s, vr = 3.5 m/s Static target 1:
ηc1 = 0.5033 s

The coarse-focused images of the three scenes are shown in Figure 8d–f, respectively. Particular
attention should be paid to the result of scene 3. Although the island and the moving target do not
overlap in spatial distribution, they superimpose on each other in the coarse-focused imaging. It is the
phenomenon of scene folding. Next, we separately detect moving targets in the three scenes employing
the sparse recovery.

Since there is no moving target in scene 1, we arbitrarily choose an azimuth frequency point
fa = 0 Hz to analyze the sparse recovery results. From Figure 8g, the result tells that there are
three targets here, located at ηc−1,est = −0.527 s, ηc0,est = −0.002 s, and ηc1,est = 0.527 s. How can
we know which of these three targets is a stationary one and which is a moving one? Because the
selected azimuth frequency point fa is known, we can easily find the positions of the stationary
targets by (48). Therefore, when fa = 0 Hz, the calculated positions of the stationary targets should be
ηc−1,cal = −0.528 s, ηc0,cal = 0 s, and ηc1,cal = 0.528 s, which is very close to the experimental results.
The maximum error is 0.002 s, which is less than the preset acceptable error 0.007 s. As a result, none of
the three targets we see is a moving one. It just verified Case 1 mentioned in the previous section:
the sparsity Ks is exactly equal to the scene folding times K, that is, Ks = 3. For scene 2, a strong
point appears at fa = 441.22 Hz. The sparse recovery results for this point are shown in Figure 8h.
Because SCR is high enough, we only see one target at ηc0,est = −0.223 s. According to (48), if it is a
stationary target, its possible position is ηc−1,cal = −0.702 s, ηc0,cal = −0.174 s, or ηc1,cal = 0.354 s. The
error between the estimated value and the calculated value is 0.049 s, which is over the acceptable
error 0.007 s. Obviously, the strong point target seen in the experimental results is a moving target.
The radial velocity of the target is calculated as 3.47 m/s from (51), which is almost the same as the
ideal value 3.5 m/s set in the experiment. Scene 2 is also a typical example of Case 2 mentioned in the
previous section, where Ks = 1.

The strong point target in scene 3 focuses on the azimuth frequency point fa = 58.70 Hz. From the
result of the sparse recovery in Figure 8i, there are two strong targets superimposed here. Similarly,
the positions where the static units of this azimuth frequency point should appear are calculated by
(48) as: ηc−1,cal = −0.552 s, ηc0,cal = −0.023 s, and ηc1,cal = 0.505 s. Compared with the experimental
results, one of two targets in which the estimated result is ηc1,est = 0.502 s is very close to the calculated
theoretical value ηc1,cal = 0.505 s within an acceptable error, so we consider this one to be stationary.
However, the target at ηc0,est = −0.072 s is a moving target. Its velocity is calculated to be 3.44 m/s,
and the error with the ideal value is 0.06 m/s. And the positioning error is 19.5 m.

4.2. MTD Effect Demonstration

In addition, the proposed method based on sparse recovery can achieve the functions of moving
target detection, radial velocity information acquisition, and target positioning at the same time.

Another simulation experiment, arranged nine-point targets, including four moving targets and
five stationary ones, is carried out to demonstrate the effect of the proposed MTD method. The details
of the experiment are recorded in Table 3. And the effect of moving target detection is shown in
Figure 9b. The moving target will offset a certain distance along the azimuth direction in SAR image,
which is proportional to the radial velocity. The position of the yellow circle is that of the moving
target in the SAR image, and the place marked with “×” is the real position of the target obtained by
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MTD proposed method based on sparse recovery. In the meantime, the experimental results verified
the effectiveness of the proposed method in detection, velocity estimation, and relocation.

Table 3. Nine-point scene experiment results.

Point Select fa

ηc0,cal
Calculated

by (48)

ηc0,est
Estimated |ηc0,est−ηc0,cal|

vr Estimated
by (51)

Whether It Is
a Moving

Target?

x0 Location
Estimation

by (50)

1 −568.09 Hz 0.224 s 0.225 s 0.001 s −0.0846 m/s No
2 −388.20 Hz 0.153 s 0.224 s 0.071 s −5.0078 m/s Yes 1681.792 m
3 −568.09 Hz 0.224 s 0.224 s 0 s −0.0142 m/s No
4 −287.83 Hz 0.113 s 0.001 s 0.112 s 7.9194 m/s Yes 7.508 m
5 0 Hz 0 s 0 0 s 0 m/s No
6 215.88 Hz −0.085 s −0.001 s 0.084 s −5.9219 m/s Yes −7.508 m
7 568.09 Hz −0.223 s −0.224 s 0.001 s 0.0142 m/s No
8 208.30 Hz −0.082 s −0.225 s 0.143 s 10.0719 m/s Yes −1689.300 m
9 568.09 Hz −0.224 s −0.224 s 0 s 0.0142 m/s No

Remote Sens. 2020, 12, x FOR PEER REVIEW 14 of 21 

 

Figure 9b. The moving target will offset a certain distance along the azimuth direction in SAR image, 

which is proportional to the radial velocity. The position of the yellow circle is that of the moving 

target in the SAR image, and the place marked with “×” is the real position of the target obtained by 

MTD proposed method based on sparse recovery. In the meantime, the experimental results verified 

the effectiveness of the proposed method in detection, velocity estimation, and relocation. 

Table 3. Nine-point scene experiment results. 

Point Select 𝒇𝒂 

𝜼𝒄𝟎,𝒄𝒂𝒍 

Calculated 

by (48) 

𝜼𝒄𝟎,𝒆𝒔𝒕 

Estimated 

|𝜼𝒄𝟎,𝒆𝒔𝒕

− 𝜼𝒄𝟎,𝒄𝒂𝒍| 

𝒗𝒓 Estimated by 

(51) 

Whether It Is 

a Moving 

Target? 

𝒙𝟎 Location 

Estimation 

by (50) 

1 −568.09 Hz 0.224 s 0.225 s 0.001 s −0.0846 m/s No  

2 −388.20 Hz 0.153 s 0.224 s 0.071 s −5.0078 m/s Yes 1681.792 m 

3 −568.09 Hz 0.224 s 0.224 s 0 s −0.0142 m/s No  

4 −287.83 Hz 0.113 s 0.001 s 0.112 s 7.9194 m/s Yes 7.508 m 

5 0 Hz 0 s 0 0 s 0 m/s No  

6 215.88 Hz −0.085 s −0.001 s 0.084 s −5.9219 m/s Yes −7.508 m 

7 568.09 Hz −0.223 s −0.224 s 0.001 s 0.0142 m/s No  

8 208.30 Hz −0.082 s −0.225 s 0.143 s 10.0719 m/s Yes −1689.300 m 

9 568.09 Hz −0.224 s −0.224 s 0 s 0.0142 m/s No  

 

  
(a) (b) 

Figure 9. (a) Imaging result of the 9-targets scene; (b) moving target detection (MTD) results of the 

propose method. 

4.3. Unambiguous Imaging of Moving Targets 

From Figure 9b, the MTD method proposed in this manuscript indicates which one is the moving 

target, as well as estimates the radial velocity and the true azimuth position of the target successfully. 

But, in some applications, we hope to get an unambiguous imaging result of moving targets free from 

the false targets and expect the moving targets to focus on their correct positions instead of just 

marking them. An unambiguous imaging scheme of moving targets for maritime scenarios is 

proposed in Reference [34]. One of the important steps is to compensate for the phase term introduced 

by the radial velocity. Fortunately, the MTD method proposed in this manuscript can also measure 

the radial velocity of the moving target, which helps suppress the azimuth ambiguity. To show the 

imaging results of moving targets more specifically, we only focus on the four moving targets in 

Figure 9. The imaging results without any motion phase compensation are shown in Figure 10a. The 

radial velocities of four moving targets are recorded in Table 3, which are −5.0078 m/s, 7.9194 m/s, 

−5.9219 m/s, and 10.0719 m/s, respectively. The imaging result after compensating the phase term 

caused by velocity is shown in Figure 10b. After the motion compensation, the false target in the 

image is greatly suppressed, just as illustrated in Figure 10c,d, and the position of the moving target 

is corrected. This work reduces the difficulty of image interpretation next. 

Figure 9. (a) Imaging result of the 9-targets scene; (b) moving target detection (MTD) results of the
propose method.

4.3. Unambiguous Imaging of Moving Targets

From Figure 9b, the MTD method proposed in this manuscript indicates which one is the moving
target, as well as estimates the radial velocity and the true azimuth position of the target successfully.
But, in some applications, we hope to get an unambiguous imaging result of moving targets free from
the false targets and expect the moving targets to focus on their correct positions instead of just marking
them. An unambiguous imaging scheme of moving targets for maritime scenarios is proposed in
Reference [34]. One of the important steps is to compensate for the phase term introduced by the radial
velocity. Fortunately, the MTD method proposed in this manuscript can also measure the radial velocity
of the moving target, which helps suppress the azimuth ambiguity. To show the imaging results of
moving targets more specifically, we only focus on the four moving targets in Figure 9. The imaging
results without any motion phase compensation are shown in Figure 10a. The radial velocities of four
moving targets are recorded in Table 3, which are −5.0078 m/s, 7.9194 m/s, −5.9219 m/s, and 10.0719 m/s,
respectively. The imaging result after compensating the phase term caused by velocity is shown in
Figure 10b. After the motion compensation, the false target in the image is greatly suppressed, just as
illustrated in Figure 10c,d, and the position of the moving target is corrected. This work reduces the
difficulty of image interpretation next.
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5. Performance Analysis

This section analyzes several performances of the proposed method theoretically and
experimentally. Firstly, we interpret that the over-complete dictionary matrix in this paper is equivalent
to the sensing matrix in the compressed sensing model, and the correlation between atoms of the
matrix is utilized to measure the performance of sparse recovery. Then, Monte Carlo experiments are
carried out to verify the performance of the proposed method under different SCR conditions.

5.1. Rationality Analysis

Compressed sensing (CS) is an effective theoretical basis for recovering sparse signals. At first,
we will explain the rationality of our signal model in (42) applied to CS theory [40], which addresses
the following problem:

y = Φx = ΦΨd = Θd, (57)

where the signal x is assumed to be sparse or compressible in some sparse basis Ψ ∈ RP×P, the signal d
is a Ks-sparse signal. Furthermore, Φ is the measurement matrix of the size N×P with N < P. The main
goal of CS is to recover the Ks-sparse signal d of length P from measurements signal y of length N.

From (42), the received multi-channel signal S is modeled as a superposition of Ks target
signals. The high SCR of the ocean scene makes Ks equal to 1 in most cases except for the particular
example of the target and an island superposition in the coarse-focused image domain. There is a
one-to-one correspondence between the location of the target x0 and the azimuth moment ηc when
the target appears. Therefore, sparsity in spatial distribution is equivalent to that in azimuth time.
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Correspondingly, we divide the effective illumination time of a burst into P grids. If we want to get the
information of each target in the P grids, we must have P measurements. Hence, the basis matrix is
given by

Ã =
[
α̃1, α̃2, · · · · · · , α̃p

]
∈ RP×P , (58)

where

α̃i =



1

exp
(
− j2πKaη

(i)
c Td

)
...

exp
(
− j2πKaη

(i)
c (P− 1)Td

)


. (59)

Whereas the signal is compressible, i.e., Ks � P, we only need N measurements to get an estimation of
the signal. In the same way, the measurement matrix is defined as Φ = IN×P, that is, the first N rows of
the P-dimensional identity matrix. In this case, the signal model in (42) can also be expressed as the
following equation corresponding to the CS model.

S = ΦÃσ = Aσ . (60)

Consequently, the over-complete dictionary A in (43) is the sensing matrix Θ of CS model. Note,
this problem formulation imposes that the actual moving target signal is many fewer than the potential
ones. Although RIP theory is a sufficient condition to test whether a matrix can reconstruct a signal,
it is complicated to judge whether a matrix satisfies the requirement. Another criterion is expressed in
Reference [41]: When the number of measured values N, the signal dimension P, and the sparsity Ks

of the signal satisfy N ≥ KslogP, it means that the low-dimensional received echo S already contains
enough information to reconstruct the signal σ.

Subsequently, what we are interested in is the factor that affects signal reconstruction. In CS theory,
the correlation between columns in the sensing matrix is also an index to evaluate the performance of
reconstruction [42]. The smaller the correlation, the better the reconstruction performance. Let

µ(A) = max

∣∣∣αH
i α j

∣∣∣
‖ αi ‖l2 · ‖ α j ‖l2

, i, j = 1, 2, · · · · · · , P i , j. (61)

By substituting (37) into (61), the correlation coefficient is written as

µ(A) = max

∣∣∣∣∣sin
(
NπKaTd

(
η
(i)
c − η

( j)
c

))∣∣∣∣∣
N sin

(
πKaTd

(
η
(i)
c − η

( j)
c

)) = max

∣∣∣∣∣sin
(
Nπ dvs

λR0

(
η
(i)
c − η

( j)
c

))∣∣∣∣∣
N sin

(
π dvs
λR0

(
η
(i)
c − η

( j)
c

)) . (62)

Without loss of generality, we defined η
(i)
c − η

( j)
c as the interval of the grid ∆ηc. The formula

implies that the correlation coefficient is related to the interval of the grid and the antenna length L.
Even though the increase of grid interval is beneficial to improve the performance of sparse signal
recovery from Figure 11, it should be reasonably selected to realize the super-resolution estimation
of the position of the moving target. Figure 11a shows that with the identical antenna baseline d,
the more channels are, the less correlation of the sensing matrix is. Similarly, with the same number of
channels, the performance will be better with the increase of antenna baseline, which is demonstrated
in Figure 11b. In comparison, under the assumption of fixed antenna length L, the combination of
different baseline length and channel number shows the same performance, implied in Figure 11c.
In brief, for the sake of ensuring the super-resolution estimation ability, we may not be able to improve
the performance of sparse signal recovery by merely increasing the time interval of the grid. However,
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the increase in antenna length will allow multiple targets folded in a unit in the coarse-focused imaging
domain, such as ground moving targets detection.

Moreover, in this manuscript, the number of pulses (also called snapshots) used to recover sparse
signals is one, i.e., single measurement vector (SMV). In future work, the application of multiple
measurement vector (MMV) will improve the accuracy of the reconstructed signal undoubtedly.Remote Sens. 2020, 12, x FOR PEER REVIEW 17 of 21 
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Figure 11. (a) Under the assumption that the antenna baseline d is 1.4 m and the numbers of channels
N are 4, 6, 8, and 10, respectively, the correlation coefficient of the sensing matrix changes with the
grid interval varying 0.001 s to 0.4 s; (b) under the assumption that the number of channels N is 6 and
the antenna baselines d are 1.0 m, 1.2 m,1.4 m, and 1.6 m, respectively, the correlation coefficient of
the sensing matrix changes with the grid interval varying from 0.001 s to 0.4 s; (c) the total length
of the antenna L = 8.4 m is fixed, and under the assumption of the combination of different channel
numbers and baseline length, the correlation coefficient of the perception matrix changes from 0.001
to 0.4. The different combinations are = 2.10 m N = 4, d = 1.4 m N = 6, d = 1.05 m N = 8,
and d = 0.84 m N = 10, respectively.

5.2. Influence of SCR in Coarse-Focused Imaging Domain

There is no doubt that the power of clutter background will, to some extent, affect the performance
of moving target detection. In the image, different SCR reflect various clutter environments. Besides,
both external and internal factors of the MTD method works in the coarse focused domain, the influence
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of different signal-to-noise ratio (SNR) and SCR in this domain will be elaborated experimentally in
this section.

Since the SNR of the echo signal will improve greatly after range compression and azimuth
dechirp, the noise in the coarse focus domain will not be too strong. We take point target as an example
to illustrate it. In the worst case, the noise and the signal have the same energy, i.e., SNR = 0 dB, in the
echo domain. After the matched filtering in range direction, the SNR has increased by 20 dB. And after
dechirp operation in the azimuth direction, the SNR has increased by 20 dB again. It qualitatively
shows that SNR in the coarse focus domain is significantly higher than that in the echo domain.

Then, 500 Monte Carlo tests were carried out to explore the performance of the proposed method
under different SCR and SNR conditions, i.e., NMC = 500, shown in Figure 12. The SCR is set from
10 dB to 40 dB, while SNR is from 30 dB to 40 dB. The root-mean-square error (RMSE) is used to
evaluate the accuracy of the estimation. Suppose that the result of the sparse recovery of a test is η̂c,est

and the real value is ηc. The error is calculated by

ηrmse =

√
1

NMC

∑NMC

i=1

(
η̂
(i)
c,est − ηc

)2
. (63)

We consider this test is successful if the difference between the estimated result η̂c,est and the real
value ηc of a single test is less than 0.007 s. Assuming that the number of successful trials in NMC trials
is Nsuc, then the success rate Rsuc is written as

Rsuc =
Nsuc

NMC
× 100%. (64)

From Figure 12a, the information we get is that the estimation error is relatively small when SCR
in the coarse-focused domain is over 20 dB. Similarly, when SCR is over 20 dB, the success rate is
relatively high from Figure 12b.
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Figure 12. (a) Root-mean-square error (RMSE) of sparse recovery results under different signal-to-clutter
ratio (SCR) and noise with different power is added, signal-to-noise ratio (SNR) = 30, SNR = 35, and SNR
= 40, respectively; (b) the success rate of moving target detection under different SCR conditions, that is,
if the error is within the acceptable range, the single test is considered successful.

GF-3 is the first Chinese multi-channel SAR sensor with dual receive channels [43] named ultra-fine
stripmap (UFS) mode. In order to investigate the approximate SCR of the marine moving targets in
the actual data, we selected 18 images of the Huanghai Sea (starting at E123.9, 34.2N, and ending
at E122.9, N29.4) collected by GF-3 SAR sensor on 18 May 2019. And the SCR values of 57 ships
in the coarse-focused domain are calculated and displayed in Figure 13. Generally speaking, if the
sea surface condition is complex, such as affected by a strong wind field, the SCR is relatively low.
On the other hand, the SCR of the target on the calm sea surface is relatively high. However, from the
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statistical results of the actual data, the SCR is almost no less than 20 dB. Therefore, to some extent,
the proposed MTD method is suitable for most kinds of the sophisticated or calm sea surface. We do
not give too much consideration to the influence of some extreme atmospheric conditions. Because it is
very difficult to produce a high-quality image under such conditions, moving target detection and
ambiguity suppression will become meaningless.

What is more, moving target detection in the scene with lower SCR corresponds to ground moving
target detection (GMTI). Following the previous conclusion, due to the limited number of observations,
the accuracy of sparse recovery reduces.
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6. Conclusions

This paper suggests a marine MTD method based on the sparse recovery idea. The advantages
of this method are summarized as follows: (1) Moving targets are detected in the coarse-focused
domain, which avoids the influence of false targets after imaging. (2) It is more efficient compared
with the traditional STAP method by avoiding the velocity iteration. (3) The proposed approach
integrates the detection, radial velocity measurement, and repositioning, as well as comprehensively
grasps the motion information of the ships on the vast sea surface. (4) It takes full advantage of the
characteristics of high SCR and the highly sparse distribution of moving targets in the ocean scene.
(5) The radial velocity measured by the proposed MTD method helps suppress the azimuth ambiguity.
Statistics suggest that the SCR of moving target in the coarse-focused domain is usually not less than
20 dB in various ocean scenes. The experimental results tell that the proposed method has excellent
performance when the SCR is higher than 20 dB. However, this method also has some limitations.
For the scene with low SCR or continuous distribution of strong scattering area, e.g., scenes of land,
limited by the number of observations, it may not achieve the effect of moving target detection. In the
future, this method is expected to realize engineering and automatic operation. And the algorithm has
great social value in many application fields, such as ship search and rescue and route prediction.
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