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Abstract: Ecosystem services offered by mangrove forests are facing severe risks, particularly through
land use change driven by human development. Remote sensing has become a primary instrument
to monitor the land use dynamics surrounding mangrove ecosystems. Where studies formerly relied
on bi-temporal assessments of change, the practical limitations concerning data-availability and
processing power are slowly disappearing with the onset of high-performance computing (HPC)
and cloud-computing services, such as in the Google Earth Engine (GEE). This paper combines
the capabilities of GEE, including its entire Landsat-7 and Landsat-8 archives and state-of-the-art
classification approaches, with a post-classification temporal analysis to optimize land use classification
results into gap-free and consistent information. The results demonstrate its application and value
to uncover the spatio-temporal dynamics of mangrove forests and land use changes in Ngoc
Hien District, Ca Mau province, Vietnamese Mekong delta. The combination of repeated GEE
classification output and post-classification optimization provides valid spatial classification (94–96%
accuracy) and temporal interpolation (87–92% accuracy). The findings reveal that the net change of
mangroves forests over the 2001–2019 period equals −0.01% annually. The annual gap-free maps
enable spatial identification of hotspots of mangrove forest changes, including deforestation and
degradation. Post-classification temporal optimization allows for an exploitation of temporal patterns
to synthesize and enhance independent classifications towards more robust gap-free spatial maps that
are temporally consistent with logical land use transitions. The study contributes to a growing body
of work advocating full exploitation of temporal information in optimizing land cover classification
and demonstrates its use for mangrove forest monitoring.

Keywords: data fusion; forest monitoring; Google Earth Engine; Landsat; mangrove forests; multi-temporal
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1. Introduction

Ecosystem services offered by mangrove forests are facing severe risks. Within the transition
zone of land and sea of (sub)tropical coastal regions, mangroves have carved out a distinct niche
to flourish and thereby provide vital services to mankind. Specifically, mangrove ecosystems have
shown to be one of the world’s most productive in terms of carbon sequestration, shelter and breeding
grounds for aquatic species, and as important physical barriers against tides and ocean surges [1–4].
Despite the multitude of crucial ecosystem services these coastal forests offer to communities in coastal
regions of more than 124 countries, the status of mangrove forests in many regions is under pressure
due to forest loss and land degradation, caused by overexploitation and land use change driven by
human development [5–7]. Due to the inaccessible, ever-changing, and extensive nature of these
mangroves, remote sensing has become a primary instrument to monitor the health and dynamics of
these ecosystems [8–10].

The field of Satellite Remote Sensing has moved into an era in which a tremendous wealth of earth
observation (EO) data are gathered at increasing spectral, spatial, and temporal resolutions—supporting
the wide-spread application of satellite data for studying global changes [11]. Orbiting EO satellites
allow us to repeatedly revisit areas of interest to study temporal changes and facilitate time series
analysis. The iconic Landsat-7 and Landsat-8 missions both offer average revisit intervals of 16 days
and observations that go back as early as the year 2000. The later Landsat-8 mission collected over
3.35 Petabyte of scenes over the course of a single year in 2017 [12]. These data collections hold great
potential to improve our monitoring efforts of mangrove ecosystems and study changes over time.

A critical review by Younes Cardenas et al. (2017) on using satellite remote sensing to monitor
mangrove ecosystems points out that the majority of studies conducted—reviewing 55 recent
peer-reviewed articles using Landsat/Aster imagery—are not making full use of the wealth of EO data
available [13]. The authors specify that most studies between 2001–2016 used fewer than 10 images
and longitudinal studies often analyze temporal changes with 7–11 years between scenes which leaves
much of the potential of current satellite archives unlocked [13]. Yet, mangrove forests are frequently
part of fast-changing landscapes driven by land use change at the interplay of volatile aquaculture
markets, policy-making, and the biophysical dynamics of erosion, sedimentation, and changing
tides [14–16]. This raises the question of how we can better unlock the potential of available satellite
imagery archives to facilitate high temporal resolution monitoring of the fast-paced land use processes
surrounding mangrove forest ecosystems.

The advances in high-performance computing (HPC) in combination with cloud-computing
services, such as provided by the Google Earth Engine platform (GEE), allow us to address the major
challenges of processing and handling enormous EO datasets and turning these into comprehensible
information [13,17–21]. The GEE platform provides straightforward HPC cloud access to many of the
major satellite archives as well as numerous image classifiers for mapping applications, including
Classification and Regression Trees (CART) and Random Forests (RF) approaches. Illustrative of its
capabilities, Hansen et al. (2013) mapped global forest cover change products from over 650 thousand
Landsat-7 scenes [22]. Following this, a large body of regional studies has demonstrated high mapping
accuracies using GEE’s land use classifiers (CART) with Landsat images [19,23,24]. More specifically,
we observe an increasing use and successful implementation (accuracies between 92% and 97%) of
GEE-based land use classification for mangrove mapping [25–27].

Through GEE, we can efficiently organize longitudinal time series from satellite observations
and independent classification efforts can be repeated over time with ease. These time series can be
valuable to study and monitor temporal changes in land use. Conversely, the temporal dependencies
of each time point in the series can also be used to further optimize the time series in terms of missing
information and consistency. In other words, the temporal domain can facilitate post-classification
optimization of GEE output towards maps that are gap-free and temporally consistent with logical
land use transitions as well as provide a means of cross-validation. This is particularly crucial in cases
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with hampering climatic conditions (clouds, snow, dust, and aerosols), instrumentation errors, losses of
image data during data transmission, or high uncertainties in information processing [28].

Temporal gap-filling and smoothing approaches are common practice in remote sensing of
phenology and cropping cycles through continuous parameters, such as vegetation indices (e.g., NDVI,
EVI) and surface parameters (Land Surface Temperature) [28–32]. However, in discrete land cover
classification exercises, this practice remains less common, including in combination with the GEE
platform [33,34]. Current studies tend to focus on gap-filling based on spatially neighboring pixels [35,36],
spectral similarity, and/or multi-sensor (source) data fusion [34,37,38], rather than temporal integration.
As such, few land use studies have taken full advantage of temporal dependencies to reduce both
information gaps and inconsistent land use transitions [13,39–41]. This is a particularly rare undertaking
for the monitoring of mangrove forests land use changes, whereas consistent and gap-free time series
are crucial to closely monitor mangrove deforestation, degradation, and disturbance [13,15]. Land use
changes tend to follow logical temporal land use transitions which can guide the optimization of
classification maps [13,40].

The main objective of our study is to deploy high-performance computing techniques to monitor
mangrove forest cover changes in our case study area; the mangrove-rich Ngoc Hien District, Ca Mau
province in the Vietnamese Mekong delta. Rather than a single land use classification approach,
we demonstrate how independent land use classifications conducted in GEE can be combined to
optimize classification results in terms of completeness and consistency. As such, the study exploits
both; (1) the computational capacity of GEE to deal with the entire Landsat-7 and -8 archives and
(2) the temporal element of a longitudinal time series to optimize land use classification results
into “gap-free” and temporally consistent information. This can help us better understand the
spatio-temporal dynamics of mangrove forests, in terms of extent, distribution, and land use change
and disturbances that threaten their conservation.

2. Materials and Methods

2.1. Study Area

The study area focuses on Vietnam’s southernmost district, Ngoc Hien, Ca Mau province, located in
the Southern Mekong Delta between latitude 8◦33′–8◦45′N and longitude 104◦42′45”–105◦3′54”E,
spanning an area of 743 km2 (See Figure 1). The district has been well-studied for its importance as
a major aquaculture hub and its significant reserves of Vietnam’s largest and last remaining old-growth
mangrove forests, including the internationally acknowledged RAMSAR site of Mui Ca Mau (2012)
and UNESCO Biosphere Reserve (2009) [42–44]. The landscape supports both ecologically important
mangrove ecosystems and the economic livelihoods based on aquaculture.

2.2. Remote Sensing Data Pre-Processing

This study makes use of the archives of Landsat’s later missions embodied by the Landsat-7 and
Landsat-8 multispectral imagery available through GEE’s public data catalogue of atmospherically
corrected surface reflectance data. We have made use of all available 30 m spatial resolution bands
of both missions, this implies: two short-wave infrared (SWIR) bands and four/five visible and
near-infrared (VNIR) bands for Landsat-7 and Landsat-8, respectively. The study area is centered
within the path-rows of 125–054 and 126–064 with an average 16-day revisit time. The Landsat-7 and
-8 Quality Assessment bands and calculated F-mask were used to filter out pixels containing clouds,
cirrus, cloud shadow, and atmospheric contamination of the reflectance signal.

Table 1 gives an overview of the available images for each year. Based on the spectral reflectance
of all available images annual median composites are compiled that provide consistent cloud-free
median images of spectral reflectance [45]. The malfunction of the Scan Line Corrector (SLC) of the
Landsat-7 imager has resulted in that on average around a quarter of the data in a Landsat-7 scene is
missing from the 31st of May 2003 onwards [46]. These products hence have considerable data gaps,
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but still maintain the same radiometric and geometric corrections as data collected prior to the SLC
failure. The combination of high cloudiness of the region with SLC failure results in limited usability
of the years 2003–2012. Therefore, our analysis deploys a cautionary interpretation of these years.
Furthermore, years characterized by SLC failure are combined bi-annually to increase data availability,
coverage of the region, and to lower uncertainties.
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Table 1. Overview of used images, per sensor (Landsat-7 and Landsat-8) per scene pathway, and missing
pixels and anomalous land use transitions assessed with temporal data fusion. Years impeded by the
SLC-malfunction are shaded in grey.

Year
Available Images Missing Pixels

for Gap Filling
LUC Anomalies

Detected

LS-7 LS-8 No. of
Pixels

% No. of
Pixels

%
125–054 126–064 125–054 126–064

2001–2002 19 23 1 0.0 0 0.0
2003–2004 † 22 19 0 0.0 449 0.0
2005–2006 † 24 17 257 0.0 1321 0.1
2007–2008 † 10 7 1352 0.1 3220 0.3
2009–2010 † 12 11 78 0.0 4352 0.5
2011–2012 † 11 9 6846 0.7 5112 0.5

2013 (10) (8) 7 13 6468 0.7 8918 0.9
2014 21 19 143 0.0 2131 0.2
2015 16 * 12 * 17 * 19 * 5 0.0 976 0.1
2016 14 17 60 0.0 1372 0.1
2017 18 14 438 0.0 2964 0.3
2018 17 19 1026 0.1 2028 0.2
2019 17 20 3914 0.4 3720 0.4

* = Training year, † = Scan Line Corrector (SLC) malfunction.
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2.3. Land Cover Classification

After pre-processing, the resulting cloud-free median multispectral annual composites are used to
characterize land use, and the land use changes over time. The land use classification scheme of our
study takes into consideration four dominant land uses within the Ngoc Hien district, namely (1) Dense
Mangrove Forest, (2) Sparse Mangroves, (3) Aquaculture/Waterbodies, and (4) Built-up and Barren lands.
Dense mangrove forest is defined by a minimum of 30% canopy cover. Vegetated mangrove areas that are
10–30% crown cover are classified as sparse mangroves.

We conducted a supervised classification to develop land use maps. There are several classification
algorithms available within GEE, including; Classification and Regression Trees (CART), Random Forest
(RF), Naïve Bayes, and Support-Vector Machine (SVM). Our study opted for the commonly used
CART classifier which has produced relatively high accuracies when applied to Landsat data in
numerous settings [19,23,24,26]. More specifically, several studies have reported the highest accuracy
for CART land use classification of coastal wetlands and mangroves using GEE compared to other
classifiers [25,27]. Most importantly, we ran trails in the study area for both CART and RF in which the
first yielded the highest classification accuracy (94–96% for CART, against 89–94% for RF, respectively).
GEE code implementations of both approaches and its validation against test data can be found in the
Supplementary Materials Table S1.

Within CART, a decision tree (DT) classifier was instantiated and trained on field data using GEE’s
default parameters. The CART algorithm runs through a series of nodes that recursively split the input
data in such a way that there is a decrease in entropy and an increase in information gain after the
split. GEE’s CART uses the Gini Impurity Index to decide the input features which will provide the
best split at each node. A tabular overview of the exact decision rules for building the model can be
found in Supplementary Materials Table S2. One disadvantage of the DT classifier is the considerable
sensitivity to the training dataset. A small change to the training data can result in a very different set
of subsets and can result in overfitting [19,47]. Nevertheless, our training and validation data relies
on extensive fieldwork, including 514 georeferenced points gathered in-situ across the Ngoc Hien
district in 2015, subdivided into the four classes; dense mangroves (n = 247), sparse mangroves (n = 72),
waterbodies/aquaculture ponds (n = 120), and built-up and barren lands (n = 75). We used 70% of
the field data for training and the remaining 30% for validation, thereby estimating the classification
errors independently.

Following the initial training of the classifier, it is then deployed backward (LS-7) or forward
(LS-8) through the time series based on spectral/change information of the surface reflectance data
available in the composite datasets. Based on this method, land cover maps are generated from the
surface reflectance of pre-processed yearly median composites between 2001 and 2019. The workflow
of GEE pre-processing and land use classification is presented schematically in Figure 2. GEE code can
be accessed through the URLs published in Supplementary Materials Table S1.

2.4. Post-Classification Optimization through Time Series Temporal Data Fusion

The longitudinal temporal data of the Landsat archives enabled the use of neighboring time points
to cross-validate findings, fill in missing data through temporal data fusion, detect and revise illogical
land use changes in the post-classification analysis [33,39–41,46,48].

Gap-filling through consideration of the temporal dimension in years preceding and following
a missing value has allowed us to interpolate missing pixels to assure spatial and temporal continuity
over the study area. The approach for temporal interpolation follows an adaptation of inverse
distance weighting methods applied to discrete land use classification data, the basic assumption
is that a temporally distributed variable at short distance is generally more similar than at larger
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distance [49,50]. The applied approach integrates land use classes of adjacent years weighted by
a power (p = 1.5) of the distance (d) to the year of interpolation, formulated in an equation as:

ẑi=0 = maxz

 n∑
i=1

1

dp
z,i


in which i = 0 indicates the time point to be interpolated with predicted land use (ẑ), and which
i = n indicate the n years adjacent where land use (z) has been observed. As such, pixels missing
valid observations are estimated by taking into account a seven-year pattern and scoring neighboring
time points, in which observations nearest in time weight the heaviest. The seven-year time window
corresponds with the consecutive years with full data availability (2013–2019). The land use class
scored the highest will be used for gap-filling.
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Similarly, further optimization of classification results can be achieved by taking into account that
land use changes usually occur characterized by a logical transition [40,41]. Land use changes and
transitions follow ecological rules [40,41]. For instance, the growth of dense mangrove forests takes at
least multiple years. Understanding these land use transitions can help setting rules determined by
ecology and feasibility to detect illogical land use transition from remotely sensed time series.

In our study, we have opted for a post-classification approach to detect and revise illogical land use
(See Table 2). The assessment of uncertainties and reclassification by the CART classifier based on the
temporal exclusion of certain illogical transition rules (e.g., maximum a posteriori (MAP) classification
rule in a Bayesian framework [41]) has not been embedded within the GEE platform. Therefore,
a post-classification approach that scores the likelihood of land use classes to occur based on temporal
context is deployed. Table 2 provides an overview of the anomalies detected. Similar to the gap-filling
of missing pixels, illogical land use transitions are revised by distance weighting of neighboring time
points (analyzing a seven-year pattern) of the pixel under scrutiny to determine what land cover time
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is most probable to be in place. The entire workflow from pre-processing, land cover classification,
post-classification optimization is presented schematically in Figure 2’s diagram.

Table 2. Scheme of logical inter-annual land use changes. Color scheme indicates a classification of
mangrove forest land use change trends. The color scheme also applies multi-annually.
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Unchanged Forest.

We tested the gap-filling algorithm’s predictive performance using a k-fold leave-one-out strategy.
In these tests, we purposely removed a datapoint to run the gap-filling algorithm to predict the land use
based on temporal neighbors. We assessed the percentage of correctly predicted land use classifications.
We have conducted this for all available pixels and years in the analysis.

Taken together, temporal integration of GEE’s individual land use classification maps into
a gap-free sequence of maps that follow logical land use transitions enabled us to analyze the land use
trends occurring throughout the available data. Land use changes were grouped into four categories
illustrated through the color scheme in Table 2. Only mangrove forest changes were considered in the
trend maps (other land use changes remain white). Moreover, we used 150 × 150 m box averages to
highlight general trends and reduce uncertainties by spatial regularization.

3. Results

Temporal and Spatial Accuracy Assessment

Classification of surface reflectance, using a CART classifier ran within GEE and trained separately
for both Landsat-7, and -8 on collected field data, produces 95.6% and 94.1% accuracy confiners for LS-7
and LS-8, respectively, for the reference year 2015 (Table 3). The gap-filling algorithm’s performance to
predict land use type based on the seven-year pattern surrounding missing pixels hovers between
87 to 92% depending on the year (Table 4).

Table 3. Validation results of land use classification for Landsat-7 and Landsat-8.

Ground Truth from Field Survey

C
la

ss
ifi

ca
ti

on
R

es
ul

ts

Land Cover Type Dense
Mangrove

Sparse
Mangrove

Water
Bodies/Ponds

(LS7/LS8)

Built
Environment
/Mudflats
(LS7/LS8)

Total
Classified

Pixels
(LS7/LS8)

User
Accuracy

(%)
(LS7/LS8)

LS7 LS8 LS7 LS8 LS7 LS8 LS7 LS8 LS7 LS8 LS7 LS8

Dense mangrove 72 84 1 5 0 0 0 0 73 89 98.63 94.38

Sparse mangrove 1 0 20 16 2 2 0 0 23 18 86.96 88.89

Water bodies/Ponds 0 0 1 2 36 38 0 0 37 40 97.30 95.00

Built
environment/Mudflats 1 0 0 1 1 0 24 21 26 22 92.31 95.45

Total ground truth
pixel 74 84 22 24 39 40 24 21 159 169

Producer accuracy (%) 97.30 100.0 90.91 66.67 92.31 95.00 100.0 100.0

Overall accuracy (%) (LS7/LS8) 95.60 94.08



Remote Sens. 2020, 12, 3729 8 of 16

Table 4. Validation results of land use classification for Landsat-7 and Landsat-8. Years with SLC
malfunction are shaded in grey considering the higher uncertainties.

Year Temporal Gap-Filling Accuracy (%)

2001–2002 -
2003–2004 85.67
2005–2006 85.19
2007–2008 86.64
2009–2010 85.43
2011–2012 87.16

2013 90.41
2014 91.68
2015 91.80
2016 86.92
2017 87.40
2018 86.89
2019 -

An overview of all land use classification maps after gap-filling and post-processing for logical
land use transitions is presented in Figure 3. The maps depict all years with full data-availability
and therefore the highest reliability ranging from 2001–2002, and 2013–2019. A visual inspection of
the temporal dynamics indicates that the central regions in Ngoc Hien have been subject to a high
frequency of land use changes whereas towards the coast, specifically the Western Cape, stable havens
of dense mangrove forest have to large extent been minimally subjected to forest clearance and land use
change. Over the years, three core mangrove forests areas can be identified (See Figure 1, for commune
locations); (1) the cluster in the south-east of Ngoc Hien, including the eastern part of Tan An commune
and adjacent southern Tam Giang Tay commune, (2) the mangrove forest strip along the southern
coastline, and (3) the largest core mangrove area is located in the western tips of Ngoc Hien district;
Dat Mui commune which encloses the Ca Mau Cape National Park and the north-western part of Vien
An commune.

The total land use changes over time are highlighted in Figure 4. These results show that the total
shares of land use cover between four classes have remained relatively stable with yearly fluctuations.
In the span of two decades, we find sparse mangrove cover fluctuating between 33,000 ha and 40,000 ha
and dense mangrove forests hovering between 18,000 ha and 24,000 ha. The average net change of dense
mangroves over the 2001–2019 equals −0.01% annually. In recent years since 2013, we observe upward
trends in dense mangrove forest cover as well as built environment and mudflats. Sparse mangrove
cover has been decreasing in that same period. Waterbodies/ponds have remained more or less equal.

Despite these overall trends, the figure conceals the spatial dynamics behind the distribution of
mangrove forests and land use changes that characterize the region. To gain insight into the spatial
distribution of land use changes, an aggregated trend map was created (Figure 5) to identify hotspots
of mangrove forest change while leaving changes of non-forest classes out of consideration. Generally,
the dense mangrove patches in the Eastern regions have shrunk in size and extent, whereas the core
mangrove forests on the Western Cape have seen an expansion through sedimentation and seaward
colonization. Ngoc Hien’s central communes have seen an increased integration of dense mangroves
patches in the mosaic of waterbodies/ponds and sparse mangrove cover. Areas most prone to mangrove
forest loss and degradation are the eastern central regions, possibly due to its vicinity to districts with
higher urban development, infrastructure, and aquaculture production [51].

The trend map presented in Figure 5 gives insight into the spatial distribution of temporal
dynamics of mangrove forest loss and gains. The map highlights how coastal erosion along the
southward coastline and sedimentation along the westward frontier have resulted in losses and gains of
mangrove forests. The strip of dense mangrove forests serving as a protective buffer along Ngoc Hien’s
southern coastline has seen shifting land use changes; on the one hand, inland regrowth and increased
connectivity are observed, whereas on the other hand coastal erosion is becoming increasingly severe
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leading to seaward losses of dense mangrove forest. In Ngoc Hien’s Western regions, Dat Mui and
Vien An communes (see Figure 1, for commune locations), the remaining core mangrove forests have
seen relatively few land use changes except for seaward mangrove expansion and colonization caused
by coastal sedimentation (Figure 5).
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4. Discussion

4.1. Overcoming Observation Gaps in Mangrove Monitoring

In the critical review by Younes Cárdenas et al. (2017) based on 55 recent peer-reviewed journal
articles using Landsat or ASTER images to monitor mangrove forests, the authors conclude that the
majority of multi-temporal studies focus on only a fraction of available satellite imagery with on
average 7–11 years between scenes of multitemporal analysis [13]. Yet, high temporal change detection
of mangrove forests is vital in mapping threats from aquaculture expansion and coastal development
as well as to understand cyclic processes such as logging in production areas and seasonal biomass
fluctuations [15]. In our study, 446 unique scenes were processed into annual median composites
to study the temporal dynamics of mangrove forests in one of Vietnam’s most prominent regions
for mangrove conservation, Ngoc Hien district in the Ca Mau province. Despite a large number of
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scenes per composite (15.4 scenes on average), it still resulted in a high number of pixels with no
observations and/or illogical land use transitions for different years between 2001–2019 (See Table 1).
Following temporal gap-filling and post-classification optimization, the resulting optimized time series
allowed us to better monitor the state of mangrove forests in Ngoc Hien with spatial and temporal
continuity and logical consistency in transitions.

4.2. Post-Classification Temporal Optimization

Accurate land use classification remains a challenging undertaking in landscapes dominated by
aquaculture and mangrove forest land use [13]. In our study, the accuracy assessment for the reference
year 2015 yielded assuring accuracy confiners (Table 3). We used 514 single-year reference data points
observed in-situ for training the classifier and validation of the results. Ideally, we would have such data
available for multiple years; however, this is difficult to acquire and organize. With limited availability
of ground-truth data, reducing classification uncertainties and increasing temporal consistency is key
to provide high-quality land use maps.

The use of yearly median composites allowed for fast computational processing and a comprehensible
annual time series output for policy and decision-makers. Nevertheless, the application of median
composites also poses disadvantages. Adequate composites still require the presence of sufficient
high-quality observations. Moreover, a year-round even temporal distribution of scenes is required to
facilitate an adequate median composite that is representative for the entire year. Knowledge regarding
yearly phenology, the impact of tides of reflectance signals, trends in biophysical parameters (functional
traits) of mangrove ecosystems is for a large part still lacking to make appropriate judgments on possible
biases in median composites [13]. In other words, gaining more understanding regarding these temporal
processes, also within yearly cycles, will help gain insight into the robustness of median composites for
mangrove forest ecosystems.

Further challenges in accurate classifications of mangrove forests are raised by; (1) the fine-grained
landscape mosaic with mangrove plots and aquaculture ponds often sized at sub-pixel (30 m × 30 m)
measures, (2) the unknown implications of tidal effects on spectral signals and the high level of water
vapor observed in these coastal regions, and (3) recent trends towards integrated mangrove-shrimp
farming production systems which have made discrimination between mangrove, aquaculture paddy
land use classes more ambivalent [9,13,15,52,53]. These challenges highlight the importance of making
the most of the temporal information available to lower uncertainties in the final classification product.
This is particularly important when noise in remote sensing signals is high—which is commonly the
case in cloud-covered mangrove regions—and when multi-annual validation/training data are scarce.
Several situations can cause illogical changes in a land use time series, such as classification errors,
reflectance signal noise, and imperfect image co-registration.

Here, we demonstrated how the exploitation of information in the temporal domain allowed for
additional optimization and a means of cross-validation of the GEE classification outputs. Studying temporal
patterns and cross-validating land use changes in relation to the previous and following years help increase
the robustness to noise and credibility of classification efforts. Specifically, the temporal information of land
cover maps in a time series has been used to detect illogical land use changes and improve classification
results [48]. The approach for temporal mangrove monitoring outlined is relatively easy to implement using
GEE output and post-classification optimization. At the same time, it provides valid spatial classification
(Table 3; 94–96% accuracy) and temporal interpolation (Table 4; 87 to 92% accuracy). Temporal interpolation
follows a simple discrete inverse distance weighting algorithm, however other and more advanced statistical
learning approaches can potentially be interesting alternatives [41,49,50,54–56].

Figure 5 illustrates the further implementation of our gap-free time series in studying
multi-temporal mangrove land use trends in Ngoc Hien. Bi-temporal approaches risk highlighting
observations that result from isolated instances that can introduce inconsistencies and uncertainties
in classification, especially considering the, at times, unfavorable signal-to-noise ratios found in
satellite remote sensing [13]. Instead of comparing two single timestamps, the integration of yearly
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gap-free land use classification enables temporal cross-validation along logical land use transitions and
gap-filling based on temporally neighboring information. This temporally dense analysis allows us to
fully assess the direction and frequency of land use changes affecting mangrove forests [57,58]. This is
also important to ensure that the unchanged forest between two time points has remained undisturbed
in the years in between. Moreover, the multi-annual approach allows us to assess and quantify
observed land use changes, e.g., forest disturbances, at a high temporal frequency, thereby opening
venues to better monitor and study mangrove forest disturbance regimes and mangrove degradation
processes as compared to bi-temporal land use change.

The land use trend map (Figure 5) facilitates the detection of hotspots for mangrove forest change;
deforestation, degradation, and regrowth. While the map is informative for deforestation and the land
use change drivers behind it, the assessment of forest degradation remains arbitrary inherent to the
operationalization of the land use classification scheme. This ties in with the challenges and complexity
of defining forest degradation [59]. A large variety of existing definitions of forest degradation require
different methods for assessment based on the objectives of the intended study [60]. The gap-free
land use change maps presented here may help flag changes in mangrove forest extent. However,
to overcome the arbitrariness of classes, complimentary maps on quantitative canopy/leaf traits
and biomass can further enhance our ability to assess forest degradation and forest regrowth along
a spectrum of ecologically relevant indicators [61–63].

4.3. Future Implementation

The case study presented here builds on and contributes to a growing body of work advocating
that approaches that account for temporal information in optimizing land cover classification are
superior to temporally independent time series classifications and other single-date methods [39,64].
The application of the post-classification optimization to stabilize land cover trajectories, mitigate
unrealistic land cover transitions and overcome the limitations and costs of obtaining ancillary and
field data are still rarely applied in land use time series studies [39,64]. GEE implementation of these
methods within its standard functionality offers an opportunity to improve temporal consistency and
promote temporally dense analyses as a common practice. In addition to the post-classification method
presented here, other opportunities to fully benefit from the temporal information available would
be a GEE implementation of methods combining the probability functions of land use trajectories
and the propagation of classification uncertainties temporally to decide on the final classification
outcome [33,39–41,46,54,65]. Furthermore, data fusion of multiple sensors have shown large potential
to further increase the temporal resolution of analysis [34,37,38]. In particular, the integration of optical
and LiDAR or synthetic aperture radar imaging offers opportunities for high-frequency temporal
analyses that are independent of the weather and cloud cover [66].

5. Conclusions

Our study aimed to advance temporal mangrove forest monitoring efforts to benefit from the
potential that currently available satellite earth observation data and cloud-based high-performance
computing can offer. The temporal domain of these information-dense datasets opens opportunities to
apply data fusion principles to optimize classification outputs to be gap-free and temporally consistent
with logical land use transitions as well as provide a means of cross-validation. The results of our case
study on mangrove forests demonstrate how this information can be valuable in understanding the
spatio-temporal dynamics, processes, and trends of land use changes and improve decision-making
with detailed information. Thereby, our study builds on and contributes to a growing body of work
advocating that accounting for temporal information in optimizing land cover classification is superior
to temporally independent classifications in time series and other single-date methods.

Despite growing awareness, most mangrove forest cover classification studies are yet to take full
advantage of Earth observation’s potential and the rich temporal information available from time series
data. Implementation of temporal optimization, either post-classification or during the classification
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process, within future implementations or that can be automated on top of GEE’s output as presented
here, can hopefully contribute to advance mangrove monitoring studies towards fully unlocking
the potential of data available as the field of earth observation keeps evolving. The integration of
synthetic aperture radar remote sensing in addition to optical observations will be key in advancing
the approach presented here and increase the temporal resolution by overcoming data gaps due to
weather or lighting conditions.
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Table S1: Links to the GEE code implementation used for this study, Table S2: Decision rules of the regression tree
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