
remote sensing  

Article

Sediment Classification of Acoustic Backscatter Image
Based on Stacked Denoising Autoencoder and
Modified Extreme Learning Machine

Ping Zhou 1, Gang Chen 1,2,*, Mingwei Wang 3, Jifa Chen 1 and Yizhe Li 1

1 College of Marine Science and Technology, China University of Geosciences, Wuhan 430074, China;
pingzhou@cug.edu.cn (P.Z.); chenjifa@cug.edu.cn (J.C.); yizheli@cug.edu.cn (Y.L.)

2 Hubei Key Laboratory of Marine Geological Resources, China University of Geosciences,
Wuhan 430074, China

3 Institute of Geological Survey, China University of Geosciences, Wuhan 430074, China;
wangmingwei@cug.edu.cn

* Correspondence: ddwhcg@cug.edu.cn; Tel.: +86-138-0713-4417

Received: 20 October 2020; Accepted: 13 November 2020; Published: 16 November 2020 ����������
�������

Abstract: Acoustic backscatter data are widely applied to study the distribution characteristics
of seabed sediments. However, the ghosting and mosaic errors in backscatter images lead to
interference information being introduced into the feature extraction process, which is conducted
with a convolutional neural network or auto encoder. In addition, the performance of the existing
classifiers is limited by such incorrect information, meaning it is difficult to achieve fine classification
in survey areas. Therefore, we propose a sediment classification method based on the acoustic
backscatter image by combining a stacked denoising auto encoder (SDAE) and a modified extreme
learning machine (MELM). The SDAE is used to extract the deep-seated sediment features, so that
the training network can automatically learn to remove the residual errors from the original image.
The MELM model, which integrates weighted estimation, a Parzen window and particle swarm
optimization, is applied to weaken the interference of mislabeled samples on the training network
and to optimize the random expression of input layer parameters. The experimental results show
that the SDAE-MELM method greatly reduces mutual interference between sediment types, while
the sediment boundaries are clear and continuous. The reliability and robustness of the proposed
method are better than with other approaches, as assessed by the overall classification effect and
comprehensive indexes.

Keywords: sediment classification; acoustic backscatter image; stacked denoising auto encoder;
extreme learning machine; Parzen window; particle swarm optimization

1. Introduction

The different types of seabed sediments provide important reference information for scientific
research via seabed geological surveys, marine engineering construction, marine space planning, and
benthic communities [1–4]. Traditional snapshot sampling and underwater photography are inefficient
and costly for sediment classification [5]. On the contrary, it is feasible to utilize an intensity image of
acoustic backscattering to judge the type of underwater sediments present, based on a certain number
of samples. The usual approach is to conduct feature extraction and obtain the category labels via a
classifier, which have high measurement efficiency and wide adaptability. However, backscatter images
generated by acoustic sonar data are still prone to producing the phenomenon of drag, astigmatism
and scattered speckles due to the influences of hull attitude, seabed topography fluctuation and ocean
reverberation [6]. In addition, uncorrectable seafloor tracking processing areas exist in the middle of
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the side-scan image; these areas are caused by the measurement mechanism. Therefore, this poses a
daunting challenge for the classification of seabed sediments based on the backscatter image.

In general, numerous researchers have studied the aspects of feature extraction and classifier
design. Feature extraction involves extracting objective indicators or in-depth hidden information
from the backscatter image; these extracted indicators and information are then accurately applied
to characterize the sediment type and properties. Commonly used feature indexes include: basic
probability distribution parameters [7], the terrain slope [8], the gray-level co-occurrence matrix
(GLCM) [9], the power spectrum characteristics [10], the angular response curves [11], the Gabor
texture and the seabed roughness [12]. However, these feature indexes are easily disturbed by
residual errors in the original data. In addition, deep learning, having strong learning ability, has
attracted considerable interest in the terms of feature extraction. Among the deep learning approaches,
a convolutional neural network (CNN) was adopted in a previous paper to extract sample features
from large-scale side scan sonar images [13]. However, it was difficult to capture the long-distance
features because of the perceptual field of view. On the other hand, a stacked auto encoder (SAE) [14]
was applied in another paper to extract the hidden features from hyperspectral images using an
unsupervised approach, but the risk of overfitting with the SAE was affected by the model complexity,
the number of training samples, and data noise. Therefore, a stacked denoising auto encoder (SDAE)
was used to enhance the robustness and generalization ability of the SAE model. At present, the SDAE
model is widely used in data reduction and feature extraction, especially for extracting robust features
from remote sensing images [15–17]. Similarly, acoustic backscatter images have the same scattering
characteristics as remote images from the synthetic aperture radar, so it is necessary to extract the
robust features for subsequent sediment classification.

The selection of the classifier is also important after the extraction of sediment features. Commonly
unsupervised classification techniques include K-means [18], self-organizing feature maps [19] and
iterative self-organizing data analysis (ISODATA) [20]. These methods are greatly influenced by noise
data, resulting in the rapid reduction of classification accuracy. Some post-processing methods are
needed to optimize the classification effect when drawing the preliminary seabed sediment map,
such as Bayesian technology [21]. Additionally, the supervised classification techniques of seabed
sediments include neural network (NN) [22], multilayer perceptron [23], random forest (RF) [24] and
support vector machine (SVM) [25] approaches. However, the sensitivity of the key parameters and
the robustness of these supervised classifiers are usually restricted. Ojha and Maiti applied Bayesian
and NN to distinguish sediment boundaries in the Bering Sea slope area [26]. This method effectively
improves the robustness of the algorithm when there is red noise in the data. Meanwhile, swarm
intelligence algorithms could be used to optimize parameters of classifiers. For example, a NN with a
genetic algorithm (GA) [27] and an SVM with particle swarm optimization (PSO) [28] were used to
classify the sediments in offshore areas and islands, achieving better classification results. However,
the classification sensitivity of these techniques needs to be improved in order to distinguish more
types of sediments and the small differences in category characteristics.

Compared with the above classifiers, the network framework of the extreme learning machine
(ELM) is capable of obtaining higher scalability and faster learning efficiency. In recent years, the ELM
framework has been widely applied in sample prediction [29], regression analysis [30] and image
classification [31]. In addition, many scholars have improved solutions to the problems related to the
application of the basic ELM model. Ren et al. [32] used simulated annealing (SA), GAs and PSO to
optimize the ELM model parameters in order to construct cognitive models of Chinese black tea ranks,
whereby the stability of the ELM model was improved and much of the redundant information was
removed. Man et al. [33] adopted regularization theory to optimize the random input weights of the
ELM model, so as to achieve the minimum risk value and enhance the anti-interference of noise data.
He et al. [34] used a Parzen window to solve the imbalanced classification problem of ELM. However,
this integrated model only solved the double-classification problem, while the weight estimation of the
samples during multi-classification was more complicated. In summary, it is necessary to optimize the



Remote Sens. 2020, 12, 3762 3 of 18

ELM model for image classification in terms of the randomness of the input layer parameters, the noise
in the training samples and sample imbalance.

Therefore, a sediment classification method based on acoustic backscatter image is proposed,
uniting the SDAE and the modified extreme learning machine (MELM) model for feature extraction
and category prediction in the survey area (Figure 1). The MELM model includes two modules:
a robust extreme learning machine (RELM) and an intelligent optimization process for PSO. In this
work, we make the following progress: (1) SDAE is applied to extract the deep-level features of
sediments, so that the training network automatically learns how to remove the residual errors and
noise from the backscatter image; (2) RELM introduces weighted estimation and a Parzen window to
improve the stability of unbalanced samples and weaken the interference of mislabeled samples on the
network; (3) In order to obtain the optimal expression of network parameters, PSO is used to solve the
randomness problem of the input layer parameters.
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Figure 1. Flowchart of sediment classification based on the acoustic backscatter image.

The remainder of this paper is described as follows. Section 2 illustrates the proposed sediment
classification principles and processes in detail. Experimental results and analysis are outlined in
Section 3. Certain relative discussions are provided in Section 4. Finally, the conclusions are presented
in Section 5.

2. The Proposed Sediment Classification Technique

2.1. Overall Framework

The classification process for seabed sediments involves determining the category of each pixel
in the backscattered sonar image. In this paper, an SDAE feature extraction and MELM classifier
are combined for sediment classification (Figure 1). The proposed technology mainly includes: (1) a
neighborhood window selection of a pixel sub image; (2) feature extraction by SDAE; (3) weakening of
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mislabeled samples and parameter optimization of the MELM classifier; and (4) prediction of sediment
types and quality evaluation.

Firstly, the size of the neighborhood window is set; then the neighborhood sub-image of each pixel
is obtained via sliding window sampling. Secondly, an unsupervised SDAE approach is applied to
extract the deep-seated feature information from their sub-images. The feature information and labels
corresponding to the training and testing samples are then selected and sent to the MELM classifier.
The interference effect of the mislabeled samples on the network is weakened by weighted estimation
and the Parzen window, and optimal input parameters of the network are selected by PSO. Finally,
the feature vector and label information of the testing samples are input into the training network to
obtain the category of prediction labels. Many objective metrics are applied to quantitatively evaluate
the sub module of the classification method. Moreover, the feature information extracted from all
pixels is input into the ELM network to obtain the sediment prediction map of the entire area, while
the performance of the proposed method is analyzed from the perspective of a subjective visual effect.

2.2. SDAE Method for Feature Extraction

The traditional SAE approach is used for multi-dimensional feature extraction, which is limited
by the data quality and model complexity, and inevitably results in the over-fitting phenomenon.
Therefore, Vincent et al. proposed a de-noising auto encoder (DAE) to make the input signal more
robust, and to improve the generalization ability of the network [35]. In the DAE process of feature
extraction, the training network learns to remove the noise and residual errors from the original image
using a zero masked fraction. In general, multiple DAEs are stacked to form a deep network model
named the SDAE, so as to extract the deep-seated abstract features of image information [36].

Figure 2 shows a two-layer hidden SDAE network. Firstly, neighborhood pixels are selected
to represent the sub-image of the sample point center. Secondly, the sub-image is expanded into a
column as the input signal x, and the zero masked fraction is added with a certain probability to form
a damaged signal x̃. Signal x̃ is encoded by linear mapping and the nonlinear activation function.

e = f g(pw1 ·̃x + pb1) (1)

where pw1 and pb1 are the weight and bias between the coding layer and input layer, respectively and
fg (·) is the node activation function, such as a sigmoid function.

The reconstructed signal rx is obtained by deciphering the coding features:

rx = f g(pw2·e + pb2) (2)

where pw2 and pb2 are the weight and bias between the decoding layer and coding layer.
Finally, the reconstruction error re between the signal rx and x is defined as follows:

re = argmin
∑
i=1

‖rxi − xi‖
2 (3)
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The reconstruction error is backpropagated iteratively to optimize the structural parameters of the
network. In this way, the encoder is able to extract deep-seated abstract features, making the learned
feature data more robust. Therefore, the implicit information for the lowest layer L2 is utilized to
represent the feature vector of the sample point, which serves as the input value of the subsequent
classifier to achieve label classification of image pixels.

2.3. ELM and Its Modified Model

2.3.1. Basic ELM Model

The ELM model is a feedforward neural network with a single hidden layer. It has been proven
that the ELM possesses the capability for global approximation as a neural network [37]. The strategy
involves adopting the least square theory to reverse calculate the output weight of the hidden layer by
randomly setting the weights and bias of the input hidden layer. The principles of this method are
shown in Figure 3.
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A feature dataset and corresponding labels are selected as the training samples {(Fj, Yj)} N
j=1⊂RN

×

Rq, giving a total of N samples. The input feature dimension is q, and the maximum category number
of label Yj is m. Suppose the number of hidden layers is L. The activation function is g(f ), and the
weight and bias parameters (wi, bi) of input hidden layer are randomly selected (i = 1, . . . L). Therefore,
the relationship between the feature set Fj (j = 1, . . . , N) and the output label Yj is:

L∑
i=1

g
(
wi·F j + bi

)
·βi = Y j, j = 1 · · ·N (4)

where wi = [wi,1, wi,2, . . . , wi,q]T is the input weight of i-th hidden layer and bi is its input bias.
The activation kernel function g(f ) is usually represented by the sigmoid function, radial basis function,
and polynomial function [38].

Importing N feature samples into a matrix form, the ELM network is expressed as:

Hβ = Y (5)

H =


h( f1)

...
h( fN)

 =


g(w1· f1 + b1) · · · g[wL· f1 + bL]
...

. . .
...

g(w1· fN + b1) · · · g(wL· fN + bL)


N×L

, β =


β1
...
βL


L×M

, Y =


y1
...

yN


N×M

(6)
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where H and β are the output matrix and weight of the hidden layer respectively, and Y is the index
value of the label category number. The number of the label category is converted into a positional
index value in the sample classification problem. For example, if the maximum category is M, the third
position of category number 3 is 1, and the others are 0, y3 = [0, 0, 1, . . . 0]1×M.

Integrating the least squares criterion with the minimum output weight norm, a regularization
coefficient is introduced to ensure that when the output matrix of hidden layer H has a rank deficiency
problem, its generalized Moore inverse can be obtained correctly. Finally, the weight β of the output
layer is obtained by an inverse calculation.

min : 1
2‖β‖

2 + 1
2 C

N∑
i=1
‖εi‖

2 (7)

β =
( I

C
+ HTH

)−1
HTY (8)

where C is the regularization coefficient, I is the identity matrix, and εi is the training sample error.
All image feature sets Fp are brought into the trained ELM network model, meaning it is easy to

quickly obtain the prediction label, Yp = Hp·β. In addition, test samples are applied to analyze the
accuracy of the ELM model.

2.3.2. MELM Model

The MELM model includes the theory of the RELM model and the PSO process with optimal
parameter selection.

Theory of RELM Model

Regional block outliers are usually found in backscatter intensity images, which inevitably lead
to incorrect information in the selection of training samples [39]. The basic ELM model introduces
error information to guide the calculation of the network parameters, which seriously interfere with
the classification of seabed sediments. In addition, an unbalanced quantity occurs in the sediment
category survey and the equal weight observation in the basic ELM model reduces the classification
accuracy of the minimal sample class. Therefore, a Parzen window [34] and weighted estimation [40]
are introduced in the ELM model (abbreviated as RELM) to weaken the influence of mislabeled training
samples and unbalanced data on the network. The framework process for the RELM model is shown
in Figure 4.
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The weight β of the output layer in the robust ELM model becomes:

β =
( I

C
+ HTPH

)−1
HTPY (9)

where P is the weight matrix of the sample observation, P = diag{p1, p2, . . . , pN}, which is regarded as
the identity matrix in the basic ELM model.

We consider a case where there are a few samples with label errors in the selected training feature
set. Firstly, the training sample set is introduced into the ELM network to obtain the initial weight β0 of
the output layer. Secondly, the initial residual error ε is obtained, ε = H·β0−Y. The probability density
function f (ε) of the sample residual is estimated by using the residual matrix ε. The distribution
of f (ε) occurs via the estimation without prior probability information. The Parzen window is
used for nonparametric estimation in the case of limited samples. The window function ψ(κ) is a
normal function.

f (ε) =
1
N

N∑
i=1

1
hN
ψ
(
ε− εi

hN

)
(10)

ψ(κ) =
1
√

2π
exp

(
−0.5·κT

·κ
)

(11)

where N is the total number of training samples, and h is the window width. The term hN is the
adjustment coefficient of the sample window width, hN = h/

√
N , κ = (ε − εi)/hN.

For sample j, the probability density function f (εj) of its residual error is calculated by Equations (10)
and (11). Therefore, the weight ppj, after robust estimation is adjusted as follows:

pp j = p j·

1 + η
f
(
ε j

)
−min( f (ε))

max( f (ε)) −min( f (ε))

 (12)

where pj is the original weight and η is the weight adjustment factor, which ensures the weight
distribution in the range of [1, 1 + η].

A new weight matrix of the robust estimation PP is acquired, which is introduced into Equation (9)
to obtain the final output layer weight β1 of the RELM model, PP = diag{pp1, pp2, . . . , ppN}. The weight
value of the reliable samples is increased, which is beneficial in improving the overall robustness of the
network and in accurately classifying the label categories of feature samples.

RELM Model and PSO Combined into MELM Classifier

The random selection of the input weights and deviations causes the ELM model to generate
overfitting and instability problems [41], requiring a swarm intelligence algorithm to optimize its
parameters. Common swarm intelligence algorithms include the ant colony algorithm [42], GA [27],
and PSO [28]. In this paper, the PSO and RELM model are combined into the MELM classifier to
optimize the weights and biases of the input layer (Figure 5). The fitness values are expressed by the
output errors of testing samples.
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Figure 5 shows the process of the MELM model. Firstly, the weight w and bias b of the input
layer represent the characteristics of individual particles using the position and speed information.
Then, each particle is calculated using the RELM model to obtain the corresponding robust weight
of the output layer. Similarly, the root mean square error (RMSE) of the testing sample is employed
to characterize the fitness of each particle. Finally, the particles move within a certain search space
and share information with each other. The current position and speed information are updated by
tracking individual historical optimal extremum and population extremum. The optimal particle
individual is obtained until the whole population reaches the optimal state. The MELM model
integrates the historical global optimization and memory functions of PSO and the robust learning
ability of the RELM.

2.4. Evaluation Indexes of the Classification Model

In general, the classification of seabed sediment adopts subjective visual effect and objective
qualitative indexes to evaluate the classification performance of each model. Subjective vision can
clearly reflect the misclassification area and category interference factors. In addition, this paper adopts
the verification indicators of the test set for analysis, mainly including the overall accuracy (OA),
category accuracy (CAi), kappa coefficient and RMSE values of the label prediction [11,25,43]. Their
mathematical expressions are shown in Table 1.

Table 1. Mathematical descriptions of objective indexes for sediment classification.

Objective Indexes Mathematical Formulation

Overall Accuracy OA =

 M∑
i=1

Numii/
M∑

i=1

M∑
j=1

Numi j

× 100%

Category Accuracy CAi =

Numii/
M∑

i=1

M∑
j=1

Numi j

× 100%

Kappa Coefficient Kappa = OA−OE
1−OE , OE =

 M∑
k=1

 M∑
i=1

Numi ×
M∑

j=1
Num j


k


/ M∑

i=1

M∑
j=1

Numi j

2

RMSE of label prediction RMSE =

√
1

Nc

Nc∑
i=1

M∑
j=1

(
yci j − yi j

)2

Where M is the number of categories. Numij represents the number of the i-th sample predicted to
be in the j-th class. Numii represents the number of the i-th sample predicted to be in the i-th class.
Numi is defined as the number of real samples in the i-th class. Numj represents the number of samples
predicted in the j-th class. Nc is the total number of test samples. The terms yij and ycij are the position
index value and prediction value of the test label, respectively.

3. Results and Analysis

All the codes were based on MATLAB 2019a and run on the Windows 10 platform. Two datasets
were designed to analyze the influence of the feature extraction model and classifier performance on
sediment classification. The superiority of the proposed method and modules is reflected in subjective
vision and objective evaluation index values, as shown in this section.

3.1. Data Description and Parameter Settings

Two datasets were applied to verify the effectiveness and reliability of the adopted feature
extraction method and the improved classifier. Dataset 1 was derived from a collaborative effort result
between the United States Geological Survey (USGS) and the Massachusetts Office of Coastal Zone
Management (CZM). The project provided a high-resolution geophysical data set covering the entire
seafloor, supplemented by sediment samples and seabed photographs [44]. In this paper, we selected
the post-processing 1×1 m high-resolution backscattered intensity image, and the Z1 area was chosen
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to analyze the fine types of sediment. The sediment types in the experimental areas were divided into:
fine silt, median silt, fine sand, median sand, granule and undetected area (Figure 6a). The distribution
of seabed sediments in the Z1 area is relatively complicated. In addition, there were many residual
errors in the Z1 area after the preprocessing process, inevitably requiring a small amount of false
sample labels to be manually calibrated. In order to maintain the equilibrium of samples, we selected
the sediment classes with fewer categories as much as possible, so as to enhance the number of those
categories and weaken the randomness of the ELM family model. The number of training and testing
samples is shown in Table 2.
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Table 2. Sample selection statistics of acoustic backscatter images.

Image Size Class 1 2 3 4 5 6

Z1 area 1 492 × 505 Train sample 534 506 599 606 183 369
Test sample 811 571 634 677 270 240

Z2 area 2 717 × 634 Train sample 419 368 342 325 442 383
Test sample 463 405 370 283 428 333

1 The class numbers represent the sediment category, which are fine silt, median silt, fine sand, median sand, granule,
and undetected area. 2 The sediment categories of the Z2 area are: silt-clay-sand, sand-silt-clay, silty-clayey sand,
sand, gravel sand, and gravelly sand.

Dataset 2 was the result of a coastal survey conducted by the National Oceanic and Atmospheric
Administration (NOAA), Stony Creek University, and Rhode Island University from 2001 to 2013 in
the Long Island sea area. Its regional location is shown in Figure 6b. The backscattered data collected
during this period were stitched into a 1 × 1 m results map. We selected the area near the coastline and
marked it as Z2. The refined classification provides basic data for the study of biological population
distribution and sediment types. Referring to the classification results for a large-scale object-oriented
image [45], the sedimentary types in the Z2 area were: silt–clay–sand, sand-silt-clay, silty-clayey-sand,



Remote Sens. 2020, 12, 3762 10 of 18

sand, gravel sand, and gravelly sand (Figure 6b). The number of training and testing samples are
shown in the last two rows of Table 2.

Some parameters of the proposed method were set as follows. The image neighborhood window
size was set to 9. The SDAE network includes two hidden layers (L1 = 50, L2 = 40). The learning rate
was 10−3, a certain proportion of the zero masked fraction was set as 0.1, and the epochs and batch
size were 100 and 1000, respectively. In regard to the family model of ELM, the following settings
were used: the intermediate hidden layer H = 50, the regularization coefficient C = 0.5, the Parzen
window ratio h = 5, and the weight adjustment factor η = 4. In addition, the maximum iteration times
itmax and population number popn in the PSO and GA algorithm are 100 and 40, respectively. Here,
the inertia weight range [wmin, wmax] = [0.4, 0.8], the population acceleration factor c1 and the global
acceleration factor c2 were both 0.2, and the position range [a, b] and velocity range [m, n] were [−1, 1].
The crossover probability pc and mutation probability pm in GA were 0.9 and 0.1, respectively.

3.2. Results of Feature Extraction

In order to verify the reliability of the SDAE used in extracting the deep-seated feature information
from the pixels, the Gabor filter [12], CNN [13] and SAE [14] approaches are used for comparison.
The Gabor filter extracts texture features from backscatter image in 6 directions and 4 scales, and uses a
Gaussian smoothing filter for post-processing. The parameters of the CNN were set as follows: the
size of the neighborhood window was 9, and convolution and pooling operations were performed at a
scale of 28. The number of iterations was 100 and the learning rate was 0.1. The number of convolution
layers was 2. There were 6 and 12 output maps, and the kernel size was 5. The scale in the subsampling
layer was 2. The SAE had the same parameters as the SDAE, except for the zero masked fraction.
The MELM classifier served as the classification basis, and Z1 and Z2 areas were used for experiments.
The performances of the feature extraction techniques were analyzed according to the intensity of
the noise interference, testing samples evaluation indexes and the prediction effect of the full map.
Experimental results are shown in Table 3 and Figures 7 and 8.

Table 3. Testing set evaluation indexes of feature extraction methods in the Z1 and Z2 areas.

CA1 CA2 CA3 CA4 CA5 CA6 OA Kappa RMSE

Z1 area

Gabor 64.7% 60.7% 90.0% 92.7% 78.7% 97.7% 78.7% 0.733 0.4360
CNN 100% 70.0% 100% 96.9% 56.9% 93.1% 85.2% 0.812 0.3832
SAE 98.1% 77.1% 85.3% 77.1% 73.8% 94.6% 84.4% 0.806 0.3256

SDAE 99.7% 76.6% 99.3% 88.8% 71.9% 96.8% 89.3% 0.868 0.3110

Z2 area

Gabor 100% 77.4% 93.1% 100% 100% 87.1% 91.9% 0.902 0.2888
CNN 100% 75.7% 94.3% 99.6% 100% 95.9% 93.0% 0.915 0.2765
SAE 100% 84.8% 86.6% 100% 99.8% 86.7% 92.8% 0.913 0.2637

SDAE 100% 95.4% 81.0% 97.6% 100% 100% 95.4% 0.944 0.2601

CAi (i = 1, . . . , 6) represents the category accuracy of each sediment.

Table 3 shows that the overall indexes of the Z2 test set are better than those of Z1, which reflects
that residual errors decrease the quality of sediment classification. In particular, the Gabor filter extracts
the texture features of the surface layer, which is susceptible to the influence of residuals, resulting in
poor overall classification results. In regard to the category accuracy (CA), many CA values from the
SDAE are superior to other approaches. The CA2 value of the SDAE for sand-silt-clay can reach 95.4%
in the Z2 testing samples, which is about 10% higher than reached with other methods. In addition,
the OA, kappa and RMSE values of the SDAE are improved by at least 4%, 0.05, 0.014 and 2%, 0.03,
0.003, respectively. In general, more indicators demonstrate that feature values extracted by the SDAE
are more meaningful and universal for comprehensive classification.

To further compare the feature extraction performance of the four approaches, the sediment
prediction maps of the entire area were applied to characterize their overall generalization universality.
Figure 7a shows that the Gabor filter easily confuses fine silt and medium silt, causing a large area of
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misjudgment. Many adjacent sediment types interfere with each other in Figure 8a, such as between
gravelly sand and sand-silt-clay. The sediment boundary line treated by the CNN was disturbed in the
form of a zigzag (Figures 7b and 8b). Figures 7c and 8c display the classification problem of zigzag or
scatter distribution, reflecting that the SAE inevitably brings the residual errors from the original image
into the feature vector, thus providing error information for the type judgment of subsequent classifiers.
However, Figures 7d and 8d processed by the SDAE show that the classification of sediment is clearly
hierarchical and continuous, except for a few scattered points. SDAE introduces the zero masked
fraction into the image so that the training network is able to learn how to remove noise automatically.
The feature information extracted by the SDAE is more robust, reducing the interference of residual
error on the subsequent classification.
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3.3. Results of Classifiers Design

In order to show that the MELM classifier can effectively achieve the classification of sediment
features, the performance of other classifiers are used for comparison. The selected classifiers
were: (1) RF; (2) SVM; (3) GA-SVM; (4) PSO-SVM; (5) ELM; (6) RELM; (7) GA-RELM; and (8) our
MELM. Among them, ntree = 50 was the number of decision trees in the RF. The SVM family used
cross-validation to optimize the model. The deep-level features extracted by the SDAE served as the
input vectors of every classifier. Images in Z1 and Z2 areas were used for the experiment, and the
classification performance of each classifier was measured according to the objective indexes of testing
samples and the subjective visual effects of the entire image. The experimental results are shown in
Tables 4 and 5 and Figures 9 and 10.

Table 4 shows that the classification quality of the RF for fine silt and granule is low. The SVM
families are not very sensitive to the classification of medium silt and undetected areas. In addition,



Remote Sens. 2020, 12, 3762 12 of 18

the ELM achieves more stable and balanced accuracy for various categories related to the basic SVM.
Compared with the ELM classifier, the RELM improves the robustness of the training samples, while
the GA-RELM also weakens the random interference of network parameters with the model. Better
still, the OA, Kappa, and RMSE values of the MELM classifier are 89.3%, 0.868, and 0.311, which are
at least 1.8%, 0.02, and 0.11 better than the other methods, respectively. This result reveals that our
MELM model can improve the quality of classification under the condition of introducing incorrect
training samples.

Table 4. The test set evaluation indexes of each classifier in the Z1 area.

CA1 CA2 CA3 CA4 CA5 CA6 OA Kappa RMSE

RF 89.6% 82.8% 99.8% 87.7% 64.7% 95.7% 87.0% 0.840 0.4505
SVM 94.4% 73.7% 96.8% 95.7% 74.2% 63.5% 85.5% 0.822 0.4585

GA-SVM 95.4% 72.1% 100% 95.8% 71.4% 81.3% 87.3% 0.843 0.4135
PSO-SVM 95.5% 71.7% 100% 94.6% 72.6% 78.0% 86.9% 0.839 0.4292

ELM 91.0% 73.0% 99.4% 84.6% 88.2% 95.6% 86.8% 0.836 0.4521
RELM 86.3% 75.7% 98.8% 85.7% 95.5% 93.2% 87.3% 0.842 0.4376

GA-RELM 97.4% 77.4% 90.4% 82.6% 84.4% 99.0% 87.5% 0.845 0.4293
Our MELM 99.7% 76.6% 99.3% 88.8% 71.9% 96.8% 89.3% 0.868 0.3110

Table 5. The test set evaluation indexes of each classifier in the Z2 area.

CA1 CA2 CA3 CA4 CA5 CA6 OA Kappa RMSE

RF 100% 75.7% 98.0% 100% 99.3% 81.5% 90.7% 0.888 0.3290
SVM 100% 73.5% 90.3% 100% 99.1% 69.4% 86.4% 0.836 0.3826

GA-SVM 100% 75.8% 95.3% 100% 97.5% 73.5% 88.3% 0.859 0.3497
PSO-SVM 100% 75.8% 95.0% 100% 98.4% 73.2% 88.4% 0.860 0.3322

ELM 100% 78.8% 94.9% 100% 100% 89.8% 93.1% 0.916 0.2878
RELM 100% 77.4% 97.3% 99.6% 99.3% 94.5% 93.5% 0.922 0.2837

GA-RELM 100% 79.4% 97.1% 100% 100% 90.6% 93.6% 0.923 0.2615
Our MELM 100% 95.4% 81.0% 97.6% 100% 100% 95.4% 0.944 0.2601

There are many large misjudgment areas and scatter confusion problems in Figure 9a, which
indicate that the RF is unable to deal with the interference of residual error on sediment type. Figure 9b–d
shows that the two kinds of sediments with similar intensity values make it difficult for the SVM,
GA-SVM and PSO-SVM models to weaken their mixed classification interference, such as for granule
and undetected area. In addition, Figure 9e shows that the ELM has a problem of inaccurate prediction
for the unbalanced sediments of granule. Figure 9f–h shows that the classification interference of
fine silt to medium silt can be improved, especially with the proposed MELM model. Better still,
the classification quality of the original strip shadow is improved to a great extent, such as in the
middle image where the medium silt acts on fine sand. Only in the lower right corner of Figure 9h
does a small part of scattered point distribution exist.

Table 5 shows that the distribution of sediment types in the Z2 area is more regular and distinct,
which makes the overall classification accuracy of this area generally higher. The overall accuracy of
the RF test set is at the middle level. The OA, kappa and RMSE values of the SVM are the smallest, at
only 86.4% 0.836 and 0.3826, respectively, as the SVM family is not very sensitive to the classification of
gravel sand. In addition, the ELM family is superior to the SVM family in terms of classification quality
and overall classification accuracy. In particular, the MELM model is far ahead of other techniques for
sand-silt-clay sediments (CA2 value), with an improvement of at least 16%. In summary, many indexes
reflect the superior performance and application potential of the MELM classifier. The OA, kappa and
RMSE values of our MELM are increased by 2.3%, 0.028 and 0.0277, respectively, compared with the
basic ELM model.
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In regard to the prediction map of the Z2 area, Figure 10a–d shows that the wake sediment flow
of the gravelly sand seriously affects the overall prediction effect, and that this kind of sediment also
interferes with the classification quality of sand in the jagged form. Figure 10b shows that the SVM
produces a large area of sand-silt-clay that interferes with the classification of silty-clayey-sand, while
the GA-SVM and PSO-SVM only weaken this part of the problem (Figure 10c,d). Compared with
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the ELM, the RELM and GA-RELM are able to weaken the jagged border and disperse the spots
appropriately, however, the interference effect of gravel sand on sand is still powerless and insoluble.
Figure 10h shows that the boundary of gravely sand sediment remains continuous.

4. Discussion

4.1. Comparison of Feature Extraction

Many residual errors and smear phenomena still exist in the acoustic backscatter image after
pre-processing, requiring the feature extraction technology to have strong robustness. For the techniques
based on image textures and statistical features, such as GLCM [9] and Gabor [12], the feature vectors
are easily contaminated, and the results for sediment classification are not very satisfactory, as shown
in Table 3 and Figure 7a. The CNN [13] generally relies on a certain amount of manually labeled
sample data and is limited by the receptive field area and convolution kernel, meaning long-distance
feature information is usually ignored. In addition, although SAE [14] is able to extract the deep
feature information from the sediment image, it is also susceptible to the residual error of the original
image, providing error information for subsequent classifiers when judging sediment types (Figure 7c).
However, the SDAE introduces a certain zero masked fraction to enable the training network to
adaptively learn to remove noise. In this way, the extracted feature information is more robust,
reducing the interference of residual error with the subsequent feature classification.

4.2. Comparison between Classifiers

For fine sediment classification, the residual errors in the backscatter image also interfere with the
selection of the training samples, inevitably bringing the signals with incorrect label into the network
and affecting the classification performance. Among the various approaches, the RF method [22] is
easily affected by the extracted sediment characteristics, and its decision number, splitting attributes
and other key parameters will affect its efficiency and accuracy. When the intensity values are very
close to each other, the SVM [23] produces a large area of misjudgment and pseudo flow phenomenon
(Figures 9b and 10b). It is difficult for the GA–SVM and PSO–SVM models [25] to mitigate these
problems; rather they optimize the randomness of their parameters to reduce the discrete distribution
of spots.

Compared with the above classifiers, although the ELM [36] performs well in terms of
generalization and operational efficiency, its robustness and randomness need to be improved.
The RELM can weaken the weight of mislabeled samples to reduce the interference effect on the
training network, and can balance the number of minority sediment categories. In regard to solving
the randomness of the RELM network parameters, many objective indexes show that the MELM is
better than the GA-RELM. In addition, the overall effects show that the prediction map of our MELM
is more accurate and closer to the natural phenomenon in maintaining the sediment boundaries and in
the classification of regional sediments. The liquid sand wave in the upper right corner of Figure 10h
means it is difficult to make the category of silt-clay-sand change with the flow.

4.3. Ablation Study between ELM Families

In this section, ablation studies were carried out by fusing robust module and optimization
components to demonstrate the effectiveness of our MELM classifier. The category accuracy (CA)
and overall metrics were used for quantitative and qualitative evaluation. Tables 4 and 5 show that
the RELM model has higher prediction accuracy for multiple categories compared with the ELM
model, revealing that the RELM model is able to effectively improve the network robustness when
residual errors exist in the training samples. In addition, in regard to the intelligent optimization of the
GA-RELM model and our MELM model, the MELM model has a higher score for the classification of
other sediments, except for gravel sand. For example, the category accuracy (CA1, CA4, CA6) values
for silt-clay-sand, sand, and gravel sand are 99.7%, 88.8% and 96.8%, respectively. Therefore, our
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MELM model obtains more reliable scores and has an advantage in terms of multiple class evaluation
indicators by integrating the functions of each module.

Figures 11 and 12 display the results for the overall evaluation indexes. Since the backscatter
image in the Z2 area contains relatively fewer residual errors and noises, the values of the OA, kappa
and RMSE are higher in the Z2 area. This also shows that the quality of the original data has greatly
improved the accuracy of classification. Compared with the previous four classification methods,
the overall metrics of the ELM family model can match the others or achieve higher scores in the Z1 and
Z2 areas. In addition, the ablation module of the RELM provides accuracy improvement for the values
of OA, kappa and RMSE. In particular, the PSO module in our MELM model undoubtedly achieves
the best performance in the process of intelligent optimization, while the RMSE error values for label
prediction reach 0.3110 and 0.2601 on the testing samples of Z1 and Z2 areas, respectively. Therefore,
the combination of two ablation modules effectively enhances the test accuracy and the stability.
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5. Conclusions

This paper presents a sediment classification technique by uniting the SDAE and MELM models
based on the acoustic backscatter image. In order to reflect the rationality and robustness of feature
extraction, the Gabor, CNN, and SAE approaches are used for comparative analysis. The experimental
results reveal that the SDAE introduces a certain zero masked fraction, so that the training network
automatically learns how to remove noise and residual errors from the backscatter image. The feature
information extracted in this way has a stronger representation, which weakens the interference of
residual error on the subsequent feature classification. On the other hand, the performance of the
optimal MELM classifier is demonstrated by comparison with seven other models. The experimental
results indicate that the MELM model is able to effectively weaken the influence of the training sample
with error information on the model network. In addition, the process of intelligent optimization
reduces the randomness of the input parameters, improving the stability and robustness of the training
network. In summary, the proposed SDAE-MELM technology improves the classification accuracy and
stability, and the boundary lines of sediment types in the classification map are more continuous and
conform to natural characteristics. In the future, in order to effectively achieve sediment classification
in acoustic backscatter images with residual errors, certain post-processing methods will be adopted to
eliminate the discrete spots that occur in the prediction map.

Author Contributions: P.Z. and G.C. conceived the model methodology. M.W. helped to build the paper
framework. J.C. collected the data. P.Z. and M.W. wrote the initial draft. J.C. and Y.L. revised the manuscript.
All authors have read and agreed to the published version of the manuscript.

Funding: The project was supported by the National Natural Science Foundation of China under Grant
No.41674015, 41901296.

Acknowledgments: Dataset 1 from the USGS platform was derived from scientific research on the shallow
geology, seabed structure, and geographical area of Bald Eagle Bay, Massachusetts. Dataset 2 was derived
from a backscatter image from Long Island Coastal Survey in the MGDS platform. We are very grateful for the
contributions of data collection and data pre-processing, and for the platform providers to the relevant data.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Cuff, A.; Anderson, J.T.; Devillers, R. Comparing surficial sediments maps interpreted by experts with
dual-frequency acoustic backscatter on the Scotian shelf, Canada. Cont. Shelf Res. 2015, 110, 149–161.
[CrossRef]

2. Hamouda, A.Z.; Abdel-Salam, K.M. Estuarine habitat assessment for construction of a submarine transmission
line. Surv. Geophys. 2010, 31, 449–463. [CrossRef]

3. Silberberger, M.J.; Renaud, P.E.; Buhl-Mortensen, L.; Ellingsen, I.H.; Reiss, H. Spatial patterns in sub-Arctic
benthos: Multiscale analysis reveals structural differences between community components. Ecol. Monogr.
2019, 89, e01325. [CrossRef]

4. Innangi, S.; Di Martino, G.; Romagnoli, C.; Tonielli, R. Seabed classification around Lampione islet, Pelagie
Islands Marine Protected area, Sicily Channel, Mediterranean Sea. J. Maps. 2019, 15, 153–164. [CrossRef]

5. Luo, X.; Qin, X.; Wu, Z.; Yang, F.; Wang, M.; Shang, J. Sediment classification of small-size seabed acoustic
images using convolutional neural networks. IEEE Access. 2019, 7, 98331–98339. [CrossRef]

6. Zhou, P.; Chen, G.; Wang, M.; Liu, X.; Chen, S.; Sun, R. Side-Scan Sonar Image Fusion Based on Sum-Modified
Laplacian Energy Filtering and Improved Dual-Channel Impulse Neural Network. Appl. Sci. 2020, 10, 1028.
[CrossRef]

7. Preston, J. Automated acoustic seabed classification of multibeam images of Stanton Banks. Appl. Acoust.
2009, 70, 1277–1287. [CrossRef]

8. Diesing, M.; Green, S.L.; Stephens, D.; Lark, R.M.; Stewart, H.A.; Dove, D. Mapping seabed sediments:
Comparison of manual, geostatistical, object-based image analysis and machine learning approaches.
Cont. Shelf Res. 2014, 84, 107–119. [CrossRef]

9. Mohamed, H.; Nadaoka, K.; Nakamura, T. Towards Benthic Habitat 3D Mapping Using Machine Learning
Algorithms and Structures from Motion Photogrammetry. Remote Sens. 2020, 12, 127. [CrossRef]

http://dx.doi.org/10.1016/j.csr.2015.10.004
http://dx.doi.org/10.1007/s10712-010-9099-6
http://dx.doi.org/10.1002/ecm.1325
http://dx.doi.org/10.1080/17445647.2019.1567401
http://dx.doi.org/10.1109/ACCESS.2019.2927366
http://dx.doi.org/10.3390/app10031028
http://dx.doi.org/10.1016/j.apacoust.2008.07.011
http://dx.doi.org/10.1016/j.csr.2014.05.004
http://dx.doi.org/10.3390/rs12010127


Remote Sens. 2020, 12, 3762 17 of 18

10. Tegowski, J.; Trzcinska, K.; Kasprzak, M.; Nowak, J. Statistical and spectral features of corrugated seafloor
shaped by the Hans glacier in Svalbard. Remote Sens. 2016, 8, 744. [CrossRef]

11. Huang, Z.; Siwabessy, J.; Nichol, S.; Anderson, T.; Brooke, B. Predictive mapping of seabed cover types
using angular response curves of multibeam backscatter data: Testing different feature analysis approaches.
Cont. Shelf Res. 2013, 61, 12–22. [CrossRef]

12. Ji, X.; Yang, B.; Tang, Q. Seabed sediment classification using multibeam backscatter data based on the
selecting optimal random forest model. Appl. Acoust. 2020, 167, 107387. [CrossRef]

13. Berthold, T.; Leichter, A.; Rosenhahn, B.; Berkhahn, V.; Valerius, J. Seabed sediment classification of side-scan
sonar data using convolutional neural networks. In Proceedings of the 2017 IEEE Symposium Series on
Computational Intelligence (SSCI), Honolulu, HI, USA, 27 November–1 December 2017; pp. 1–8.

14. Zhou, P.; Han, J.; Cheng, G.; Zhang, B. Learning Compact and Discriminative Stacked Autoencoder for
Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 4823–4833. [CrossRef]

15. Kan, X.; Zhang, Y.; Zhu, L.; Xiao, L.; Wang, J.; Tian, W.; Tan, H. Snow cover mapping for mountainous areas
by fusion of MODIS L1B and geographic data based on stacked denoising auto-encoders. CMC Comput. Mat.
Contin. 2018, 57, 49–68. [CrossRef]

16. Hao, S.; Wang, W.; Ye, Y.; Nie, T.; Bruzzone, L. Two-Stream Deep Architecture for Hyperspectral Image
Classification. IEEE Trans. Geosci. Remote Sens. 2017, 56, 2349–2361. [CrossRef]

17. Tian, S.; Wang, C.; Zhang, H.; Bhanu, B. SAR object classification using the DAE with a modified triplet
restriction. IET Radar Sonar Navig. 2019, 13, 1081–1091. [CrossRef]

18. Cooper, K.M.; Bolam, S.G.; Downie, A.L.; Barry, J. Biological-based habitat classification approaches promote
cost-efficient monitoring: An example using seabed assemblages. J. Appl. Ecol. 2019, 56, 1085–1098.
[CrossRef]

19. Chakraborty, B.; Kaustubha, R.; Hegde, A.; Pereira, A. Acoustic seafloor sediment classification using
self-organizing feature maps. IEEE Trans. Geosci. Remote Sens. 2001, 39, 2722–2725. [CrossRef]

20. Li, D.; Tang, C.; Xia, C.; Zhang, H. Acoustic mapping and classification of benthic habitat using unsupervised
learning in artificial reef water. Estuar. Coast. Shelf Sci. 2017, 185, 11–21. [CrossRef]

21. Karmakar, M.; Maiti, S.; Singh, A.; Ojha, M.; Maity, B.S. Mapping of rock types using a joint approach by
combining the multivariate statistics, self-organizing map and Bayesian neural networks: An example from
IODP 323 site. Mar. Geophys. Res. 2018, 39, 407–419. [CrossRef]

22. Yegireddi, S.; Thomas, N. Segmentation and classification of shallow subbottom acoustic data, using image
processing and neural networks. Mar. Geophys. Res. 2014, 35, 149–156. [CrossRef]

23. McLaren, K.; McIntyre, K.; Prospere, K. Using the random forest algorithm to integrate hydroacoustic data
with satellite images to improve the mapping of shallow nearshore benthic features in a marine protected
area in Jamaica. GISci. Remote Sens. 2019, 56, 1065–1092. [CrossRef]

24. Choubin, B.; Darabi, H.; Rahmati, O.; Sajedi-Hosseini, F.; Klove, B. River suspended sediment modelling
using the CART model: A comparative study of machine learning techniques. Sci. Total Environ. 2018, 615,
272–281. [CrossRef] [PubMed]

25. Trzcinska, K.; Janowski, L.; Nowak, J.; Nowak, J.; Rucinska-Zjadacz, M.; Kruss, A.; von Deimling, J.S.;
Pocwiardowski, P.; Tegowski, J. Spectral features of dual-frequency multibeam echosounder data for benthic
habitat mapping. Mar. Geol. 2020, 427, 106239. [CrossRef]

26. Ojha, M.; Maiti, S. Sediment classification using neural networks: An example from the site-U1344A of IODP
Expedition 323 in the Bering Sea. Deep Sea Res. Part II Top. Stud. Oceanogr. 2013, 125, 202–213. [CrossRef]

27. Tang, Q.; Lei, N.; Li, J.; Wu, Y.; Zhou, X. Seabed mixed sediment classification with multi-beam echo sounder
backscatter data in Jiaozhou Bay. Mar. Geores. Geotechnol. 2015, 33, 1–11. [CrossRef]

28. Wang, M.; Wu, Z.; Yang, F.; Ma, Y.; Wang, X.; Zhao, D. Multifeature extraction and seafloor classification
combining LiDAR and MBES data around Yuanzhi Island in the South China Sea. Sensors 2018, 18, 3828.
[CrossRef]

29. Deo, R.C.; Samui, P.; Kim, D. Estimation of monthly evaporative loss using relevance vector machine, extreme
learning machine and multivariate adaptive regression spline models. Stoch. Environ. Res. Risk Assess. 2016,
30, 1769–1784. [CrossRef]

http://dx.doi.org/10.3390/rs8090744
http://dx.doi.org/10.1016/j.csr.2013.04.024
http://dx.doi.org/10.1016/j.apacoust.2020.107387
http://dx.doi.org/10.1109/TGRS.2019.2893180
http://dx.doi.org/10.32604/cmc.2018.02376
http://dx.doi.org/10.1109/TGRS.2017.2778343
http://dx.doi.org/10.1049/iet-rsn.2018.5413
http://dx.doi.org/10.1111/1365-2664.13381
http://dx.doi.org/10.1109/36.975006
http://dx.doi.org/10.1016/j.ecss.2016.12.001
http://dx.doi.org/10.1007/s11001-017-9327-2
http://dx.doi.org/10.1007/s11001-014-9217-9
http://dx.doi.org/10.1080/15481603.2019.1613803
http://dx.doi.org/10.1016/j.scitotenv.2017.09.293
http://www.ncbi.nlm.nih.gov/pubmed/28982076
http://dx.doi.org/10.1016/j.margeo.2020.106239
http://dx.doi.org/10.1016/j.dsr2.2013.03.024
http://dx.doi.org/10.1080/1064119X.2013.764557
http://dx.doi.org/10.3390/s18113828
http://dx.doi.org/10.1007/s00477-015-1153-y


Remote Sens. 2020, 12, 3762 18 of 18

30. Wang, J.; Hu, J. A robust combination approach for short-term wind speed forecasting and analysis–
Combination of the ARIMA (Autoregressive Integrated Moving Average), ELM (Extreme Learning Machine),
SVM (Support Vector Machine) and LSSVM (Least Square SVM) forecasts using a GPR (Gaussian Process
Regression) model. Energy. 2015, 93, 41–56.

31. Song, Y.; He, B.; Liu, P.; Yan, T. Side scan sonar image segmentation and synthesis based on extreme learning
machine. Appl. Acoust. 2019, 146, 56–65. [CrossRef]

32. Ren, G.; Sun, Y.; Li, M.; Ning, J.; Zhang, Z. Cognitive spectroscopy for evaluating Chinese black tea grades
(Camellia sinensis): Near-infrared spectroscopy and evolutionary algorithms. J. Sci. Food Agric. 2020, 100,
3950–3959. [CrossRef] [PubMed]

33. Man, Z.; Lee, K.; Wang, D.; Cao, Z.; Khoo, S.Y. Robust single-hidden layer feedforward network-based
pattern classifier. IEEE Trans. Neural Netw. Learn. Syst. 2012, 23, 1974–1986. [PubMed]

34. He, Y.; Ashfaq, R.A.R.; Huang, J.; Wang, X. Imbalanced ELM Based on Normal Density Estimation for
Binary-Class Classification. In Proceedings of the 20th Pacific-Asia Conference on Knowledge Discovery and
Data Mining (PAKDD), Auckland, New Zealand, 19–22 April 2016; pp. 48–60.

35. Vincent, P.; Larochelle, H.; Bengio, Y.; Manzagol, Y. Extracting and composing robust features with denoising
autoencoders. In Proceedings of the 25th International Conference on Machine Learning, Helsinki, Finland,
5–9 July 2008; pp. 1096–1103.

36. Shao, L.; Cai, Z.; Liu, L.; Lu, K. Performance evaluation of deep feature learning for RGB-D image/video
classification. Inf. Sci. 2017, 385, 266–283. [CrossRef]

37. Belciug, S.; Gorunescu, F. Learning a single-hidden layer feedforward neural network using a rank
correlation-based strategy with application to high dimensional gene expression and proteomic spectra
datasets in cancer detection. J. Biomed. Inform. 2018, 83, 159–166. [CrossRef]

38. Chen, Z.; Zhu, H.; Wang, Y. A modified extreme learning machine with sigmoidal activation functions.
Neural Comput. Appl. 2013, 22, 541–550. [CrossRef]

39. Fonseca, L.; Hung, E.M.; Neto, A.A.; Magrani, F. Waterfall notch-filtering for restoration of acoustic backscatter
records from Admiralty Bay, Antarctica. Mar. Geophys. Res. 2018, 39, 139–149. [CrossRef]

40. Cheng, K.; Gao, S.; Dong, W.; Yang, X.; Wang, Q.; Yu, H. Boosting label weighted extreme learning machine
for classifying multi-label imbalanced data. Neurocomputing. 2020, 403, 360–370. [CrossRef]

41. Wang, W.; Zhao, D.; Fan, L.; Jia, Y. Study on Icing Prediction of Power Transmission Lines Based on Ensemble
Empirical Mode Decomposition and Feature Selection Optimized Extreme Learning Machine. Energies 2019,
12, 2163. [CrossRef]

42. Rashno, A.; Nazari, B.; Sadri, S.; Saraee, M. Effective pixel classification of Mars images based on ant colony
optimization feature selection and extreme learning machine. Neurocomputing 2017, 226, 66–79. [CrossRef]

43. Lee, Y.; Han, D.; Ahn, M.H.; Im, J.; Lee, S. Retrieval of total precipitable water from Himawari-8 AHI data:
A comparison of random forest, extreme gradient boosting, and deep neural network. Remote Sens. 2019, 11,
1741. [CrossRef]

44. Foster, D.S.; Baldwin, W.E.; Barnhardt, W.A.; Schwab, W.C.; Ackerman, S.D.; Andrews, B.D.; Pendleton, E.A.
Shallow Geology, Sea-Floor Texture, and Physiographic Zones of Buzzards Bay, Massachusetts; Open-File Report
2014–1220; U.S. Geological Survey: Reston, VA, USA, 2016. [CrossRef]

45. Zajac, R.N.; Stefaniak, L.M.; Babb, I.; Conroy, C.W.; Penna, S.; Chadi, D.; Auster, P.J. An integrated seafloor
habitat map to inform marine spatial planning and management: A case study from Long Island Sound
(Northwest Atlantic). In Seafloor Geomorphology as Benthic Habitat, 2nd ed.; Peter, T.H., Elaine, B., Eds.;
Elsevier: Amsterdam, The Netherlands, 2020; pp. 199–217.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.apacoust.2018.10.031
http://dx.doi.org/10.1002/jsfa.10439
http://www.ncbi.nlm.nih.gov/pubmed/32329077
http://www.ncbi.nlm.nih.gov/pubmed/24808151
http://dx.doi.org/10.1016/j.ins.2017.01.013
http://dx.doi.org/10.1016/j.jbi.2018.06.003
http://dx.doi.org/10.1007/s00521-012-0860-2
http://dx.doi.org/10.1007/s11001-017-9330-7
http://dx.doi.org/10.1016/j.neucom.2020.04.098
http://dx.doi.org/10.3390/en12112163
http://dx.doi.org/10.1016/j.neucom.2016.11.030
http://dx.doi.org/10.3390/rs11151741
http://dx.doi.org/10.3133/ofr20141220
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	The Proposed Sediment Classification Technique 
	Overall Framework 
	SDAE Method for Feature Extraction 
	ELM and Its Modified Model 
	Basic ELM Model 
	MELM Model 

	Evaluation Indexes of the Classification Model 

	Results and Analysis 
	Data Description and Parameter Settings 
	Results of Feature Extraction 
	Results of Classifiers Design 

	Discussion 
	Comparison of Feature Extraction 
	Comparison between Classifiers 
	Ablation Study between ELM Families 

	Conclusions 
	References

