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Abstract: Orthophoto generation is a popular topic in aerial photogrammetry and 3D reconstruction.
It is generally computationally expensive with large memory consumption. Inspired by the
simultaneous localization and mapping (SLAM) workflow, this paper presents an online sequential
orthophoto mosaicing solution for large baseline high-resolution aerial images with high efficiency
and novel precision. An appearance and spatial correlation-constrained fast low-overlap neighbor
candidate query and matching strategy is used for efficient and robust global matching. Instead
of estimating 3D positions of sparse mappoints, which is outlier sensitive, we propose to describe
the ground reconstruction with multiple stitching planes, where parameters are reduced for fast
nonconvex graph optimization. GPS information is also fused along with six degrees of freedom
(6-DOF) pose estimation, which not only provides georeferenced coordinates, but also converges
property and robustness. An incremental orthophoto is generated by fusing the latest images with
adaptive weighted multiband algorithm, and all results are tiled with level of detail (LoD) support for
efficient rendering and further disk cache for reducing memory usages. Public datasets are evaluated
by comparing state-of-the-art software. Results show that our system outputs orthophoto with novel
efficiency, quality, and robustness in real-time. An android commercial application is developed for
online stitching with DJIdrones, considering the excellent performance of our algorithm.
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1. Introduction

In recent years, aerial image mosaicing has been used in many scenes, such as farmland mosaicing,
forest fire detection, post-disaster relief, and military reconnaissance. Generally, the task of aerial image
mosaicing can be implemented in two ways. First is offline mosaicing [1–3], where the mosaicing
process is usually applied after obtaining all the image data of the target area with the unmanned
aerial vehicles (UAVs). This approach could provide integrated information for image mapping. Thus,
the mosaicing precision is generally accurate. On the basis of the estimated camera poses, the second
method is online mosaicing, which stitches images in real-time [4–6]. This approach is necessary in
some specific application scenarios such as live map visualization through virtual reality [7–9].

In general, the major difference between online mosaicing and offline mosaicing is the core
technique in estimating the camera pose and the 3D point cloud from images. SLAM [10–13]
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and structure from motion (SfM) [14,15] are separately used to obtain the pose and point cloud.
Then, the homography transformation method is used to project the image to the correct position;
finally, these images are fused. In some special scenarios, such as post-disaster rescue and military
reconnaissance, we aim to mosaic the map in real time. Therefore, our purpose is to improve the
accuracy of online mosaicing by designing a novel framework and algorithm.

SfM methods [14–17] are fundamentally offline in nature with expensive computation cost,
and processing low overlap images using SLAM methods [4] is still very difficult. Thus, this study aims
to develop an online incremental stitching method, which is extremely efficient and robust, for mobile
devices. While most SfM and SLAM systems use bundle adjustment for camera poses and landmark
position refinement, it is still computationally expensive for an online system and insufficiently
robust against low overlap and poor matching results. To solve these problems, we proposed a
planar restricted pose graph optimization method to estimate camera poses and fuse orthophotos
simultaneously. This approach can work effectively in the low overlap scenario and accelerate
the calculations to achieve real-time mosaicing in embedded devices as demonstrated in Figure
1. Therefore, the proposed graph optimization not only brings higher efficiency, but also converges
property and robustness. In summary, the main contributions are as follows:

1. A novel online georeferenced orthophoto mosaicing framework with high efficiency and
robustness: Compared with the existing commercial software and current state-of-the-art
mosaicing systems, our method proposes a complete solution for real-time incremental stitching
on mobile devices. Considerable improvements are considered for robustness and efficiency to
adapt to the challenging requirements of high-quality orthoimage generation with relatively fast
speed and less computation.

2. Planar restricted online pose graph optimization: A planar-restricted global pose graph
optimization algorithm is proposed and compared with other 2D aerial image-mosaicing schemes
and traditional SLAM or SfM systems. Instead of using sparse 3D map points which is outlier
sensitive, keypoint matches are parameterized to planar restricted reprojection errors where
parameters are effectively reduced. This method can achieve better robustness and efficiency,
even if the overlap rate is low.

3. An adapted weighted multiband images fusion algorithm with LoD based tiling, caching and
rendering Memory resources in mobile devices are often limited. Thus, retaining the entire
mosaic for large-scale datasets is impossible. In addition, the display system demands a tiled
DOM for efficient rendering. To solve these problems, the orthophoto consists of several image
tiles, which are managed with a hashed least recently used (LRU) cache; the LoD technique is
also used for quick rendering.

4. An android application demonstrating algorithm effectiveness on mobile devices: To show the
realistic performance in cellphones, an android software is designed to upload flight mission for
DJI drones. In addition, we integrate the presented algorithm by providing restful web service
through C++.
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Figure 1. In order to demonstrate our proposed algorithm’s effectiveness on mobile devices,
we implemented an android application. This screenshot demonstrates a live map during the flight
where both flight plan and online stitching are performed on a cellphone. Although Mavic2 and
Huawei P30 Pro are used, our algorithm is not limited to these devices. As we known, this is the first
android application that supports online georeferenced large-scale low-overlap aerial images stitching.
A demonstration video can be found on YouTube website: https://youtu.be/BmjtEte8sgo.

2. Related Work

In recent years, a large number of methods have been proposed for image mosaicking [5,6,18,19],
which takes advantage of SfM and SLAM technologies. The representative works are summarized
as follows.

To achieve high-quality image mosaicing, the mature option is SfM, which is designed to
explore the most information and reconstruct a metric model for offline orthoimage generation from
unordered multiview images. Over the years, various SfM methods have been proposed, including
incremental [14,15], global [16,17] and hierarchical approach [20]. Incremental SfM is the most popular
strategy to reconstruct 3D images from unordered images; it is also used for the basic technology of
orthophoto generation [1,3]. The typical work of SfM based offline mosaicing is [21]. This method
optimizes the pose by generating a 3D point cloud, identifying the ground control points, and finally
mosaicing all the prepared images simultaneously. SfM-based methods always take hours to generate
the final orthoimage and all images required prior to computation. However, they are unsuitable
for real-time and incremental usage, and they usually require at least trifocal overlap to capture
cameras and reconstruct a scene [22]. In [2], a fast offline georeferenced aerial image stitching method
is proposed with high efficiency, where a planar constrained global SfM is used for pose graph
optimization. This method has great potential to achieve real-time ability on personal computers.

To estimate camera pose for image mosaicing in real-time, a SLAM-based method is a better choice.
The typical work of SLAM-based online mosaicing is [5]. This method uses bag of words (BoW) to
obtain images that are partially overlapped. Then, it calculates the perspective transformations between
the images and eliminates the outliers using BaySAC [23] instead of RANSAC [24]. Finally, Dijk-stras
algorithm [25] is adopted to to determine the seam, which represents the minimized difference between
the two images. In the state-of-the-art Map2Dfusion [4], GPS information is integrated into SLAM by
synchronizing GPS information with video streaming time, which conquers accumulated drift. Then an

https://youtu.be/BmjtEte8sgo
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adaptive weighted pyramid is used for image fusion to generate a mosaicing. Lati et al. [18] propose a
novel technique based on fuzzy clustering to separate outliers, and a bilinear interpolation algorithm
is used in the image fusion process. A multi-threaded architecture-based image mosaicing method [26]
using incremental bags of binary words was proposed to speed up the mosaicing process. In [27],
sparse BA was used for pose optimization to accelerate the SLAM algorithm. MGRAPH [28] proposes
a multigraph homography method to generate incremental mosaics in real-time. Although they could
easily further integrate the algorithm in the embedded devices, the accuracy is poor. In summary,
these traditional SLAM-based methods should estimate camera pose and calculate the 3D point cloud
simultaneously; this approach is computationally expensive. These methods use many tricks to
improve the efficiency of the computation. However, they are still difficult to implement in embedded
devices, which have low computation resources. GSLAM [29] provides a general SLAM framework
and benchMark, which may be used to develop efficient SLAM implementation and publish it as a
plugin of embedded devices.

UAVs generally fly at a relatively high position for capturing aerial images; thus, many scenes
could be assumed as planes. Our goal is to design a planar optimization method to reduce the
computation cost, thereby accelerating the estimation of camera pose and achieving real-time mosaicing
in embedded devices.

3. Methodology

3.1. Proposed Framework

The final deployment of our system is an android application and the architectural is illustrated
in Figure 2. To maintain the portability of our algorithm to other mobile operating systems, a restful
HTTP API is designed instead of Java Native Interface (JNI) to minimize coupling between UI and
stitching algorithm implemented with C++. Sequential images with GPS information are obtained
through DJI mobile SDK (https://developer.dji.com/mobile-sdk) and posted to the algorithm during
flight mission.

Images Fusion 

Live Tiled DOM 

Image Wrapping 

LOD Rendering 

Gaode Map 

Android System 
Java Native C++ 

DJI Mobile 
SDK 

Dynamic Map Visualization 

Online Images Fetching 

Flight Mission Planning 
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Matching 

Matching Graph 

Sparse Reconstruction 

Relative Pose 
Estimation 

Absolute Rotation 
Averaging 

Planar Restricted 
Graph Optimization 

Current Map 
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Figure 2. The framework of our system on android devices. All stitching algorithm pipelines are
written by C++, which runs in the linux native layer, and the Java-based user interface (UI) calls live
mosaic service through HTTP API. A way-point flight mission is planned and uploaded through DJI
Mobile SDK, and images are fetched online with GPS information. The mosaic algorithm receives these
images and stitches them incrementally during the flight. In addition, a tiled dynamic map layer is
served though HTTP interface and visualized with GaoDe Map SDK.

https://developer.dji.com/mobile-sdk
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When the stitching algorithm receives the online images, keypoint features are extracted and
matched to update the matching graph with an appearance and spatial-based fast neighbor query
and matching algorithm. Planes instead of map points are used to represent the reconstruction;
thus, a PnP-based tracking strategy is unsuitable for initial pose estimation. An absolute rotation
averaging algorithm is performed to obtain the initial pose information by jointly considering GPS and
relative two-view pose constraints. The final reconstruction and camera poses are updated through
our proposed local planar restricted pose graph optimization method, where high robustness and
efficiency are achieved. The latest frame with pose and stitching plane information is then published
for further orthophoto fusion.

Inspired by the novel SLAM-based aerial mapping system Map2DFusion [4], an adaptive
weighted multiband rendering algorithm is used to fuse images incrementally. To further save memory
budget and accelerate mosaic rendering, the final orthophoto is represented with an LRU cached
image tiles segmented by Mercator projection [30], and LoD algorithm is considered to update the
multiple-level tiles. When the real-time orthophoto layer is updated, a notification is sent to the UI to
refresh the display.

3.2. Appearance and Spatial Based Fast Neighbors Query and Matching

Similar to traditional SfM and SLAM methods, the keypoint correspondences between images
are the core inputs for sparse reconstruction in our method. A large number of feature descriptors
are proposed for image matching, including Sift, SURF, BREIF, ORB [31], and AKAZE, where ORB
is popularly used in SLAM systems due to its high efficiency, and SIFT is used by most commercial
software and open-source SfM projects due to its good quality and robustness. ORB is unsuitable
to process low overlap images; thus, we adopt the SIFT descriptor with a shader GPU-accelerated
implementation, which is totally adequately fast for our task. To reduce the computation to only
approximately 1000 keypoints, an appearance joint spatial-based fast neighbor query and matching
strategy is used to explore most good matches. Through our matching strategy and reconstruction
algorithm, these few keypoints are sufficient for most sequences and our evaluations show that
increasing the keypoint number does not effectively enhance stitching quality.

For every image with GPS information, the keypoints and descriptors are extracted, and the frame
is indexed by geometry position with k-nearest neighbor algorithm implemented by FLANN [32].
Some studies show that a square root (Hellinger) kernel, instead of the standard Euclidean distance,
provides better performance for SIFT descriptor similarity measurement. A transformation is
performed initially to map the descriptors from the original SIFT space to the RootSIFT space to
improve retrieval and matching quality. Then, neighbor image query is performed using geometry
information by the k-nearest algorithm. In addition, for every neighbor, we perform a fast global
matching through the following pipeline:

1. BoW-accelerated global correspondences with cross check. A BoW vocabulary is pretrained
with k-means algorithm because brute force matching is highly computationally expensive,
and features are transformed to some small spaces to accelerate global searching by matching
each space separately. This strategy is adopted to obtain an initial matching, and the accelerated
version of DBoW implemented by GSLAM [29] is used in this work.

2. Outliers filtering based on epipolar geometry and matching angle histogram. The initial
matching contains outliers. A simple histogram-based voting filtering is performed to increase
inlier rate. In addition, a fundamental matrix is estimated with the random sample consensus [24]
procedure for geometric outlier removal.

3. Multi-homography-based rematching. The previous procedures may ignore some good matches.
Thus, we try to find them again with a multihomography assumption. The previous inlier matches
are used to calculate multiple homography matrices. Then, window searching is performed for
every feature without match to find the remaining potential matches. The distance between
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matched keypoint and epipolar line is computed, and the match is only accepted when the
distance is below the fixed threshold.

The proposed method is very efficient, and the experiments show that only approximately less
than 5 milliseconds is required to match an image pair in one thread and can obtain numerous reliable
matches. The matches between images form an incremental matching graph, which can be used for
the following online sparse reconstruction.

3.3. Online Planar Restricted Sparse Reconstruction

PnP-based camera pose tracking is popularly used in traditional SLAM systems. However, it is
unsuitable in our system because no map points are estimated. In addition, generally, a PnP constraint
requires the landmarks of at least three images. This condition is not satisfied when the overlap is below
2/3. To obtain a good initial pose estimation for the following graph optimization, recent novel global
SfM methods have explored relative pose graph technic, name rotation, and translation averaging.
This algorithm is also used in SLAM system [33] for decoupling the rotation and translation estimation,
showing high robustness. GPS information is always available for our system; thus, we further fuse
the absolute geometry location information in the rotation averaging step to obtain better robustness.
This algorithm is called the absolute rotation averaging algorithm.

For each frame, we compute the local Cartesian coordinates gi from the GPS information. For the
latest image i, two-view reconstructions are performed to obtain relative pose relationships against its
neighbors, denoted as tij and Rij. The length of direction tij, which is also called the scale sij , can be
estimated with the absolute distance of GPS:

sij = ||gi − gj||. (1)

The absolute offset between two images in the GPS coordinate is known and forms the
following equation:

sijRitij = gij = gj − gi. (2)

where Ri is the absolute rotation of current frame i. When the DOF of Ri is 3 and this equation provides
two constraints, Ri can be calculated by maximizing the following expression when more than two
noncollinear connections exist:

R̂i = arg max
Ri

∑
j
(sijRitij) · gij (3)

Although orthonormal matrices with positive determinant are easy to understand and popular
used for rotation representation, it is not suitable for estimation since the over parameterization.
While unit quaternions constitute an elegant representation for rotation, to find the solution for Ri,
the expression can be rewritten in quaternion form as follows:

q̂i = arg max
qi

∑
j
(qirijq∗i ) · r̂ij (4)

where qi is the unit quaternion form of Ri, rij is the quaternion form of sijtij, and r̂ij is the quaternion
form of gij. To solve this expression, ref. [34] provides a closed form solution by computing the
eigenvector of a sum product matrix N. However, those estimations may still contain outliers, so that
we further use the relative pose pairs of current frame for robust pose propagation. Traditional
nonlinear optimization uses Gauss Newton or Levenberg-Marquarelt (LM) algorithm, which is
sensitive to noise. Modern Global SfM systems use modern L1 optimizer to carry out robust averaging
of relative rotations that is efficient, scalable and robust to outliers. We jointly considered all relative
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constraints from two-view reconstructions and absolute prior to the above equation, and the L1-based
rotation and translation averaging algorithm [35] is used to estimate the initial pose robustly.

Once the image initial pose is available, a local planar restricted pose graph optimization is
considered to further adjust the submap consisting of the latest frame with its neighbors. Different
from the traditional bundle adjustment, our graph optimization is triangulation-free, and reprojection
errors are not projected from the map points but from original feature matches. GPS prior is also
fused for convergence and robustness. For image i, we denote its pose and height with a seven-DOF
parameter, Ti = (Ri, ti, h). The local optimization aims to optimize the pose and height information in
the submap S by joint consideration of image matches and GPS priors, as follows:

T̂ = arg min ∑
i,j∈S

∑
m

ξm(Ti, Tj) + ∑
i∈S

τ(Ti, gi), (5)

where τ(Ti, gi) = ti − gi is the GPS prior factor, while ξm(Ti, Tj) is the reprojection error of match
m(ui, uj) between frames i and j, which is defined as:

a = Ri · Proj−1(ui), (6)

p = ti +
(hi + hj)/2− tz

i
αz a, (7)

ξm(Ti, Tj) = Proj(R−1
j · (p− tj))− uj. (8)

Here, a is the unit vector presents the view direction of keypoint ui and p is the 3D location of
this keypoint. hi, hj are the local ground height estimation of image i, j. And we denote Proj as the
pinhole projection in camera coordinates, while Proj−1 is the inverse projection in z = 1 plane:

u = Proj(p) =
(

x ∗ fx

z
+ cx,

y ∗ fy

z
+ cy

)T

, (9)

p̂ = Proj−1(u) =
(

x− cx

fx
,

y− cy

fy
, 1
)T

. (10)

To solve this graph optimization problem, the popular open-source Ceres Solver library
(http://ceres-solver.org) is used in our implementation. To visualize the reconstruction, the keypoints
can further project to the stitching plane and form tracks used in traditional SLAM and SfM methods.

3.4. Georeferenced Images Fusion with Tiling and LoD

The preview sparse reconstruction updates the current map and publishes the latest frame for
incremental orthophoto stitching. Our online stitching and rendering pipeline encounter several
challenges, as follows:

1. The fusing should be efficient for real-time processing. The computational expensive offline view
selection and seam finding methods based on graph cut are unsuitable here.

2. The mosaic result should be rendered efficiently. Publishing the entire image frequently is
impossible because we use network for the dynamic orthophoto publishing. The map rendering
engines often require tiled images with LoD support, and only tiles that are visible and updated
should be refreshed.

3. The processing should be memory efficient to run on mobile devices. After fusing hundreds of
images, the final mosaic could be very large, and the memory resource in mobile devices is very
limited. An efficient caching algorithm should be considered only to hold active data.

4. The final mosaic should be as ortho and smooth as possible. The stitching is not fully ortho
because no 3D dense reconstruction procedure is considered in the entire pipeline for efficiency.
However, we can still preserve the view, and the blending method should smooth the seam lines
to obtain a natural result.

http://ceres-solver.org
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The estimated plane is used to wrap the original image to a local DOM using perspective
reprojection. An adaptive weighted multiband algorithm [4] is used to fuse the aligned images.
The final orthophoto consists of several Mercator projection tiles required by the map display engine,
and low-level pyramid tiles with LoD support is managed for immediate rendering. To solve these
problems, we hold the mosaic with a thread-safe hashed LRU cache to save memory budget and
launched a thread pool for further speed acceleration.

3.5. Mobile Application with Flight Planning and Live Map

The DJI drones provide mobile Android and IOS SDK. Thus, controlling it through smartphones
and tablets is possible. When the algorithm is tested in x86 system, we attempt to transplant the
stitching implementation to mobile devices. A network API interface based on HTTP protocol is
designed for better portability, and Android platform is currently selected. However, iPhone or
iPad devices should be used for easy implementation. We use DJI UX SDK to visualize the first
person view (FPV) video and drone status, and GaoDe SDK is used for satellite map visualization,
way-point mission planning, dynamic orthophoto displaying, and interaction. When users select a
survey area and flight height, a way-point mission is automatically generated considering fly velocity,
forward, and sideward overlap rate. The mission is checked and uploaded to the connected drone for
autonomous surveying. Meanwhile, images taken by the drone are fetched through SDK during the
flight. Images are then posted to the stitching SDK through HTTP, and the incremental orthophoto is
updated after the image is processed with simultaneous refreshing of display.

4. Experiments

In this section, we focus on the stitching algorithm evaluation with qualitative and quantitative
analyses. First, we perform a full test on the public DroneMap2 dataset (http://zhaoyong.adv-ci.
com/npu-dronemap2-dataset) with more than 20 different sequences captured in countryside and
cities. Second, we compare our live orthophoto without post processing to the state-of-the-art software
Pix4DMapper and DJITerra. Third, we perform quantitative precision evaluation on a dataset with GCP
check points and illustrate the detailed absolute errors. Finally, we performed statistic computation
of our system on x86 PC and mobile arm devices with comparison to show the efficiency. To ensure
fairness, all x86 experiments are performed on a computer with Intel i7-6700 CPU, 16 GB RAM,
and Nvidia GTX 1060 GPU. Furthermore, a cloud-based processing is demonstrated to show the future
scalability and cooperativity of our system.

4.1. Results on DroneMap2 Dataset

To evaluate the adaptiveness of our algorithm to different scenarios, the public DroneMap2 dataset
consisting of more than 20 different sequences is used for aerial mapping evaluation. Our algorithm can
process all sequences with acceptable quality by using the easy-to-converge design. Some overview
results with highlight of detailed screenshots are demonstrated in Figure 3. Under local planar
assumption, our method still shows high robustness to buildings or even mountains in sequences,
such as mavic-campus and phantom4-mountain.

However, the result is imperfect due to the incremental style. Few mismatches are also highlighted
in the details and can be divided into three categories, as follows:

1. Seam-line cutting of moving objects: Traditional seam finding methods are unsuitable here due
to the incremental stitching style. In addition, for efficiency, the seam-lines are automatically
determined by the adaptive weighted blending. The stitching seam-line may cut the moving
objects, such as cars. Thus, half of the cars are rendered, as illustrated in the highlights of
Figure 3a,d,n.

2. Live reconstruction drift between airlines: The stitched result is difficult to adjust because the
algorithm renders orthophoto lively. However, even with fused GPS information, the sparse

http://zhaoyong.adv-ci.com/npu-dronemap2-dataset
http://zhaoyong.adv-ci.com/npu-dronemap2-dataset
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reconstruction and pose estimation contain small drift and are updated after more observations,
which may cause mismatches, as shown in Figure 3 for sequence mavic-factory and mavic-warriors.

3. Homography mismatch caused by high buildings: The sparse reconstruction and fusion steps
assume that the ground is a local planar. Thus, homography projection is used to wrap original
image to the stitching plane. For high buildings, mismatches may be observed, as illustrated in
Figure 3b.

(a) (b) (c) (d) 

(e) (f) (g) (h) 

(i) (j) (k) (l) 

(m) (n) (o) (p) 

Figure 3. Mosaic results of the proposed method on public NPU DroneMap2 Dataset (a) mavic2-road
(b) mavic-campus (c) mavic-factory (d) mavic-fengniao(e) mavic-huangqi (f) mavic-library (g) mavic-npu
(h) mavic-river(i) mavic-warriors (j) mavic-yangxian (k) p4r-field (l) p4r-roads2 (m) phantom3-olathe
(n) phantom3-strawberry (o) phantom4-mountain (p) xag-xinjiang. Some screenshots are highlighted to
demonstrate the mosaic details. Although few mismatches are caused by moving objects, reconstruction
drift and high buildings, which are highlighted in red arrows, our stitching quality is generally high
for different sequences including mountains and buildings.

Despite these slight mismatches, our system is able to output live orthophoto with novel
quality and robustness. The live results are even comparable to the hour offline processing of
state-of-the-art commercial software. A comparison with DJITerra and Pix4DMapper on some
sequences is demonstrated in Figure 4. The three systems output high-quality results and some
differences are highlighted. Planar assumption is used in our algorithm, and all images are stitched
with homography projection. Thus, the lines in our results remain straight. By contrast, the SfM-based
systems usually use 3D triangle mesh to render digital elevation model and orthophoto map, probably
causing mismatch and deformation, as demonstrated in Figure 4.
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(a) (b) (c) 

Figure 4. (a) Proposed method comparison with (b) DJITerra and (c) Pix4DMapper on sequence
mavic2-roads and mavic-factory. An emphasis (e.g., red arrows) on the important differences between
the results is provided to obtain clear comparisons. Homography projection is used; thus, the lines
remain straight in our results, and the details show that our live mosaic looks even better than the
offline results of state-of-the-art commercial software in some circumstances.

4.2. Live DOM Quality Comparison

The above dataset evaluation can only be compared with offline systems. Thus, we further
evaluate our method by comparing with the live map function of software DJITerra. We use DJITerra
to plan the flight mission and process the live downloaded preview images with our algorithm and
Pix4DMapper. When using a gimbal for aerial photography, the camera is usually vertically downward.
This assumption is easier for reconstruction 3D point cloud with dense stereo and stitching orthophoto
with similarity assumption. However, the camera is not always vertical when a gimbal is not used.
We reduce the overlap setting to 70% and allowed the camera to not be fully facing down because our
system and DJITerra show good result in most traditional circumstances. The reconstruction becomes
more challenging under this condition given that SLAM systems often require a higher overlap and
the camera rotation reduces robustness. The mosaic result comparison of live map and offline is
illustrated in Figure 5. We compare the live orthophoto of DJITerra by screenshots recorded given that
it is covered by the postprocessing result. The comparison shows that our method is robust against
low-overlap and camera rotations, where our algorithm outperforms even the existing novel offline
methods. Moreover, our system only consumes approximately 1 min using x86 Linux computer to
process this image sequence, and the flight time is nearly 20 min. This finding indicates that the
algorithm is much faster than that used in real-time.

Here are some key ideas why our algorithm can be considerably fast while maintaining
high quality:

1. Planes are used instead of map points for optimization. We do not rely on outlier sensitive map
points. Thus, less keypoints are extracted, higher robustness is obtained, and less parameters
are used for optimization. This feature dramatically decreases the optimization complexity
and brings faster processing ability. We do not require to carefully handle outliers, and the
optimization converges with less time.

2. GPS information is tightly used throughout the matching, reconstruction, and fusion procedures.
We use the GPS information throughout the entire pipeline to reduce time budget because they
are available for our georeferenced stitching. The GPS-aided absolute rotation averaging prevents
poor pose estimation and accelerates the convergence of graph optimization.
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3. Direct orthophoto blending without dense and mesh reconstruction. Most SfM systems perform
dense reconstruction and mesh triangulation before DOM rendering. Our method directly fuses
images to the final mosaic efficiently, and our reconstruction step uses planar assumption at the
first stage. Thus, it provides better quality than map point-based SLAM front-end systems.

Proposed 

Method

Pix4DMapper

DJITerra
(Live)

DJITerra
(Post Processing)

Figure 5. Stitching result comparison between the proposed method and state-of-the-art commercial
software. DJITerra will launch a postprocessing step to refine the mosaic. Thus, we illustrate the
result before and after postprocessing. DJITerra performs unsatisfactorily in this flight with evident
mismatches in live map or postprocessing results due to the low flight overlap and random pitch.
Our system is able to handle these challenges and output high-quality live orthophoto, which even
looks better than Pix4DMapper, where the bridge and roads looks distorted.

4.3. Computation Performance Comparison

Efficiency is the most important feature and target of our system because of the real-time
requirement on mobile phones. To evaluate the computational performance and compare with
state-of-the-art commercial software DJITerra and Pix4DMapper, we process the public DroneMap2
dataset in the same computer with Intel i7-6700 CPU, 16 GB RAM, and Nvidia GTX 1060 GPU.
As demonstrated in Table 1, all methods output original resolution results, and our method is much
faster than the other software. Our system is able to process over 10 MB JPG-compressed full resolution
images and over 10 preview images with 1080p resolution in one second. Processing multiple images
in parallel is difficult given their incremental design, and our method even uses less CPU computation
resources. For better portability on different platforms, most procedures only use CPU without
intensive computational optimization, and other potentials can be explored by considering particular
hardware platforms.
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Table 1. Time usage statistics in seconds for processing sequences of DroneMap2 dataset. DJITerra
failed to process sequence xag-xinjiang without any tips about the reason. The results show that our
algorithm is much faster than other state-of-the-art commercial softwares.

Sequence Location Images Resolution Size (MB)
Ours

DJITerra (s) Pix4DMapper (s)
Time (s) Average (MB/s)

mavic2-road Xi’an, Shaanxi 240 5472 × 3078 1895.4 119.7 15.8 583.0 4867.0
mavic-campus Xi’an, Shaanxi 293 4000 × 3000 1479.4 64.4 22.9 568.0 4707.0
mavic-factory Xi’an, Shaanxi 359 4000 × 3000 1924.6 148.7 12.9 666.0 4811.0

mavic-fengniao Xi’an, Shaanxi 216 4000 × 3000 1102.5 87.6 12.6 434.0 3303.0
mavic-garden Suzhou,Jiangsu 247 4000 × 3000 1241.0 89.1 13.8 550.0 4753.0

mavic-hongkong Hong Kong 288 4000 × 3000 1439.5 130.2 11.1 575.0 4723.0
mavic-huangqi Hengyang, Hunan 229 4000 × 3000 1156.5 98.2 11.8 454.0 4351.0
mavic-library Xi’an, Shaanxi 205 4000 × 3000 997.3 69.2 14.4 365.0 3786.0

mavic-npu Xi’an, Shaanxi 119 4000 × 3000 603.2 34.1 17.7 194.0 1834.0
mavic-river Xi’an, Shaanxi 166 4000 × 3000 960.4 64.7 14.8 408.0 3746.0

mavic-warriors Xi’an, Shaanxi 96 4000 × 3000 779.7 26.2 29.7 182.0 1623.0
mavic-yangxian Xi’an, Shaanxi 165 4000 × 3000 840.2 75.4 11.1 392.0 2935.0

p4r-field Xi’an, Shaanxi 683 5472 × 3648 5939.0 381.1 15.6 1837.0 23,941.0
p4r-roads Xi’an, Shaanxi 138 5472 × 3648 1058.6 84.2 12.6 501.0 4135.0
p4r-roads2 Xi’an, Shaanxi 203 5472 × 3648 1556.1 125.6 12.4 556.0 6332.0
p4r-village Xi’an, Shaanxi 136 5472 × 3648 1038.4 85.4 12.2 353.0 2762.0

phantom3-olathe Olathe, USA 160 4000 × 3000 898.7 74.6 12.0 312.0 2514.0
phantom3-strawberry Xi’an, Shaanxi 184 4000 × 3000 990.5 86.3 11.5 473.0 3591.0
phantom4-mountain Shenzhen, Guangdong 81 4864 × 3648 627.7 51.9 12.1 252.0 1752.0

xag-xinjiang Yuli, Xinjiang 303 4864 × 3648 2179.4 163.7 13.3 - 4362.0

4.4. Quantitative DOM Precision Evaluation

The target of this study is to stitch a live georeferenced orthophoto on mobile devices, where
efficiency and robustness is the first priority. This finding indicates that we slightly sacrifice some
precision. A quantitative precision evaluation is performed on sequence p4r-field, and the detailed
errors of our result are illustrated in Figure 6. Although the RMSE of our system is slightly larger than
SfM methods. Our result is globally consistent and good in appearance because the optimization error
reduces the mismatch instead of reconstructing the precise locations. This precision is adequate for a
large number of applications, such as emergency rescue searching, path planning, and measuring.
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Figure 6. Detailed errors of GCPs in p4r-field dataset. The white–black marker size is 60× 60 cm,
and blue dot indicates the GCP location. The absolute error indicates the distance between the marker
center and GCP position; it is measured in meters with red text. Since we organize the screenshots
manually, so that the resolution may look not equal. Although the root mean square error (RMSE) of
our method is slightly larger than Pix4DMapper and DJITerra, it is precise for most applications.
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4.5. Web-Based Live Map Sharing

Our live map can not only be visualized by the host device, but can also be shared through local
area network (LAN) or even worldwide network, owing to the restful API design. A web-based
display implementation is developed, and all devices with browsers are able to visit the low-latency
high-resolution live map. Figure 7 demonstrates the display screenshots on PC and smart phone,
and the evaluation shows that only 100 KB/s bandwidth is required to visualize and update the
live map.

Figure 7. The live map can be visualized in PC and mobile phone web browsers. To share the dynamic
orthophoto through network efficiently, a restful API, and a corresponding rendering strategy is
designed. Only tiles, which are visible and updated, are transferred, and a network with over 100 KB/s
bandwidth is sufficient to render a low-latency high-resolution dynamic layer. This finding indicates
that the real-time mapping service can be placed everywhere and shared through the Internet.

5. Conclusions

In order to realize an online georeferenced orthophoto mosaicing solution for mobile devices,
we present a novel plane restrained visual SLAM method with high efficiency and robustness. Firstly,
an appearance and spatial correlation-constrained fast low-overlap neighbor candidate query and
matching strategy is used for efficient and robust global matching. Then, a novel graph-based
pose optimization is applied for overlapping images. GPS information is also fused along with
6-DOF pose estimation, which not only provides georeferenced coordinates, but also converges
property and robustness. Finally, an incremental orthophoto is generated with an adaptive weighted
multiband algorithm for fast mosaicing, which is specific suitable for low-overlap images. In order
to evaluate the effectiveness of the proposed method, we compared it with state-of-the-art software.
Experimental results show that the proposed method is fast, accurate and robust. Furthermore,
an android commercial application is developed for online stitching with DJI drones, considering
the excellent performance of our algorithm. Due to the low computation requirements of cellphones,
our system only outputs 2D orthophoto instead of 3D reconstruction, and the use of homography
transformation and planar assumption requires more flight height. In the future, full 3D reconstructions
with both 3D and ortho outputs are desired.
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