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Abstract: Aerosol optical depth (AOD) is a key parameter that reflects the characteristics of aerosols,
and is of great help in predicting the concentration of pollutants in the atmosphere. At present,
remote sensing inversion has become an important method for obtaining the AOD on a large scale.
However, AOD data acquired by satellites are often missing, and this has gradually become a popular
topic. In recent years, a large number of AOD recovery algorithms have been proposed. Many AOD
recovery methods are not application-oriented. These methods focus mainly on to the accuracy of
AOD recovery and neglect the AOD recovery ratio. As a result, the AOD recovery accuracy and
recovery ratio cannot be balanced. To solve these problems, a two-step model (TWS) that combines
multisource AOD data and AOD spatiotemporal relationships is proposed. We used the light gradient
boosting (LightGBM) model under the framework of the gradient boosting machine (GBM) to fit
the multisource AOD data to fill in the missing AOD between data sources. Spatial interpolation
and spatiotemporal interpolation methods are limited by buffer factors. We recovered the missing
AOD in a moving window. We used TWS to recover AOD from Terra Satellite’s 2018 AOD product
(MOD AOD). The results show that the MOD AOD, after a 3 × 3 moving window TWS recovery,
was closely related to the AOD of the Aerosol Robotic Network (AERONET) (R = 0.87, RMSE = 0.23).
In addition, the MOD AOD missing rate after a 3 × 3 window TWS recovery was greatly reduced
(from 0.88 to 0.1). In addition, the spatial distribution characteristics of the monthly and annual
averages of the recovered MOD AOD were consistent with the original MOD AOD. The results show
that TWS is reliable. This study provides a new method for the restoration of MOD AOD, and is of
great significance for studying the spatial distribution of atmospheric pollutants.

Keywords: LightGBM; spatiotemporal weight interpolation; AOD recovery; East Asia

1. Introduction

Atmospheric aerosols are a dispersion system of suspended colloids formed by solid or small
particles [1]. With the increase in the number of aerosols emitted by human activities, the scattering
and absorption of solar radiation forms a brighter cloud layer and directly reduces the efficiency
of precipitation [2]. Moreover, the increased number of aerosols changes the structure of the
atmosphere, reduces solar radiation on the surface, increases the heating effect on the atmosphere,
reduces precipitation, and inhibits the removal of pollutants [3]. Additionally, the weak water cycle
brought about by aerosols directly affects the quality and quantity of fresh water [4]. Therefore, it is
crucial to quantitatively measure the aerosol optical depth (AOD). Typically, the definition of AOD is
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the vertical integral of the aerosol extinction coefficient in the atmosphere column, which is used to
describe the aerosol optical properties [5,6].

There are two main methods for obtaining AOD data: ground acquisition and space acquisition.
The Aerosol Robot Network (AERONET) represents the ground observation network, which relies
mainly on a sun spectrophotometer to conduct fully automatic measurements of the AOD at the
instrument deployment site [7,8]. Compared with space acquisition, the AOD obtained by the
ground observation network has higher accuracy. Nevertheless, it is difficult to provide a wide
range of viewing angles for the AOD of ground measurements due to limitations in equipment
deployment and observation ranges [9,10]. Therefore, it is more efficient to use remote sensing for
AOD measurement and inversion on a large scale. The following are some of the remote sensing
inversion products that are commonly used in AOD observations: (1) MODIS sensors on the Terra
and Aqua satellites in polar orbit are used to provide global AOD products (MOD AOD and MYD
AOD) with resolutions of 10 km and 3 km every day through the Dark Target (DT) [11] and Dark
Blue (DB) [12] algorithms [13,14]. (2) MODIS sensors combined with the Multi-Angle Implementation
of Atmospheric Correction (MAIAC) algorithm [15] are used to provide AOD products with a fixed
1-km grid. MAIAC AOD uses time series to detect multiangle surface features to recover Bidirectional
Reflectance Distribution Function (BRDF). Compared with the DT and DB algorithm, it can better
identify AOD information in cloud and snow areas [16,17]. (3) The Advanced Himawari Imager
(AHI) sensor on the Japan Himawari-8 geostationary satellite provides AOD products with a spatial
resolution of 5 km at a spectral wavelength of 500 nm and continuously monitors East Asia at a
maximum interval of 10 min [18,19].

At present, many studies use AOD as an important indicator or parameter for the mapping of
air pollutants (e.g., PM2.5, PM10) [20–22]. Complete and high-precision AOD distribution data will
greatly improve the quality of the mapping of air pollutants. However, uncertainties in cloud detection,
limitations of the AOD inversion algorithm, and sensor degradation are the three main factors that
cause a partial loss of the AOD local data retrieved by satellites [23–25]. For example, the shortcomings
of the DT algorithm and DB algorithm for AOD detection in bright areas, the errors of cloud detection
in some heavily polluted areas and the degradation of other sensors directly affect the detection of dark
pixels in low angle areas, which leads to the loss of AOD data in some areas [26,27]. A study of the
Yangtze River Delta in China found that the missing rate of MOD AOD reached 89.6% between 2014
and 2017 [28]. Because the results of AOD are affected by meteorological conditions, human activities
and vegetation coverage, it is difficult to ensure the accuracy of the AOD restoration [29].

A large quantity of research has focused on how to recover missing information from AOD
data. One approach is through the innovation of the inversion algorithm to reduce the missing AOD.
For example, some researchers use low cloud detection standards or the Dense Dark Vegetation (DDV)
algorithm to improve the AOD inversion accuracy of bright surfaces [30,31]. However, such methods
still cannot overcome the missing AOD data caused by cloud shading [32]. Statistical regression
models such as linear regression [33,34], spatial interpolation and spatiotemporal interpolation [35,36]
are used to fill in the deficiency of the AOD statistical regression models, and it is difficult to analyze
the internal relationships of the global heterogeneity of the AOD data, which results in poor recovery
results. AOD information is filled in by using a machine learning methods such as random forest
(RF) [20] or gradient boosting machine (GBM) [24] to process the multisource data. The strong data
mining ability of the machine learning methods is good for fitting multisource data, and it can achieve
higher precision at the same time [9,37].

In this paper, a two-step model (TWS) is proposed to recover the missing AOD caused by the
presence of clouds of MOD AOD under the premise of ensuring recovery accuracy. Specifically, the first
step of TWS uses a machine learning method to integrate multisource AOD data. The second step uses
the spatio-temporal interpolation and spatial interpolation methods of moving windows to further
fill in the missing MOD AOD. In addition, the second step of TWS uses a local buffer to reduce the
heterogeneity of the AOD caused by time differences. Section 2 of this paper describes the research
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area and data set, Section 3 shows the methodology of the TWS, Section 4 shows the results of the
model, Section 5 discusses the model and application, and Section 6 presents the conclusions.

2. Materials

2.1. Study Areas

Part of the East Asia region (18–50◦ N, 96–150◦ E) was selected as the study area (Figure 1).
The research area mainly includes regions of China, Mongolia, Japan, the Korean Peninsula, and the
Northeast Pacific. The study area includes countries that contain more than 75% of the population
distribution in East Asia in total (central and eastern China, Korean Peninsula, Japan, Mongolia,
northern Vietnam) and major urban agglomerations (Yangtze River Delta, Pearl River Delta, Seoul City
Cluster, Tokyo City Cluster) [38]. The spatial and temporal distribution characteristics of AOD data are
complicated by the increasing number of human activities [39]. Additionally, a large-scale research
area can reduce the probability of all missing AOD data on a given day and provide enough data for
research. Moreover, a larger study area has more complex land types and other factors, which can
better test the universality of the model.

Figure 1. Distribution of the AERONET sites considered in this paper.

2.2. Datasets

We collected the data from 86 ground AERONET stations in the study area from 31 December
2017, to 1 January 2019 (Figure 1) and the satellite AOD dataset. The satellite data included Terra
and Aqua satellite AOD products (MOD AOD/MYD AOD), MAIAC AOD, and AHI AOD products.
In addition, we included part of the auxiliary data.

2.2.1. AOD Products

We selected the following three AOD products: 1. The “MOD AOD” data were selected from
MODIS Terra, and the “MYD AOD” data were from Aqua Aerosol Collection 6.1, which were
downloaded through Earthdata (https://earthdata.nasa.gov). A total of 16,233 images of MOD AOD
and MYD AOD were selected with a time resolution of one day and the spatial resolution of 3 km [40].
2. More than 19508 MAIAC AOD data were downloaded from Earthdata. We selected the MAIAC
AOD data at the spectral wavelength of 550 nm and then removed invalid AOD based on the guidance
of the filter quality assurance in the user manual (reserve AOD when QA.CloudMask = Clear and
QA.AdjacencyMask = Clear). 3. We selected the Advanced Himawari-8 AOD (AHI AOD), which is
provided by the Japan Meteorological Agency (JMA). AHI AOD data were divided into two levels:

https://earthdata.nasa.gov


Remote Sens. 2020, 12, 3786 4 of 24

L2 and L3. The L3 product selected in this research underwent strict cloud screening. Therefore, the L3
product has higher accuracy and reliability than L2 [41]. L3 daily products (averaged from L3 hour
products) have a spatial resolution of 5 km and contain a total of 367 images. AHI AOD date were
obtained from the FTP provided by JMA (ftp.ptree.jaxa.jp).

2.2.2. AERONET Data

AERONET (aeronet.gsfc.nasa.gov) has a time resolution of 15 min. AERONET AOD contains three
quality levels: Level 1.0 (unscreened), Level 1.5 (cloud-screened and quality controlled), and Level 2.0
(quality-assured). Compared with Level 1.0, the uncertainty of Level 1.5 and Level 2.0 in version 3 is
low [8]. In this paper, the Level 1.5 and Level 2.0 data of version 3 of the AERONET site in 86 research
areas are used as ground truth values for comparison.

2.2.3. Auxiliary Data

The auxiliary data were mainly divided into meteorological, terrain, land data and other types.
The meteorological data were extracted from the Modern-Era Retrospective analysis for Research and
Applications version 2 (MERRA2) dataset (https://earthdata.nasa.gov) [42]. The meteorological data
included the temperature (TLML), wind speed (WS), surface roughness (ZM), surface specific humidity
(QSH), and planetary boundary layer height (PBLH). The spatial resolution of the meteorological
data was 0.625◦ × 0.5◦, and the average value of the 9:00–12:00 local time (satellite transit time)
data was calculated as the meteorological data of the day. The terrain data were extracted from
Shuttle Radar Topography Mission (SRTM) data (https://earthdata.nasa.gov) with a spatial resolution
of 90 m. The terrain data included the digital elevation model (DEM), slope, and aspect. The land
data included population data, road density, and Normalized difference vegetation index (NDVI)
composition. The population data were obtained by LandScan (landscan.ornl.gov), which is integrated
by multisource data and released once per year. The spatial resolution of the population data was
approximately 1 km [43]. The road data provided by OpenStreet (www.openstreetmap.org) were mainly
composed of data shared by users, and were therefore free from copyright. The road data were the
vector data format of ESRI (RL). NDVI data use MOD13 A2 16D 1 km spatial resolution (collection 6)
data (https://earthdata.nasa.gov) [44]. Other types included the day of the year (DOY).

3. Methods

Due to aerosol diffusion, AOD inversion algorithm differences, remote sensing image detection
time differences, and differences in multisource AOD data are mainly reflected in the different data
sources, different data detection times, and various data detection positions [10,45,46]. Thus, the life
cycle of aerosols in the troposphere varies from a few days to a few weeks [4,47]. Over a short time,
there is a correlation between different AOD data sources; in addition, there is a correlation between
different AOD data detection times. According to the 2018 statistics of the AOD data in the study area,
the MOD AOD at the same location on the same day is directly related to MYD AOD, MAIAC AOD
and AHI AOD data. The MOD AOD at the same position correlates with that of the adjacent time,
and the specific data are shown in Table 1. The spatial correlation refers to the correlation coefficient
(R) of the effective AOD values of two adjacent pixels. The time correlation refers to the R of the
effective value of the target AOD pixel and the adjacent day AOD pixel.

ftp.ptree.jaxa.jp
aeronet.gsfc.nasa.gov
https://earthdata.nasa.gov
https://earthdata.nasa.gov
landscan.ornl.gov
www.openstreetmap.org
https://earthdata.nasa.gov
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Table 1. MOD AOD correlation (spatial correlation, temporal correlation, and correlation of different
AOD data sources).

R

MOD AOD spatial correlation R = 0.92 (n = 13,489,645)
MOD AOD time correlation R = 0.57 (n = 15,895,438)

Time correlation of multisource AOD
data (compared with MOD AOD)

MYD MAIAC AHI

R = 0.56 (n = 7,746,528) R = 0.77 (n = 10,125,868) R = 0.56 (n = 15,256,795)

Note: n represents the number of observations.

This paper proposes a two-step model (TWS) that combines the rich data volume of multisource
data and the inherent spatial-temporal distribution relationships of aerosols to recover missing MOD
AOD. First, we preprocess the multisource data and then use the TWS method to recover the MOD AOD.
1. For the multisource AOD data obtained at the same spatial location on the same day, some sources
have pixel values, and some are missing. The existing data helps to recover some of the missing
MOD AOD values from the other data sources, which is possible due to the complementarity of the
multisource AOD data. The multisource AOD data is fitted and calculated using a machine learning
method, and then the overlapping parts of the multisource AOD data are calculated by a weighted
average to fill in some missing MOD AOD pixels. 2. In the moving window, the missing MOD
AOD can be recovered through space or spatiotemporal relationships. First, we create a moving
window. The corresponding calculation scenario is determined by the number and distribution of
the AOD in the moving window and then combined with the buffer factor to perform the calculation.
Finally, the recovered MOD AOD pixels are obtained by the priority settings of the overlapped pixels
(priority stack). The steps of the specific method are shown in Figure 2.

Figure 2. Flowchart of the proposed TWS model. The recovered AOD represents the final result.
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3.1. Data Preprocessing

First, we create a 3-km spatial resolution grid in the UTM coordinate system. We rebuild the
multisource data according to the grid position (including the AOD data set and auxiliary data).
MAIAC AOD, AHI AOD, meteorological data, terrain data, and land data must be reconstructed
because the spatial resolution is not 3 km. Specifically, MAIAC AOD, terrain data and NDVI must
have their averages calculated in the 3-km grid. We summarize the population data within the 3-km
grid (POP), and the RL data must have the total length of the roads in the grid calculated, which is
assigned to the road length grid (RLG). All of the reproduced information must be resampled due to
pixel position deviation.

3.2. First Step of TWS

GBM uses a gradient descent algorithm to adjust the regression tree of the weak learner’s addiction
model, thereby reducing the loss of the objective function. LightGBM was developed by Microsoft and
uses the GBM framework. LightGBM adds Gradient-based One-Side Sampling (GOSS) and Exclusive
Feature Bundling (EFB). Compared with GBM, LightGBM can accelerate the calculation speed under
the premise of ensuring accuracy, and has a higher calculation speed for large sample data [48,49].
In this study, MOD AOD was used as the dependent variable; MYD AOD, MAIAC AOD, AHI AOD and
the other auxiliary data were used as independent variables. Three LightGBM models, i.e., MOD-MYD,
MOD-MAIAC and MOD-AHI, were established. Then, the accuracy of the prediction model was
verified by a 10-fold cross-validation method. The data for constructing the LightGBM model were
randomly divided into ten groups. Cyclic verification was performed ten times, and one group was
used for prediction verification, while the remaining nine were used as training samples. The decision
coefficient (R2) was used as an index for model verification. Next, we used the trained model to predict
the missing AOD of MOD AOD where MYD AOD, MAIAC AOD, and AHI AOD were not missing.
After calculating the three LightGBM models, weighted average processing was performed on the
overlapping pixels according to the LightGBM training result R2.

3.3. Second Step of TWS

AOD data has a strong spatial correlation (the R of adjacent MOD AOD is 0.9), but it also has a
certain correlation in time (the R of adjacent time MOD AOD is 0.5). Therefore, when restoring MOD
AOD information, we consider the spatial relationship of AOD and the spatiotemporal relationship.
Moreover, the small moving window could reduce the uncertainty caused by AOD spatial heterogeneity.

3.3.1. Design of Moving Window Size and Selection of Interpolation Mode

Moving windows of different sizes will affect the number of valid MOD AOD pixels. However,
a large moving window will cause serious spatial heterogeneity of MOD AOD, and will also affect
the computing performance of the MOD AOD recovery. In this study, we set the size of the moving
window to 3 × 3 pixels, 7 × 7 pixels, and a self-adaption window (from 3 pixels to 7 pixels) [34].
The self-adaption window is determined by the ratio of the number of valid AOD pixels to the total
number of pixels. The formula is as follows:

Sw = Max
(PVx

PA

)
x ∈ (3, 4, 5, 6, 7) (1)

where Sw represents the size of the self-adaption window; PVx is the number of valid AOD pixels in
the window; and PA is the total number of pixels in the window.

Spatial interpolation and spatiotemporal interpolation methods have good adaptability to recover
the AOD data, which performs a strong correlation in local space and is spatiotemporal. Regardless of
whether it is spatial interpolation or spatiotemporal interpolation, the recovery results of the AOD data
are greatly affected by the distribution and the number of valid AOD data points and the spatiotemporal
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distribution of the AOD data. Therefore, this study designed the following scenarios (taking a 3 × 3
window as an example), as shown in Figure 3: (1). Inverse Distance Weight interpolation (IDW) [50] is a
spatial interpolation method. It was applied when the central MOD AOD was missing in the moving
window. (2). We used region constraints kriging (RC kriging) which involves adding a constraints
factor to the ordinary kriging method. It was applied when five or fewer pixels of MOD AOD were
missing in the moving window. (3). We used spatiotemporal weight interpolation when the number
of missing cells of Day 2 MOD AOD was greater than or equal to 5 and the number of valid AOD
cells of Day 1 or Day 3 MOD AOD was greater than or equal to 5. (4). When there were too few MOD
AOD pixels in the moving window for three consecutive days (Day 2 had no MOD AOD pixels and
the number of valid MOD AOD cells for Days 1 and 3 were fewer than (5), we ignored this part of
the calculation. The change in the window size changed the above rule (the ratio of the number of
AOD pixels to the total number of moving window pixels). For example, when the window was 7 × 7,
the five pixels in condition two increased to 27.

Figure 3. Three scenarios of the second step TWS. Here, n represents the number of missing AOD
pixels in the moving window, and Days 1, 2, and 3 represent three consecutive days (where Days
1 and 3 are disordered). 1—Spatial represents spatial interpolation, including IDW and RC kriging.
2—Spatiotemporal-weight represents spatiotemporal weighted interpolation and lists two examples.
3—Pass indicates that this scenario ignores and does not calculate the AOD in the moving window.

3.3.2. Buffer Factor

Because the moving window introduced only a small quantity of MOD AOD data, it caused the
prediction value to deviate greatly between the spatial interpolation and spatiotemporal interpolation
of MOD AOD. Therefore, a buffer factor was introduced to correct the deviation. Global Moran’s
I (MoranI) [51] is a statistic for spatial autocorrelation; the larger the MoranI of AOD, the higher
the similarity of the AOD data, which can provide more information for the recovery of AOD gaps.
This approach is applied to calculate the spatial autocorrelation of MOD AOD in the region; the larger
the value of MoranI, the higher the correlation of the MOD AOD data in the region. This study
calculated MoranI in different areas and determined the maximum amount of MoranI in a local area.
The corresponding local area was called the scope window (Figure 4). The mathematical expectation
of the MOD AOD of the scope window served as a buffer factor for the spatial interpolation of the
MOD AOD. Uncertainty in the numeric values of the MOD AOD pixels in the scope window was
prone to occur, and the MOD AOD pixel values were not in a Gaussian distribution. The Spearman
correlation coefficient was introduced as the time buffer factor of the MOD AOD. The mathematical
expectation of the Spearman correlation coefficient for three consecutive days and the MOD AOD of
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the scope window were used as buffer factors for the spatiotemporal interpolation of the MOD AOD.
The formula is as follows:

MoranI =
n
∑n

i=1
∑n

j=1 Gi j(pi−p)(p j−p)∑n
i=1

∑n
j=1 Gi j

∑n
i=1(pi−p)2

Gi j = 1/
√
(ix − jx)

2 +
(
iy − jy

)2

w← Scope Window↔ Max(MoranIw−1, MoranIw, MoranIw+1)

Ew =

(
w∗w∑
i=1

Si

)
/w2

P(Stk,Et2) =

∑n
j=1(Stk−Et2w)(Stk−τt2)√∑n

j=1(Stk−τtk)
2 ∑n

j=1(Stk−τt2)
2
k ∈ (1, 3)

(2)

where MoranI represents the Global Moran’s I. Here, n represents the number of valid pixel AODs;
pi and p j represent the AOD values of the two pixels, I and J; x represents the average value of the AOD
pixels; dis(i, j) represents the spatial distance between the two pixels, I and J; Gi, j represents the inverse
distance weight; Scope Window represents the window that corresponds to the maximum local MoranI,
Scope Window is a square; w represents the number of pixels on one side of the square a Scope Window;
↔ represents iterative search for the Scope Window;← represents obtaining w; Si represents the AOD
value in the Scope Window; Stk represents the AOD value in the Scope Window on day tk; Ew represents
the mathematical expectation of AOD in the Scope Window (buffer factor); and P(Stk,Et2) represents the
Spearman correlation coefficient between day tk and day t2.

Figure 4. Buffer factor calculation flowchart.

3.3.3. Spatial Interpolation Method (IDW and RC Kriging)

Compared with other complicated physical models of AOD recovery, the spatial interpolation
of AOD can quantify the spatial information of the AOD with known spatial positions, which can
easily and effectively predict the missing AOD data over a small range. Moreover, the AOD spatial
interpolation method does not require an excessive number of parameters. Among them, IDW and the
spatial interpolation method are commonly used to predict the missing AOD. Additionally, based on
the best linear unbiased prediction of ordinary kriging interpolation [52], we introduced the buffer
factor for spatial interpolation when predicting the MOD AOD in a moving window, and established
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RC kriging. The buffer factor helps the RC kriging method to better adapt to the stability of mod AOD
in the moving window [53]. The formula is as follows:

Z1 =

 N∑
i=1

N∑
j=1

Gi, j
(
Si, j − Ew

)+ Ew



N∑
i=1

N∑
j=1

,2iג j ×Cov
(
si, j

)
− µ = Cov

(
s j,i

)
N∑

i=1

N∑
j=1

,2iג j = 1

Z2 =

 N∑
i=1

N∑
j=1

,2iג j
(
Si, j − Ew

)+ Ew

(3)

where Z1 and Z2 represent the AOD estimates produced by IDW interpolation and RC Kriging
interpolation, Gi, j represents the inverse distance weight, si, j represents the MOD AOD value at
points I and J, µ represents the Lagrange multiplier, ,2iג j represents the weight, Cov

(
si, j

)
and Cov

(
s j,i

)
represent the covariance of si, j and s j,i, and Ew represents the mathematical expectation in the
Scope Window (buffer factor).

3.3.4. Spatiotemporal Weight Interpolation (STW)

Spatiotemporal interpolation can effectively consider both space and time MOD AOD relationships
and overcome the shortcomings of MOD AOD space interpolation [54]. We quantify the time distance of
one day of MOD AOD as 1 and combine the spatial distance between the MOD AOD pixels to determine
the spatiotemporal distance. The spatiotemporal distance and the buffer factor are used to determine
the spatiotemporal weight of MOD AOD spatiotemporal interpolation. We combine the spatiotemporal
interpolation and spatiotemporal weights to generate spatiotemporal weight interpolation (STW).
In this study, the time of STW used for MOD AOD was set to three days (including the predicted day,
as well as the days before and after the predicted time), to avoid the excessive AOD data noise caused
by a time span that is too long. The specific formula is as follows:

ZST0 =
3∑

tk=1

 Nt∑
j=1

([
Nt∑

i=1

(
,tkiג j

(
Sti, j − Etw

))]
+ Etw

)
tkג = (tk,tk)ג =

N∑
j=1

√
(1− [(P(St1 ,Etk)

+ P(Stk ,Et3))/2])
(

1/dis(tki , tk j)∑N
i=1(1/dis(tki , tk j))

)
k = 2

tkג = (tk,t2)ג =
N∑

j=1

√(P(Stk ,Et2)

2

)2
+

(
1

dis(tki ,tk j)
/∑N

i=1

(
1/dis

(
tki , tk j

)))2
k ∈ (1, 3)

dis(i, j) =
√
(ix − jx)

2 +
(
iy − jy

)2

(4)

where ZST0 represents the estimation of STW. T represents the time of day, t1 is the previous day,
t2 is the day to be calculated, and t3 is the next day. St represents the value of the valid AOD. Etw is
the mathematical expectation in Scope Window within t days (buffer factor), P(τtk,τt2) represents the R
between t2 and tk. tkג represents the time weight of k days (k ∈ (1, 2, 3)). N is the number of pixels in
the moving window, and dis

(
tki, tk j

)
represents the spatial distance between tki and tk j.

3.3.5. Priority Setting of Overlapping Pixels

Because the spatial interpolation of MOD AOD and STW belong to the second step in TWS,
TWS will have overlapping results of MOD AOD recovery with the movement of the window.
Therefore, TWS should set the priority of the MOD AOD recovery results. The priority of the MOD
AOD recovery result was set to IDW > RC Kriging > STW. If the MOD AOD recovery resulted in
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overlap, then the missing values of the MOD AOD were filled according to their priority. Furthermore,
if the recovery results of the MOD AOD overlap in the same method, the average amount of the MOD
AOD recovery results overlap should be calculated as the final result of the MOD AOD. For example,
in the process of moving the window of TWS, RC kriging and STW were used in the two calculations
before and after the predicted time, and the overlapping area of the MOD AOD recovery result should
have used the RC kriging result. If RC kriging was used for both calculations during the window
movement of the TWS, the overlapping area of the MOD AOD recovery results were calculated in the
average value as the final MOD AOD recovery result.

3.3.6. Validation Methodology

A comparison between the MOD AOD recovery results and AERONET data can be used as the
basis for the MOD AOD recovery accuracy [55]. The time resolutions of MOD AOD and AERONET
were different. This research calculated the transit time of the satellite (Terra) (30 min before and after)
and compared the average value of the AERONET data with the MOD AOD data of the location pixels for
the AERONET site [37]. In addition, AERONET collected AOD data of multiple wavelengths, many of
which were slightly different from the MOD AOD wavelength (550nm). Therefore, the AERONET
AOD at 550 nm was interpolated using the Ångström exponent [7]. In addition, both the 551 nm and
560 nm AOD data were used in the AERONET data to evaluate the MOD AOD. The specific calculation
formula is as follows:

τω = βωδ

δ = −
ln(τ1/τ2)
ln(ω1/ω2)

β = τ1(ω1)
δ = τ2(ω2)

δ

(5)

where τ, τ1, and τ2 represent the AOD at wavelengths ω, ω1, and ω2, respectively. Here, δ represents
the Ångström exponent.

The accuracy evaluation indexes include R and RMSE, where RMSE is as shown in Equation (6).

RMSE =

√√√
1
N

N∑
i=1

(τ(MOD AOD)i − τ(AERONET)i)
2 (6)

where τ(MOD AOD) and τ(AERONET) represent the AOD from MOD AOD and
AERONET, respectively.

4. Results

4.1. LightGBM Training and Processing Results

We constructed and trained the three LightGBM models separately and combined them with
10-fold cross-validation; the sample size, R2, and independent input variables are listed in Table 2. Then,
each of the three LightGBM models was used to predict the missing MOD AOD, and we superimposed
the prediction results (where the overlap of the pixels is weighted according to R2); the results for
1 January 2018 are listed in Figure 5.

Table 2. LightGBM results and other variables.

Group Auxiliary Independent Variables n R2

MOD AOD-MYD AOD TLML, SPEED, ZM, QSH, PBLH, NDVI,
POP, RLG, DOY, Slope, Aspect and

Elevation

2,112,108 0.964
MOD AOD-MAIAC AOD 4,226,536 0.975

MOD AOD-AHI AOD 5,784,070 0.956



Remote Sens. 2020, 12, 3786 11 of 24

Figure 5. MOD AOD is recovered from multisource AOD data and auxiliary data after fitting by
LightGBM (2018.1.1). Here, (a) shows the original MOD AOD data (90% missing AOD); (b) shows the
MOD AOD (56% missing AOD) after AHI AOD, and the auxiliary data were recovered by LightGBM;
(c) shows the MOD AOD after combining MYD AOD and the auxiliary data after LightGBM recovery
(84% missing AOD); (d) shows the MOD AOD (66% missing AOD) after combining MAIAC AOD and
the auxiliary data after LightGBM recovery; (e) shows the result of calculating the weighted average
of the overlapping parts of (b), (c) and (d) (47% missing AOD). The legend is the value range of the
MOD AOD.

In Table 2, it can be seen that all of the auxiliary variables were involved in the training of the three
groups of LightGBM models, and the R2 of the 10-fold cross-validation fitting effect exceeded 0.95.
Additionally, in 1 January 2018, the MOD AOD gap was filled by MYD AOD, MAIAC AOD, and AHI
AOD. Among them, AHI AOD contributed the largest quantity of AOD data. The AOD missing rate
predicted by AHI AOD decreased from 90% to 56%. After calculating the weighted average of the
overlapping parts, the AOD missing rate dropped to 47%.

4.2. Comparison between MOD AOD Recovered by Different Methods and AERONET

We compared the AOD data recovered by different methods with AERONET: 1. The original MOD
AOD data and AERONET. 2. The first step of the TWS (LightGBM) was used to calculate the recovered
AOD and AERONET comparison. 3. Using spatiotemporal kriging interpolation to interpolate the
MOD AOD, we then compared the AOD results with AERONET data. 4. The TWS calculation results
were compared with AERONET. To evaluate the effect of the TWS model more carefully, the accuracy
of the comparison was divided into all of the AOD data parts (including the recovered part of the AOD
and the original MOD AOD part) and a separate AOD recovery part (excluding the original MOD
AOD data), as shown in Figures 6 and 7.
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Figure 6. Comparison of MOD AOD recovered by different methods (including the recovered
MOD AOD and original MOD AOD) and AERONET. (a) Comparison of the original MOD AOD and
AERONET. (b) Comparison of the MOD AOD recovered by LightGBM and AERONET. (c) Comparison of
the MOD AOD recovered by spatiotemporal kriging interpolation and AERONET. (d) Comparison of
the MOD AOD recovered by TWS with AERONET. The solid red line represents the regression line;
the solid black line is the 1:1 line. The color bars represent the density of the points.

Figure 7. Comparison of MOD AOD and AERONET recovered by different methods. (a). Comparison of
the recovered MOD AOD of LightGBM (excluding the original MOD AOD part) and AERONET.
(b). Comparison of the MOD AOD recovered by TWS (excluding the original MOD AOD part)
and AERONET. (c). Comparison of the MOD AOD recovered by TWS (excluding the original MOD
AOD and LightGBM recovered MOD AOD) and AERONET. The solid red line represents the regression
line; the solid black line is the 1:1 line. The colored bars represent the density of the points.
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As shown in Figures 6 and 7, the number of matching points of MOD AOD and AERONET for
reference are 263, the R is 0.83, and the Root Mean Square Error (RMSE) is 0.13. In the comparison of all
of the AOD pixel values, LightGBM has the least number of matching points (n = 876), and although the
number of matching points in the spatiotemporal kriging interpolation is the largest (1587), the quality
according to the R and RMSE (0.59, 0.71) is not as good as that of LightGBM (0.85, 0.24), while TWS
(R = 0.87, RMSE = 0.23) maintains value of the R with LightGBM and the reference and the quality of
RMSE while also obtaining a larger number of matching points (1433). In the comparison of the AOD
recovery part, we computed the results of the TWS recovery after removing MOD AOD (R = 0.87,
RMSE = 0.26) and LightGBM (R = 0.88, RMSE = 0.25), and the R and the indicators of RMSE were
removed from LightGBM MOD AOD (R = 0.86, RMSE = 0.26), which is consistent; the R is consistent
with the reference (the difference in the RMSE index is related to the number and distribution of the
reference samples). It can be seen from the results that TWS not only utilizes the information volume of
the multisource AOD data, but also absorbs the advantages of AOD spatiotemporal information. In the
case of increasing the number of matching points, the R can still maintain a high quality, which indicates
that the TWS is reliable.

To further verify the effectiveness of TWS, we regridded the original MOD AOD by 5 × 5 AOD
pixels size, and set the existing value in the grid center as a forced-missing AOD. Then, we used
3 × 3 grid TWS to regenerate the forced-missing MOD AOD. A validation between the regenerated
MOD AOD and the original effective MOD AOD is shown in Figure 8.

Figure 8. Comparison of the regenerated MOD AOD by 3 × 3 TWS and the original MOD AOD. The
solid red line represents the regression line; the solid black line is the 1:1 line. The colored bars represent
the density of the points.

As shown in Figure 8, the number of regenerated MOD AOD is 2352752. After restoring the
missing AOD by 3 × 3 grid TWS, the validation process results in R = 0.98 and RMSE = 0.05 between
the regenerated MOD AOD and the original effective MOD AOD. These results show that the 3 × 3 grid
TWS also maintains good stability and accuracy in recovering a large number of missing MOD AOD
pixels. This verifies the reliability of the TWS.

4.3. TWS Recovered the Performance with Different Moving Windows

The missing rate for MOD AOD was calculated by the ratio of the MOD AOD pixels and the
total number of pixels in the study area, as shown in Figure 9. The MOD AOD missing rate was
set to between 0 and 1. The recovery of MOD AOD requires higher accuracy and a lower MOD
AOD missing rate to achieve its goal. Although the MOD AOD after the spatiotemporal kriging
interpolation processing had no AOD data missing, the accuracy could not reach the application level.
Therefore, the comparison of the MOD AOD missing rate was conducted in different windows of
the TWS (3 × 3 window, adaptive window and 7 × 7 window). According to the statistics of the
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original MOD AOD data and the MOD AOD results recovered by TWS, the annual average missing
rate of the original MOD AOD exceeded 0.8. After the first step of the TWS LightGBM calculation,
the average annual missing rate of MOD AOD decreased from 0.8 to 0.4, and after 3 × 3 restoration of
the window, the annual average missing rate of MOD AOD decreased from 0.4 to 0.1; additionally,
the result calculated after the 7 × 7 window (0.06) showed the smallest annual average missing rate of
MOD AOD.

Figure 9. Time series plot of daily AOD coverage over study areas in 2018 for MOD, LightGBM, 3 × 3,
self-adaption and 7 × 7. MOD represents the original MOD AOD, LightGBM represents LightGBM
recovered MOD AOD, 3 × 3 represents the 3 × 3 grid moving window TWS recovered MOD AOD,
self-adaption represents the self-adaption moving window TWS recovered MOD AOD, and 7 × 7
represents the 7 × 7 moving window TWS recovered MOD AOD. The numbers in parentheses represent
the average and standard deviation of the empty AOD coverage.

Furthermore, in 2018, the standard deviation of the missing rate of MOD AOD after LightGBM
alone was 0.131. However, the standard deviation of the MOD AOD missing rate of the TWS treatment
was smaller than 0.08, which shows that LightGBM alone relies on only multisource AOD data.
After processing by LightGBM alone, there is still a large quantity of missing AOD data. In contrast,
a complete TWS combined with spatial and spatiotemporal information can reduce the missing rate of
MOD AOD.

According to Table 3 and Figure 10, the missing rate of MOD AOD, R, and the calculation efficiency
all change with changes in the size of the moving window. Among them, the 7 × 7 grid has the
lowest R and the largest RMSE, 0.78 and 0.32, respectively. The adaptive R and RMSE are 0.79 and 0.3,
respectively. The 7 × 7 grid and adaptive R decrease compared to the 3 × 3 window, while the RMSE
increases. The adaptive network’s calculation time of the grid is the largest, i.e., 4.2 times that of the
3 × 3 grid, while the 7 × 7 grid is 2.7 times that of the 3 × 3 grid. The above data show that with the
expansion in the window size, the result R from the recovery of the MOD AOD decreases, while the
RMSE increases. A possible reason for this is that the spatial and temporal variability of the MOD
AOD increases with the size of the moving window. Moreover, the change in the size of the moving
window also significantly affects the amount of calculation.
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Table 3. Performance comparison of 3 different moving windows.

Windows R (Total) Incompleteness (%) Time Ratio (%)

3 × 3 grid 0.85 10 100
7 × 7 grid 0.78 6 225

Self-adaption grid 0.79 8 423

Figure 10. Comparison of TWS recovered MOD AOD (including the recovered MOD AOD and original
MOD AOD) and AERONET in different moving windows. a. Comparison of the 7 × 7 moving window
TWS recovery MOD AOD and AERONET. b Comparison of the self-adaption moving window TWS
recovery MOD AOD and AERONET. The solid red line represents the regression line; the solid black
line is the 1:1 line. The colored bars represent the density of points.

4.4. Analysis of the Spatiotemporal Characteristics of MOD AOD Recovered by TWS

Combining the recovery results of the MOD AOD in the 3 × 3 window of the TWS and the
spatiotemporal kriging interpolation results of the MOD AOD, the annual average results of the MOD
AOD after recovery were calculated and compared with the annual average results of the original
MOD AOD (Figure 11). The following can be found in Figure 11: (1). There were still some gaps in
the annual average map of the original MOD AOD (the position of the red circle 1). Compared with
Figure 1 (land use), the red circle is mainly brighter, bare land, which confirmed that the DT algorithm
and the DB algorithm had poor AOD data inversion in relatively bright areas. The annual average
result of the MOD AOD recovery in the 3 × 3 window of TWS and the annual average result of the
MOD AOD spatiotemporal Kriging interpolation filled the gaps of the AOD data in the red circle
1. (2). The maximum value of the original annual average result of the MOD AOD is too large in
Figure 11 (the maximum AOD value was 3). (3). The maximum value in the annual average result
of MOD AOD in the 3 × 3 window of TWS decreased to 0.64 and the annual average result of the
spatiotemporal kriging interpolation of MOD AOD decreased to 0.82. (4). The average value in the
annual average results of the original MOD AOD, spatiotemporal kriging interpolation and TWS were
0.23, 0.34 and 0.27 respectively. The original MOD AOD data had a large number of missing AOD
pixels (the missing rate in Figure 11a was 2%). There was a lack of sufficient AOD pixels to average the
minimum and maximum values in the original MOD AOD, which ultimately led to the maximum
value in the original MOD AOD annual average result being too large (the maximum AOD value was
3), and the average value in the original MOD AOD annual average result was low (the average AOD
value was 0.23). (5). Comparing red circle 2, the annual average results of the original MOD AOD and
the spatiotemporal Kriging interpolation of the MOD AOD are higher. The annual average results of
the restoration of MOD AOD in the 3 × 3 window of TWS retained the original MOD AOD spatial
characteristics of the annual average results and reduced the annual average of MOD AOD. Moreover,
in the Pacific region, the annual average results of the restoration of the TWS 3 × 3 window MOD AOD
were higher than the original annual average results of the original MOD AOD. In the original annual
average results of the MOD AOD, the reason why the AOD data gap in red circle 1 was filled is that
the 3 × 3 window of the TWS and the spatiotemporal kriging interpolation method filled the AOD
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data gap to a large extent. The reason for this was that the MOD AOD gap was filled, and the MOD
AOD annual average result was more fully calculated. The maximum value of the original MOD AOD
annual average result was reduced. In addition, due to the lack of accurate prediction of local features
by the spatiotemporal kriging interpolation algorithm, the annual average result of the MOD AOD
spatiotemporal kriging interpolation was higher than the average annual result of the restoration of
the TWS 3 × 3 window MOD AOD.

Figure 11. The average annual MOD AOD distribution in 2018. (a). Annual average of the original
MOD AOD (2% missing). (b). The MOD AOD average of the spatiotemporal kriging interpolation
recovery (missing 0). (c). The 3 × 3 moving window TWS recovered the MOD AOD annual average
(missing 0). The red fonts Ave and Max represent the average and maximum values of the AOD annual
average graph, respectively. The white part represents nodata. The color bar represents the MOD
AOD value.

We compared the results of the TWS 3 × 3 window MOD AOD recovery with the original MOD
AOD data by a monthly average (Figure 12). In Figure 12, we marked the missing rate, average and
maximum of the monthly average of the original MOD AOD and the monthly average of TWS AOD
for each month. The monthly average maximum value of TWS AOD was smaller than the original
monthly average maximum value of MOD AOD. The average range of the monthly average results of
TWS AOD (0.17–0.24) was also smaller than the average monthly average results of the original MOD
AOD (0.18–0.36). In addition, the TWS AOD monthly average result also accurately retained the high
value area of the original MOD AOD monthly average result (in the yellow box).

On this basis, in the yellow box area in Figure 12 (112.7◦ E–125.2◦ E, 32.5◦N–42.1◦N), we calculated
the monthly average and maximum AOD values of the original MOD AOD and TWS AOD in this area,
as well as the monthly average AERONET AOD at the same place (Figure 13). In the yellow box area,
the maximum of the monthly average original MOD AOD result was greater than 2. The maximum of
the monthly average TWS AOD result was lower than the maximum of the monthly average original
MOD AOD result. Moreover, the largest average value of the monthly average TWS AOD results
was in June. Specifically, there was an upward trend from January to June and a downward trend
from June to December. In addition, in the yellow box, there are seven AERONET ground stations.
We calculated the monthly average of these stations. The monthly average trend of MOD AOD after
TWS recovery was also consistent with the monthly average AERONET AOD trend. A similar trend
was shown by Song et al. [56] for the North China Plain in 2018.
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Figure 12. Monthly average of the original MOD AOD and 3 × 3 moving window TWS recovered
MOD AOD (each month includes the missing rate of MOD AOD). The red fonts Ave and Max represent
the average and maximum values of the AOD monthly average graph, respectively. The white part
represents no data. The yellow box area represents the sampling area in Figure 13. The color bar
represents the MOD AOD value.
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Figure 13. The broken line represents the monthly average original MOD AOD and the monthly
average MOD AOD restored by TWS, respectively, and the dotted line represents the monthly average
AERONET AOD, with the ordinate on the left. The histogram represents the maximum value (monthly)
of the original MOD AOD and the MOD AOD recovered by TWS, respectively, with the ordinate on the
right. The above data is from the yellow box area of Figure 12.

5. Discussion

5.1. Comparison of TWS and Other MOD AOD Recovery Models

The recovery of missing satellite AOD product data is of great significance to atmospheric
pollution research. Recently, many methods have been used to study the recovery of missing data
from satellite AOD products. This study selected the same approach to recover missing MOD AOD
data and made a comparison in Table 4. The results of the various methods in Table 4 were compared
with AERONET. Based on this comparison, the improvements in R compared to the MOD AOD and
AERONET recovered by the proposed method and the R compared to the original MOD AOD and
AERONET were not obvious (the R of the MOD AOD and AERONET recovered by the TWS recovery
was the highest). In the comparison of the missing rate of MOD AOD, the missing rate of MOD AOD
recovered by TWS was the lowest (0.1). Additionally, in the different methods in Table 4, the missing
rate of the MOD AOD recovered by TWS had the largest decreased missing rate difference compared
to the original MOD AOD (0.78). The improved difference (R) of the 3 × 3 window TWS method was
not significantly different from other methods. However, the decreased missing rate difference (%)
of the 3 × 3 window TWS method was significantly different from other methods. The main reasons
are as follows: (1.) The 3 × 3 window TWS introduced multisource datasets (MYD AOD, MAIAC AOD,
AHI AOD). With TWS, the first step is to use the spatial complement of AOD data sets with different
algorithms and data collection times. The AOD missing rate dropped from 88% to 40%. In Figure 9,
the decreased missing rate difference (%) is 48%. (2.) The second step of the 3 × 3 window TWS is to
make reasonable use of the spatiotemporal relationship of AOD, under the optimization of moving
window and buffer factor. The AOD missing rate decreased from 40% to 10% (the decreased missing
rate difference (%) was 30%). Although the direct comparison of the decreased missing rate difference
had certain limitations, it also showed stability and excellent performance for the TWS.
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Table 4. Comparison of the MOD AOD data recovery methods.

Method Original Missing
Rate (%)

Improved Missing
Rate (%)

Decreased Missing
Rate Difference (%) Original R Improved R Improved

Difference (R) Source

ST-AVM 80 60 20 0.89 0.87 −0.02 [34]
NWRL ~70 ~60 ~10 0.77 0.78 +0.01 [33]

* 89 75 14 0.93 0.91 −0.02 [28]
TWS (3 × 3) 88 10 78 0.83 0.87 +0.04 Our paper

Note: ~ indicates a lack of accurate data in the cited article. * indicates a lack of method name in the cited article.

5.2. TWS Recovery MOD AOD Performance Discussion

The MOD AOD after TWS processing can obtain a higher improved R and lower AOD missing
rate because it takes full advantage of the rich data volume of multisource data and the high local
spatiotemporal autocorrelation of the AOD itself. A large amount of research has confirmed that
multisource data can easily introduce data noise. However, based on the data statistics, we chose
LightGBM to build a MOD AOD prediction model, which can make full use of the characteristics
of different AOD data and reduce the data noise. From the comparison between LightGBM and
AERONET, it can be seen that the LightGBM model does not introduce much data noise (all R = 0.85,
R = 0.86 after removing MOD AOD).

Moreover, we developed MOD AOD recovery measures based on moving small windows by
combining MOD AOD spatial data and spatiotemporal data when generating the statistics. The setting
of the small window is used to ensure a high correlation of AOD in the small window. MOD AOD
recovery measures set three MOD AOD recovery modes, and use the adaptive space and spatiotemporal
buffering methods. Different calculation modes were set based on the temporal and spatial distribution
of valid AOD information, to enable the calculation to be more reliable when recovering the AOD value.
In this way, it can avoid the introduction of excessive data noise. The index was used to determine
the local area of the autocorrelation, and the mathematical expectation and R were introduced to
slow down the spatiotemporal difference; then, we determined the spatial and spatiotemporal buffer.
Spatial and spatiotemporal buffering can more accurately improve the R of the moving small windows
to recover the MOD AOD missing data. These settings all ensure the accuracy of the MOD AOD
recovery and reduce the data loss rate of MOD AOD (R = 0.87 compared to MOD AOD and AERONET
in the 3 × 3 window. The average daily loss rate of MOD AOD was 10%, whereas the adaptive window
of the MOD AOD and AERONET comparison was R = 0.79, the average daily missing rate of MOD
AOD was 8%, the window of the 7 × 7 window MOD AOD and AERONET comparison was R = 0.78,
and the average daily missing rate of MOD AOD was 6%). In different applications, different window
sizes can be chosen to meet different needs because the moving window size is variable. For example,
to obtain a lower MOD AOD data loss rate, a larger moving window in TWS can be selected. The 7 × 7
window in the 2018 experiment can limit the average daily loss rate of MOD AOD to 6%. Therefore,
moving the window size can adjust this advantage and make the TWS method more flexible. Moreover,
if the missing MOD AOD data rate is not 0, the iterative approach to the TWS method can be used,
which gradually reduces the missing MOD AOD data rate to 0. Of course, it is also possible to use
spatial interpolation based on the results of MOD AOD processed by TWS to reduce the missing
rate of MOD AOD to 0. Because TWS is based on sufficient data statistics on AOD data and uses
AOD spatial autocorrelation, the TWS method can, in general, be applied to the missing data of AHI
AOD, MAIAC AOD, MYD AOD and other remote sensing products with spatial correlation and time
correlation. Finally, the MOD AOD recovered by TWS cannot be studied and used on a global scale
because the AHI sensor is carried on a geosynchronous orbit satellite.

5.3. TWS Recovery MOD AOD

In the results of MOD AOD recovery in the study area in 2018 (Figure 11), we found that the areas
with higher AOD were mainly concentrated in North China, the Central China Plain, the Yangtze River
Delta and the Sichuan Basin; in northern Vietnam, the Japanese Islands and the Korean Peninsula,
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the AOD was lower (see Figure 12). Because of the dry weather conditions of the Red River Delta,
in addition to local traffic and industrial pollution, there was a relatively obvious pollutant transmission
process, and higher AOD distributions existed in southern China and northern Vietnam in March
and April [57]. Moreover, there was also a higher monthly average value of AOD near the North
China Plain and Shandong Peninsula in China which spread to the sea. Furthermore, in November,
December and January, the pollutant diffusion capacity of North China, the Central China Plain and the
Yangtze River Delta was more obvious during the influence of the winter monsoon [58,59]. Eventually,
the mean monthly AOD of North China, the Central China Plain, the Yangtze River Delta and the East
China Sea increased. Overall, the high AOD area did not cover the Korean Peninsula or the Japanese
Islands. Although some of the pollutants might have reached the Korean Peninsula and the Japanese
Archipelago region through the atmospheric transmission process, most of the pollutant transmission
still stopped in the offshore area of China.

6. Conclusions

A high-precision, low AOD missing rate MOD AOD recovery result is of great help in measuring
the spatial distribution of air pollutants, continuous monitoring, climate change and other related
research. In this paper, the TWS model was constructed by multisource AOD data, LightGBM,
spatial interpolation and STW, which were used for the large-scale recovery of data missing from
MOD AOD. The results show that the TWS model can guarantee the accuracy of the recovered MOD
AOD (R = 0.87). Moreover, compared with other methods, TWS greatly reduces the missing rate of
the MOD AOD data (the missing rate of MOD AOD in the 3 × 3 window dropped from the original
88% to 10%). Moreover, after the missing information is added, the changes in the local AOD start
to show more obvious high and low value details, for example, the AOD average, maximum and
minimum of the original MOD AOD missing area in the AOD annual average map. TWS proves the
spatial complementarity of multisource AOD data and the spatiotemporal relationship of the AOD
data, which is very important when recovering the AOD data. In follow-up research, we will use other
data sets to expand the applicability of the TWS method, for example, using GOES-16 ABI AOD data to
restore AOD on the American continent. Moreover, we will use deep learning to recover areas in which
the loss of AOD spatiotemporal information is severe, for example, in scenario 3 (Pass) in Figure 2,
the moving window has missing AOD information for three consecutive days.
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