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Abstract: Regular power line inspections are essential to ensure the reliability of electricity supply.
The inspections of overground power submission lines include corridor clearance monitoring and
fault identification. The power lines corridor is a three-dimensional space around power cables
defined by a set distance. Any obstacles breaching this space should be detected, as they potentially
threaten the safety of the infrastructure. Corridor clearance monitoring is usually performed either
by a labor-intensive total station survey (TS), terrestrial laser scanning (TLS), or expensive airborne
laser scanning (ALS) from a plane or a helicopter. This paper proposes a method that uses unmanned
aerial vehicle (UAV) images to monitor corridor clearance. To maintain the adequate accuracy of
the relative position of wires in regard to surrounding obstacles, the same data were used both
to reconstruct a point cloud representation of a digital surface model (DSM) and a 3D power line.
The proposed algorithm detects power lines in a series of images using decorrelation stretch for
initial image processing, the modified Prewitt filter for edge enhancement, random sample consensus
(RANSAC) with additional parameters for line fitting, and epipolar geometry for 3D reconstruction.
DSM points intruding into the corridor are then detected by calculating the spatial distance between
a reconstructed power line and the DSM point cloud representation. Problematic objects are localized
by segmenting points into voxels and then subsequent clusterization. The processing results were
compared to the results of two verification methods—TS and TLS. The comparison results show that
the proposed method can be used to survey power lines with an accuracy consistent with that of
classical measurements.

Keywords: unmanned aerial vehicles; power lines; image-based reconstruction; 3D reconstruction

1. Introduction

Power lines are a typical part of urban and rural landscapes. Due to the need for power,
national and regional networks cover most of the world and continue to expand. They require
regular monitoring and maintenance work. Monitoring power lines features two aspects: power line
components and occlusions of the line corridor. Both are important and interconnected and are thus
often addressed simultaneously.

The power line corridor is a 3D buffer around the wires and is defined by the set distance from the
wires. It is thus necessary to find the precise position of the wires [1]. Regular inspections of vegetation
inside and near the power line corridor are needed to identify trees or branches that need to be cut
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due to safety concerns, as the direct proximity of trees in a line corridor might trigger, for example,
a bushfire. There are monitoring methods that are used to identify branches or canopies that endanger
the inviolability of the power line corridor [2] or detect and classify trees to help evaluate the impact
on the line [3]. Other techniques focus on volumetric analysis in order to evaluate the impact of the
vegetation and its progression by calculating a differential map of a digital surface model (DSM) for
two epochs [4].

A range of techniques have been implemented to solve the above problem. They vary from
mundane and time-consuming methods of classical surveying to technologically advanced and highly
expensive ones. Among the most popular inventory methods for inspecting power lines are airborne
laser scanning [5–8] and mobile terrestrial scanning [9,10]. The dense point clouds generated by laser
scanning can be used to form models of 3D power lines, in the context of surrounding vegetation,
and a survey network. The typical workflow features classifying point clouds, creating the digital
terrain model (DTM), and 3D line modeling [11]. Algorithms based on point position, the intensity of
response, multiple echoes, and 2D projections enable automated data processing [6,12,13]. Although
Light Detection and Ranging (LiDAR) is an effective and robust method, it has some drawbacks.
Some, such as problems with suitable weather conditions, are partially shared with passive methods.
Additional drawbacks include problems with identifying towers and simply the cost of the equipment,
survey, and processing [14]. Some research has also dealt with a combination of unmanned aerial
vehicle (UAV) technology and LiDAR for surveying power lines [5,15,16]. The availability of lighter
LiDAR scanners and developments in the UAV platforms have contributed to improving efficiency.
Although this technology has potential for further development, the cost of a device in combination
with the high risk of failure decreases its economic efficiency.

Many applications use optical images and computer vision systems [17]. Satellite, airborne,
and UAV images have been employed [18,19]. Satellite images, owing to their low resolution,
are limited to providing generalized information on terrains and vegetation [20]. Aerial images rely
significantly on manual stereo measurements [19]. UAV-based optical images can provide accurate
and high-resolution data [21], and their use with a range of stereomatching algorithms is a promising
solution. Attempts have been made to consider photogrammetry as a source of the point cloud and
to analyze and filter data similarly to the procedure in LiDAR [22]. Automatic software for dense
matching, where the geometry of power lines is reconstructed, could be a fast and convenient solution.
In addition to its clear drawbacks relating to optical images, such as the sensitivity to changes in lighting
conditions, and the atmospheric influence, the radiometric differences between lines and a background
make it even less effective. The lines usually occupy a small part of a photo; otherwise, the time
needed for the surveying, the size of the survey data, and the processing time increase. Furthermore,
the complexity and the variability of the background is an obstacle for the 3D line reconstruction [23].
The aforementioned reasons and the use of the outliers’ approach might preclude the operation of
dense matching algorithms. For these reasons, this solution is not feasible.

Other solutions have been proposed for clearance monitoring using aerial images, but methods
that use UAVs as the main source of data are becoming increasingly popular. The biggest advantages to
using UAVs are their low altitude of flight and the flexibility and economy of the method in comparison
with airborne photogrammetry [24,25]. Both multi-rotors and fixed wings are used for this task.
The former constructions are especially useful for precise surveys at a low altitude, but the latter
approaches are more efficient and have a greater fly range [18].

Considerable research has been dedicated to power line monitoring using UAVs. Most of it has
focused solely on wire detection in images [26–34], but a few studies have taken a more holistic
approach by considering not only the position of the power line, but also the line corridor and obstacles.
The means of data processing and 3D power line reconstruction are different and depend on the aim of
the calculation. Such an approach was proposed in two papers [26,35]. One focused on dense matching
algorithms and the automation of obstacle detection, whereas power line reconstruction was performed
manually, and aided by epipolar images [23]. The other study implemented the results of past work



Remote Sens. 2020, 12, 3698 3 of 31

together with fully automated line detection algorithms based on images [35]. This method is based on
changes in the gradient combined with the high gray response of the power line and assumes multiple
thresholds. This solution provides good results, although it has yet to be proven to work with more
versatile data. Similarly, research on epipolar imagery was presented in another piece of research [36],
where a real-time system was developed for obstacle avoidance by UAVs as they monitored power lines.
To calculate the relative 3D position of the power lines, several steps were implemented, including
TopHat transform and the cross-based arbitrary shape support region method, to create a depth map.
The study assumed that the background was not complex, and featured either the sky or some treetops.
Another holistic approach used semantic segmentation based on fully convolutional neural networks
to enhance depth maps and accurately reconstruct linear objects [37]. The research also used enhanced
dense matching to detect obstacles in the power line corridor. The neural networks were also used
successfully for line segmentation in another study [38]. The effectiveness of these algorithms is at least
80%. However, their major drawback is the demand for a vast learning dataset [3]. Additionally, there
are hardly any cases of a comprehensive methodology for detecting and reconstructing power lines in
the literature using neural networks [39]. Additional research on the 3D reconstruction of power lines
was presented in two papers by the same authors [40,41]. In both, the lines are initially detected from
epipolar images using a simple extraction template. Three-dimensional reconstruction is performed
differently in each, however. One introduces a 3D grid based on the expected ground sampling distance
(GSD) and the positions of the utility poles [40]. The grid is then reprojected on images to validate the
detected power lines and establish their relative correspondence. In the second paper, all combinations
of wires detected in both images in a stereopair are considered and then reprojected on a third image
to validate the choice [41].

This paper aims to develop a comprehensive and robust method for occlusion monitoring in the
power line corridor (Figure 1). The main goals are to minimize the time needed to perform the survey
and the user input in subsequent processing. The same dataset was thus used to reconstruct power
lines and acquire a point cloud representation of a DSM for a possible occlusion check. However,
images suitable for the creation of a dense point cloud representation of the terrain usually record
power lines as barely distinguishable objects that are only a few pixels wide. Therefore, additional
processing is required to successfully extract and model power lines.
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Figure 1. A visualization of the goal of the research, i.e., the results of the 3D reconstruction of power
lines (source: FlyTech unmanned aerial vehicle (UAV) test flights)—power line over the UAV-derived
point cloud representation of the digital surface model (DSM).

The remainder of this paper is structured as follows: Section 2 describes the proposed method,
including the data acquisition process, initial data processing, 2D image processing, 3D reconstruction
of power lines, and obstacle detection. The datasets acquired to create and test the proposed method
are also presented in Section 2. Section 3 describes the results of UAV image processing along with the
assessment of their accuracy. A discussion of errors and their possible sources is in Section 4. Section 5
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offers the conclusions of this paper. In Appendix A, the additional results of a threshold sensitivity
analysis are included.

2. Materials and Methods

The proposed method features the following steps (Figure 2):

• Data acquisition—the terrain was imaged according to certain principles of photogrammetry to
ensure high accuracy and automated processing.

• Bundle adjustment and data ordering—the image data were processed using photogrammetric
software to estimate the exterior orientation elements (EOE) and the interior orientation elements
(IOE) for DSM reconstruction. The data were then ordered into consecutive stereopairs.

• Power line detection in images and reconstruction of 3D geometry—the process uses several
techniques, both on separate images (2D) as well as stereopairs (3D). The approximate position
of each power line was calculated, either from manual input or 3D points projected on the
image. The images were then processed using the modified Prewitt operator, automatic
thresholding, and binarization. The random sample consensus (RANSAC) algorithm with
additional parameters was then used to calculate the adjusted position of the detected power
line. Three-dimensional reconstruction was then performed using the detected power lines and
principles of epipolar geometry.

• Detection of obstacles within the power line corridor—a simple procedure where the distance
between reconstructed power lines and the point cloud representation of DSM is computed;
occluding points are then bound into voxels [37] and clustered into objects [42].

Remote Sens. 2020, 12, x FOR PEER REVIEW 4 of 31 

 

2. Materials and Methods  

The proposed method features the following steps (Figure 2): 

 Data acquisition—the terrain was imaged according to certain principles of photogrammetry to 

ensure high accuracy and automated processing.  

 Bundle adjustment and data ordering—the image data were processed using photogrammetric 

software to estimate the exterior orientation elements (EOE) and the interior orientation 

elements (IOE) for DSM reconstruction. The data were then ordered into consecutive stereopairs. 

 Power line detection in images and reconstruction of 3D geometry—the process uses several 

techniques, both on separate images (2D) as well as stereopairs (3D). The approximate position 

of each power line was calculated, either from manual input or 3D points projected on the image. 

The images were then processed using the modified Prewitt operator, automatic thresholding, 

and binarization. The random sample consensus (RANSAC) algorithm with additional 

parameters was then used to calculate the adjusted position of the detected power line. Three-

dimensional reconstruction was then performed using the detected power lines and principles 

of epipolar geometry.  

 Detection of obstacles within the power line corridor—a simple procedure where the distance 

between reconstructed power lines and the point cloud representation of DSM is computed; 

occluding points are then bound into voxels [37] and clustered into objects [42]. 

All the steps are described in detail below.  

 

Figure 2. A general schema of the proposed method. 

2.1. Data Acquisition 

Appropriate data acquisition can enable the detection of power lines and is as important as the 

methods for the subsequent processing of the data. Some requirements need to be satisfied to ensure 

the reliable operation of the algorithm. While maintaining the highest efficiency, the measurement 

requirements of the data should be universal enough to allow for the use of different cameras and 

UAVs.  

First, it is important to define image quality requirements. In this case, the most significant 

parameter is resolution as defined by the GSD. The maximal GSD to ensure that the wires are detected 

must be smaller than their diameters. However, to increase the efficiency of detection, the GSD 

Figure 2. A general schema of the proposed method.

All the steps are described in detail below.

2.1. Data Acquisition

Appropriate data acquisition can enable the detection of power lines and is as important as the
methods for the subsequent processing of the data. Some requirements need to be satisfied to ensure
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the reliable operation of the algorithm. While maintaining the highest efficiency, the measurement
requirements of the data should be universal enough to allow for the use of different cameras and UAVs.

First, it is important to define image quality requirements. In this case, the most significant
parameter is resolution as defined by the GSD. The maximal GSD to ensure that the wires are detected
must be smaller than their diameters. However, to increase the efficiency of detection, the GSD should
be half the diameter. Another important aspect is the camera’s exposure settings, which must ensure
that the wires can be distinguished from the background (Table 1). Owing to the small size of the wires,
the ISO setting should be as small as possible. To avoid blurred images, the shutter speed should be
adjusted to UAV flight speed, and should not be higher than the ratio of the GSD to the speed of the
UAV. If the camera settings allow for the disabling of the low-pass filter, this should be done. Moreover,
for the high accuracy of the end product, the use of a global shutter camera would be advised.

Table 1. Recommended camera settings.

ISO 100–400

Minimal shutter speed GSD
f light speed

Aperture with highest geometrical resolution
(for most cameras F/5.6)

Focus manual

Low-pass filter (if changeable) disabled

Secondly, data acquisition must ensure an appropriate data structure for the algorithm. Because
a major function of the algorithm is to transfer detection between stereopairs, the flight plan has to
ensure the visibility of the wires for all subsequent images between poles. To meet this requirement,
the flight path must be linear, parallel to the power line, and consist of at least two rows, placed on
opposite sides of the surveyed corridor (Figure 3). Another advantage of a linear flight plan is the
possibility of measuring power lines over distances ranging from a few (multi-rotor) to dozens of
kilometers (fixed wing) in one flight.
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Third, image overlap and the field of view should be carefully planned. The side overlap should
allow for the wires to be visible in both neighboring strips. The front overlap should not be lower
than 50% (at the height of the wires, overlap on the ground is higher) to ensure the correct transfer of
detection between stereopairs, but this should also not exceed the minimum duration of the acquisition
of the camera. The front overlap should thus be adjusted according to flight speed and altitude.

The last thing to take into consideration while planning a survey is the global accuracy of the
resultant product. Photogrammetric blocks, in the case of corridor mapping, have highly unstable
geometry. To maintain high accuracy and prevent errors that could occur in self-calibration due to
potentially high correlation between interior and exterior camera orientation, additional measures have
to be introduced. A network of ground control points (GCPs) can be introduced to stabilize the block [43].
However, it might not be feasible in remote terrains and it also increases the time and cost of the survey.
Equipping the UAV with a global navigation satellite system (GNSS) post-processing kinematic (PPK)
receiver to achieve centimeter accuracy of EOE can also help to mitigate the problem [44]. However,
the PPK receiver increases the overall cost of the platform. To ensure correct results, one of those
measures must be introduced.

2.2. Bundle Adjustment and Data Ordering

The Agisoft Metashape Professional (version 1.6.0 build 9128) software was used to estimate
both the IOE and EOE for the obtained UAV images. All images collected during the mission were
processed together. The processing, which included automatic bundle adjustment with self-calibration,
was mostly automated. A typical set of parameters were estimated during self-calibration [45], utilizing
the Brown distortion model [46]:

• principal point position: x0, y0,
• focal length: f,
• parameters of radial distortion: r1, r2, r3,
• parameters of tangential distortion: p1, p2.

The global accuracy was ensured either by the use of GCPs or precise EOE (GNSS PPK processing).
Ultimately, the resulting data contained undistorted images (achieved using the calculated parameters
of calibration), along with their corresponding EOE and calibrated focal length.

The data ordering process, as shown in Figure 4, involved firstly automatically assigning the
images to flight lines (strip) and then subsequently assigning stereopairs, consisting of the two closest
images from their opposite strips (Figure 3), which were subjected to further processing. A set of
ordered stereopairs is crucial for the seamless operation of the algorithm. It was necessary to process
the images in a defined order (in the direction of processing). Therefore, stereopairs were selected and
sorted in ascending order in the direction of processing. This direction was defined by the ordered
coordinates of the poles acquired through Agisoft Metashape (or obtained from the operator of the
power line).

For the seamless operation of the algorithm, a power line fragment targeted in a UAV flight survey
mission was divided into survey sections that were subjected to further processing. The section was
defined by a starting utility pole, transfer utility poles, and an ending utility pole. One survey section
might have consisted of several power line spans (Figure 5). The order of the poles in the survey
section determined the direction of subsequent image processing, and thus had a crucial effect on the
entire process of power line detection.
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Defining the survey sections for image processing was an important stage in data ordering.
Depending on the type of power line, they were defined differently. For high-voltage lines, one span
was defined as one survey section. For medium-voltage lines, the survey section included rectilinear
sections of the power line. To divide the survey section, each image containing a pole was analyzed.
Three-dimensional lines connecting a pole, captured within the image, and its neighbors were
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reprojected on the image. When the in-line direction change was greater than 1◦, the pole, captured
within the image, was assumed to mark the end of the given survey section and the start of a new one.
Data thus prepared and ordered were then subjected to further processing.

2.3. Power Line Detection in Images

Detection and reconstruction were performed separately, using dedicated algorithms. The process
consists of multiple subsequent steps and was written in the Python programming language.

For effective automation, it was necessary to detect the power lines continuously through a
sequence of images. The simplest and most accurate way to transfer detection between neighboring
photographs is through 3D space, where the relevant geometry was reconstructed and then projected
onto the next image. Such reconstruction was possible by using two across-track neighboring images.
Thus, the processing unit in the detection algorithm was a single stereopair. Detection was then
performed separately on both images while keeping track of the respective wires. Both images were
then used to reconstruct the 3D position of the given power line.

The process can be divided into several steps (Figure 6) that vary depending on the processed
image: detection (Case 1—images capturing the survey sections from the starting utility pole) or
continued detection (Case 2—all remaining images).
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Due to the wire’s relative position in the image and its sag, the wire was almost never recorded as
a straight line in an image. The discrepancies between the fitted line and the empirically captured
position of each wire varied from two to dozens of pixels. Moreover, due to varying backgrounds,
neither the color of the wire nor the contrast in the image remained constant. To accommodate change
in both position and contrast, a local, constantly adapting approach was chosen. For each wire, the
image was divided into small, ordered sections within which the power line could be approximated by
a straight line. To define the position and order of the processing windows, past information about
the approximate positions and directions of the power lines was needed. This was acquired either
by a manual initialization procedure in the image at the beginning of the survey section or by using
projected points from the preceding stereopair.
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2.3.1. Approximation of Position and Direction of Power Line

To approximate the position and direction of each power line, two approaches were adopted
according to the given case.

Case 1—starting detection required a manual input in the form of two points per power line
in the image. This was sufficient to calculate the general direction and position of the given wire,
and important information was obtained regarding the correspondence of the wires between image
stereopairs. Owing to the different modes of construction of the utility poles, the wires could be
captured in different orders between images.

To transfer detection between images (Case 2), the 3D coordinates of the power lines were used
and were then projected onto images in the subsequent stereopair. The line was fitted to points that
were within the boundaries of the image. The line parameters defined sought after the position and
direction of the power line.

2.3.2. Initial Image Processing and Edge Detection

To detect power lines in images, a method to enhance their visibility was needed. For this purpose,
a decorrelation stretch of histograms of the images was used [47]. The enhancement algorithm was
based on principal component analysis (PCA). The covariance matrix was calculated from the three
RGB bands, and its eigenvalues were found to form coefficients of the transformation of the principal
component. After the normalization of the transform bands, new image bands were created. The result
was compared with the weighted arithmetic mean of all bands (Figure 7) [48]. The third band of the
processed image was chosen as it delivered the highest visibility of the power line.
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Figure 7. The same part of an example image showing power lines: (a) the band corresponding to the
original blue band, obtained by the decorrelation stretching of the raw image; (b) weighted arithmetic
mean of all bands (0.2989 × R + 0.5870 × G + 0.1140 × B).

The edge detection operator needed to be set to enhance long, linear edges, and presumably only
ones that aligned with the approximated direction of the power line. The modified Prewitt operator
was used for this. The operator was expanded from its base 3 × 3 form to 31 × 31. Then, the rotation to
the direction of the power line was computed using the previously acquired approximate parameters
of the power line. The final operator scheme is shown in Figure 8.
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Figure 8. An excerpt from the modified Prewitt operator.

The convolution of the grayscale image was calculated using the modified Prewitt operator.
The resulting image was not normalized and had both negative and positive values.

All the highest values occurred along the edges on the right side, and all the lowest values
occurred along the edges on the left side. Two images were created: one to identify edges on the right
side and the other to identify those on the left side. Both images were then normalized to eight-bit
unsigned integer space and subsequently binarized (Figure 9).
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2.3.3. Power Line Detection

Separately, for each wire in the image, the process of detection was conducted over small image
segments. The position and order of the segments were calculated according to the approximated
position and direction of the wire, and they were evenly spaced, with at least a 10% overlap, along the
line between the captured utility pole (if present) and the boundary of the image (Figure 10). The order
of the segments was set along the direction of the power line.Remote Sens. 2020, 12, x FOR PEER REVIEW 11 of 31 
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For each segment, the detection was performed as follows. In images of both the left and the right
edges, a line was fitted within the data using the RANSAC algorithm [49]. Then, detected symmetric
lines were used to determine the final position of the power line. A list of parameters of detection was
provided, together with the results, to assess the correctness of the process:

• cr—right edge coherence, a quotient of inliers in RANSAC to all positive pixels in the
image segment;

• cl—left edge coherence, a quotient of inliers in RANSAC to all positive pixels in the image segment;
• e_distmax—the maximum distance between lines of the right and left edges within the

image segment;
• p—parallelism coefficient, the quotient of the minimal and maximum distances between lines of

the right and left edges within the image segment.

Depending on the values of the above parameters, the detection was judged to be successful or
incorrect/implausible. If the detection was accepted, the parameters of the line were calculated for the
line between the right and left images, and involved the following:

• image coordinates of both ends of the detected line segment,
• a, b parameters of line equation y = ax + b.

The rejected detection was replaced by an extension of parameters detected in the previous image
segment. The process was repeated until the end of the image was reached. All parameters of the line
for all segments were then saved for further processing.

2.3.4. Three-Dimensional Geometry Reconstruction

The last stage of the power line detection process was 3D geometry reconstruction. The global
coordinates of the points along the power line were determined using the spatial intersection of
homologous rays. The problem was to identify homologous points on wires between the left and the
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right images in a given stereopair. Previous knowledge of corresponding wires and epipolar geometry
was invoked to perform this task. Instead of identifying corresponding points on wires using feature
descriptors, a purely geometric approach was chosen.

Each wire captured within the left and right images in a stereopair was represented by line
segments established in the detection step. Two hundred evenly spaced points were chosen along the
wire on the left image. Their coordinates were derived directly from the parameters of segments of
the line. Then, for the nodal points, the respective epipolar lines on the right image were computed
(Figure 11a) using a fundamental matrix (Equation (1)):

x′·F = k′′ , (1)

where:

x′ = [x y 1]—focal coordinates of a point on the left image,
F—fundamental matrix, calculated from the positions and rotations of the left and right images,
k” = [A B C]—parameters of line equation in a general form.
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Figure 11. Three-dimensional reconstruction procedure: (a) calculated epipolar line in red; (b) the
obtained key points and their resection. Symbol descriptions: O′, O”—left and right image projection
centers; b—baseline, k′, k”—epipolar lines, respectively, on the left and the right image; π—epipolar
plane; Q, P—points in 3D space; P′, P”, Q′, Q”—P, Q points projections on the left and the right image;
r′, r”—homologous rays; x′, y′, x”, y”—image coordinates axis on the left and the right image.

The intersections of the epipolar lines and line segments representing the wire on the right image
were then calculated to determine key points in it. Finally, the corresponding key points in both images
were used to compute the spatial intersections and determine the terrain 3D coordinates (Figure 11b).
Together, they provided a discrete representation of the wire.

2.3.5. Catenary Curve Fitting

The wire in discrete representation was not sufficient for assessing power line diagnostics. The sag
of the wire, which is acquired from a fitted catenary curve, was also needed. The expression for it
describes the geometry of a wire hanging under its weight when supported only at its ends:

y = k·cosh
(x

k

)
, (2)

where:

k = Fx
q —the catenary constant, where
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Fx—horizontal force on the cable [kG/mm2],
q—the weight of the cable per unit arclength [kG/(m·mm2)].

The catenary curve was fitted to previously obtained points representing the wires using the
classical approach. It assumes that the points are represented in the local coordinate system, where the
x-axis runs along the wire, while the coordinates of the y-axis correspond to the height of points on the
wire. This coordinate system was defined independently for each wire, and the catenary equation was
determined in the following form:

y−w = k·cosh
(x− u

k

)
, (3)

where:

w, u—a parallel offset of the terrain coordinate system from that of the catenary curve.

The solution to Equation (3) was obtained by using the least squares method. Three randomly
selected points from a set of representative points on the wire were used to calculate the approximate
values of the unknowns (i.e., w0, u0, and k0). Together with the x coordinate of each point, they were
used to calculate the deviations in the y coordinates and, subsequently, the adjusted parameters of the
catenary curve that best fitted a series of data points. Using this, the maximum value of the sag of the
wire was calculated as follows:

fs = yA +
b
a
·(xS − xA) − k·cosh

xS
k

, (4)

where:

xS = k·arcsinh b
a ,

a = xB − xA, b = yB − yA, and
xA, yA, xB, yB—coordinates of the beginning and end of a catenary curve in the local coordinate system.

Owing to the large number of points representing each wire and the random nature of their
selection to calculate approximate values of parameters of the catenary curve, unsatisfactory results
of curve fitting were possible (Figure 12a). To avoid such errors and obtain the best possible result,
two additional assumptions were introduced: only solutions where the value of the sag of the wire
(Equation (4)) was positive were considered, and the choice of the best solution was based on the
RANSAC algorithm (Figure 12b).
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The final curve parameters and discrete representation of the wire were saved. The latter consisted
of 1000 equally spaced points along each curve per wire.

2.4. Detection of Obstacles within the Power Line Corridor

One objective of the 3D reconstruction of power lines and the creation of the DSM is to monitor
the separation of the wires from elements of land cover. We had to check whether the UAV-derived
data allowed for the correct identification of obstacles too close to the power lines.

The purpose of the analysis here was to detect DSM fragments (points in the point cloud) that
were within the power line corridor. Cloud Compare software and its cloud-to-cloud distance function
were used for this task. For each point in the point cloud constituting the DSM, the spatial distance to
the nearest point representing the wire was determined.

Next, all the points recorded within the corridor distance were segmented into set size voxels
(3D pixels) and subsequently clustered into objects using neighborhood connections. Objects consisting
of only one voxel were removed from the dataset. For each object, its volume, center, and bounding
box were recorded for further analysis by the power line operator (Figure 13).Remote Sens. 2020, 12, x FOR PEER REVIEW 14 of 31 
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Figure 13. Detected occlusion—positioned at 49◦55′09.3”N, 20◦43′09.2”E with a volume of 39.25 m3.
A close look at a point cloud with voxels containing occlusion (a), bounding box containing the object
with a point cloud representation of DSM (b), and source image with an arrow pointing to the detected
occlusion (c).

2.5. Verification and Quality Assessment

To assess the algorithm, three approaches were adopted. First, the quality of the power line
detection and subsequent reconstruction was evaluated. All data used in this assessment were firstly
processed and subsequently manually checked for correct and incorrect detection. All errors were
marked, and a presumed source of error was noted.

Secondly, the global accuracy of the reconstruction of the power lines was compared to established
methods—total station (TS) and terrestrial laser scanning (TLS). The comparison was conducted
in three ways. For each wire, both horizontal and vertical position discrepancies were calculated.
Additionally, sag values were compared between proposed and reference methods. Though TS and
TLS accuracy capabilities reach millimeter levels, this is not the case for a highly dynamic object, where
small environmental influences change its geometry. Wire sag changes substantially with a change
in temperature, while wind gusts cause oscillating vibrations. Considering the time needed to carry
out both TS and TLS surveys, one has to expect significant changes within the surveyed power line.
This notably diminishes the accuracy of both methods. Thus, the data were not treated as ground
truths, but as reference, comparison data. Thirdly, corridor occlusions detected using the proposed
method and TLS data were compared.
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2.6. Experimental Data

To conduct the assessment, data were collected for several fragments of medium- and high-voltage
power lines. The power lines were located in Małopolskie Voivodeship (Poland), in areas with
varied relief.

The data were divided into four datasets denoted as Dataset I, Dataset II, Dataset III, and Dataset
IV. Dataset I was used to develop and optimize the algorithm. The effectiveness and the feasibility of
the algorithm were analyzed on an independent dataset (Dataset II). The accuracy of the measurements
of the power lines and corridor obstacle detection were assessed on Datasets III and IV. The datasets
were independent, and therefore assessments of the reliability and accuracy of the proposed method
were reliable.

2.6.1. Datasets I and II

Dataset I was used for threshold sensitivity analysis and algorithmic optimization. The survey
area contained 13 middle-voltage power line spans (14 utility poles (Figure 14a)), over 1.2 km in a rather
flat area. The photogrammetric data were collected in March 2017 using a GRYF octocopter (FlyTech
UAV, Krakow, Poland), fitted with a precision positioning system based on a single-frequency GNSS
receiver Emlid Reach M+ (Table 2). Dataset I contained 225 images captured with an a6000 camera
(Sony, Tokyo, Japan) (Table 3) and Nakton 40 mm (Voigtlander, Braunschweig, Germany). The flight
was fully autonomous and was conducted linearly along the power line in two strips. The flight
altitude was 60 m above ground level and 50 m above the top of the poles, which yielded 6 and 5 mm
of GSD, respectively (Table 4).
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Table 2. UAV on-board global navigation satellite system (GNSS) receiver parameters.

Model Emlid Reach M+

Frequency bands Single-band

Receiver type 72-channel u-blox M8 engine
GPS L1C/A, GLONASS L1OF, BeiDou B1I

Max navigation rate 5 Hz

PPK Horizontal position accuracy 7 mm + 1 ppm

PPK Vertical position accuracy 14 mm + 1 ppm
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Table 3. Camera parameters.

Model Sony a6000 Sony RX1RM2

Image Sensor APS-C (15.6 × 23.5 mm) FF (35.9 × 24 mm)

Resolution 24 MP (4000 × 6000) 42 MP (7952 × 5304)

Pixel size 15.28 µm2 (3.9 × 3.9 µm) 20.43 µm2 (4.5 × 4.5 µm)

Shutter Mechanical curtain
(with rolling shutter effect)

Mechanical central
(without rolling shutter effect)

Interchangeable lens YES NO

Focusing system mechanical electronic

Aperture setting F/5.6 F/4.0

Shutter setting 1/1000 s 1/1600 s

ISO setting Auto 100–400 Auto 100–400

Table 4. Basic parameters of UAV missions.

Dataset Number of Images Flight Altitude GSD Side/Front Overlap

Dataset I 225 60 m 6 mm 70%/50%
Dataset II 238 70 m 9 mm 75%/75%
Dataset III 282 60 m 8 mm 75%/75%
Dataset IV 203 124 m 15 mm 75%/70%

Dataset II was used to validate the feasibility, reliability, and efficiency of the proposed method.
It consisted of 238 images captured with an a6000 camera (Sony) (Table 3) and 30 mm Sigma lens
(Sigma Corporation, Kawasaki, Japan) in November 2017. The flight was performed using a GRYF
octocopter (FlyTech UAV). It was fully autonomous and was conducted in three strips parallel to the
power line. The flight altitude was 70 m above ground and 40 m above the top of the poles (Table 4).
Both the side and front overlap between the images were 75%. The flight area covered four spans of
high-voltage power lines (five utility poles (Figure 14b)) with a total length of 1.4 km. Only two outer
strips were used in the processing.

2.6.2. Datasets III and IV

Datasets III and IV were used to verify the accuracy of the proposed method. They included UAV
imagery as well as the results of the survey of power lines through TLS and classic TS measurements.
The 3D geometry of the wires is constantly changing as a consequence of changing weather conditions
(especially changes in temperature). It was thus assumed that the data for the power lines needed to
be collected using different methods simultaneously. Unfortunately, the time needed to perform each
of the surveys varied greatly from a couple of hours (UAV) to a couple of days (TLS).

The data marked as Datasets III and IV concern power lines located in hilly and difficult to access
areas. Dataset III contained data on a segment of a medium-voltage power line consisting of 10 spans,
with a total length of 1.3 km. The segment was located in an area with a maximum height difference
of 60 m. The power line was fitted with three transmission wires set at the same height. A 400 kV
high-voltage power line was another object of research, and data related to it were collected in Dataset
IV. The tested section of the power line with a total length of 1.55 km consisted of four spans. The height
difference between the beginning and end of the analyzed power line section was 100 m, with a height
difference of 60 m for one of the spans. It was fitted with 12 transmission wires and two ground wires,
all positioned at varying heights.

The photogrammetric data in Datasets III and IV included high-resolution digital images of the
power lines taken with a DSC-RX1RM2 (35 mm) non-metric camera (Sony) (Table 3) from the GRYF
octocopter (FlyTech UAV) on 6 December 2018 (Table 4). The images were captured in two strips
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parallel to the power line that was the subject of the measurement. A network of GCPs and checkpoints
(CPs) was established for each dataset. The coordinates of markers were determined by the GNSS
real time network (RTN) method with a Leica GS16 receiver (Leica Geosystems AG, Sankt Gallen,
Switzerland) that had a horizontal accuracy of 3 cm and a vertical accuracy of 5 cm.

The segments of power lines represented by Datasets III and IV were measured using other
methods such as TLS and TS measurements for reference. Fieldwork was performed on 1–3 and 6
December 2018. The weather conditions during the measurements were variable. The temperature
was between −5 ◦C and +5 ◦C, consequently changing the power line sag. In addition, on 2 and 3
December, the wind blew at a speed of up to 15 m/s (gusts), which caused the oscillating movement of
the wires.

For TS measurements, a Nova MS50 (Leica Geosystems AG) was used. Each span (all its wires)
was measured from a single instrument station approximately located in the middle of the span.
A single wire point at its beginning and end, and several points along its entire length, were measured.
The coordinates of the stations and reference points were determined by the GNSS RTN method. Using
these data, the spatial coordinates of points representing the individual wires were determined.

In addition to the TS measurements, the power lines were measured using TLS. The Leica
ScanStation C10 laser scanner (Leica Geosystems AG), together with a set of HDS (High Definition
Survey) 6” targets (Leica Geosystems AG), were used for this purpose. The TLS measurements were
carried out using the three-tripod method with a traverse workflow. The resolutions of the TLS were
10 and 7.5 mm at a distance of 10 m. This was connected with the maximum reduction in measurement
time while maintaining satisfactory scanning results and was preceded by tests to determine the
optimum scanning resolution depending on the type of power line and the distance between stations.
The data were collected at 39 stations for Dataset III and 29 stations for Dataset IV. Finally, the point
clouds from all scanner stations were registered and georeferenced (Figure 15) using Leica Cyclone
v.9.4.2 (Leica Geosystems AG) software. The point cloud registration was performed using HDS 6”
targets and their coordinates, as determined by the GNSS RTN method. The final root mean-squared
errors (RMSEs) of the registration of the point clouds was 1.2 cm for Dataset III and 1.0 cm for Dataset IV.
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The reference data did not fully reflect the state of the power lines when measured using the UAV
because different durations were needed to record the data using different means. UAV missions to
survey sections for Datasets III and IV were performed over one day and lasted four hours (including
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preparatory work). The TLS and TS surveys were time consuming and fieldwork using these methods
lasted four days.

3. Results

This section presents the results of the validation of the proposed method for using UAV images
to detect power lines, provide a 3D reconstruction, and localize obstacles in the power lines corridor.

3.1. Bundle Adjustment

The photogrammetric data were processed using Agisoft Metashape Professional. Aerotriangulation
was performed at a high level of accuracy, whereby the software worked with images at their original
sizes. Optimization was performed in the next stage and included a realignment of the image block
and the determination of the parameters for camera calibration. In the case of Dataset I and Dataset II,
the GCPs were not used in bundle adjustment; instead, only the precise coordinates of the projection
centers of the images, measured using GNSS PPK, were used. The GNSS PPK calculations were done
using RTKLIB software, utilizing measurements from a GNSS base station set up for the duration of
the survey. However, in the bundle adjustment of images from Datasets III and IV, the GCPs were used.
The a priori accuracy of the GCPs was taken into account in this process. Table 5 presents data on
the accuracy of the aerotriangulation of Dataset III and Dataset IV. The last stage involved generating
dense point clouds at a high level of detail, which means that the software determined the spatial
coordinates for each group, consisting of four pixels in the image (2 × 2 pixels).

Table 5. Root mean-squared errors (RMSEs) of coordinates of the GCPs and checkpoints.

Data Set
Ground Control Points Check Points

mx
(mm)

my
(mm)

mz
(mm)

Pix
Error

Number
of GCP

mx
(mm)

my
(mm)

mz
(mm)

Pix
Error

Number
of GCP

Dataset III 4.8 4.2 7.9 0.787 12 13.2 20.4 42.1 0.673 9

Dataset IV 8.5 5.1 20.0 0.454 19 17.4 30.9 38.4 0.494 11

Information on the location of each pole within sections of the power lines was manually obtained
through Agisoft Metashape Professional. Finally, the data necessary for further processing were
exported to reconstruct the 3D geometry of the power lines based on the UAV images (i.e., final EOE,
IOE, undistorted images, and coordinates of the poles and the dense point cloud).

3.2. Results of Processing Datasets I and II

The proposed method for 3D reconstruction of power lines in UAV images used multiple thresholds.
To establish appropriate values, a threshold sensitivity analysis was conducted. The process is described
in Appendix A. The established set of thresholds was then used in the processing of all experimental
data (filter size—30, cr—0.4, cl—0.4, e_distmax—10, p—10).

Owing to a lack of reference data for Datasets I and II, as well as the use of a camera with a
rolling shutter, a check was performed manually to verify only the efficiency of the proposed detection
algorithm. Errors were recorded whenever a detected line segment did not overlay an empirically
determined line within an image segment. As a summary of the validation, the success rate was
calculated. Each wire in an image was considered a case. A complete and correct case detection was
regarded as a success, and any other outcome was considered a failure. The success rate here was the
ratio of the number of cases of success to the total number of cases in the dataset.

Dataset I contained 225 images, covering 13 power line spans (14 utility poles (Figure 14a)). Three
wires were spaced equally at the same height above ground. The survey was conducted in a rural area,
where the background consisted mostly of farm fields, meadows, backyards, and occasional roads.
Using Dataset I, the proposed algorithm derived three survey sections (straight sections) between
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the utility poles 1–6, 6–7, and 7–14. The processing was smooth and detection was uninterrupted
(Figure 16). The detection was rejected in 13 images (detection parameters were below set thresholds).
Upon closer inspection, six images with less than perfect detection were obtained. A total of seven
errors were recorded in cases where the power line was incorrectly detected. Six of these occurred
due to an unfavorable background, and the other was in the vicinity of a utility pole. The calculated
success rate was 98.96% (Table 6).Remote Sens. 2020, 12, x FOR PEER REVIEW 19 of 31 
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Table 6. The results of processing Datasets I and II.

Dataset I II

Utility poles 14 5

Survey sections 3 4

No. of images 225 238

Stopped detection none none
No. of images - -
No. of errors 0 0

Power lines overlay none yes
No. of images - 6
No. of errors 0 6

Detection transfer yes yes
No. of images 13 10
No. of errors 7 18

Success rate 98.96% 92.16%
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Dataset II contained 238 images covering four spans of high-voltage power lines (Figure 14b),
featuring six transmission wires and two ground wires. As the wires were at different heights, they were
recorded in different configurations in the right and left side images, with some wires lying only a few
pixels from one another (Figure 17). The background varied greatly, from forest to industrial. Owing
to the high sag of the wires, all spans were processed separately.
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Figure 17. Example problematic images: (a) closely recorded wires; (b,c), two wires recorded as
one line.

In this dataset, far more errors were observed. They mostly occurred due to unfavorably placed
wires in images (placed close to or overlying wires). Moreover, in a few cases, mistakes were caused by
a challenging background. A success rate of 92.16% was calculated (Table 6). A lower success rate
was expected because Dataset II consisted of far more challenging images than Dataset I. The wires
were barely visible, while the background was very unfavorable, containing mostly industrial waste or
dried vegetation.

3.3. Results of Processing Datasets III and IV

The data collected and pre-processed from Datasets III and IV enabled the assessment of the
accuracy of the 3D reconstruction of the power lines using UAV imagery. Attention was paid here to the
comparison of the resultant catenary curves obtained from the proposed method and reference methods.

The UAV images were processed using the method proposed in Section 2, using thresholds
established in Appendix A, and the 3D geometry of the wires was saved for comparison. A detailed
manual check of the detection was not performed. Processing for Dataset III was uninterrupted, while
processing for Dataset IV was manually restarted once to detect the ground wires. The RMSEs of
fitting the catenary curve to the photogrammetric data varied from ±1.0 cm to ±23.8 cm for Dataset
III, and from ±2.1 cm to ±19.1 cm for Dataset IV, which shows sufficient accuracy for the purpose of
corridor clearance monitoring [7,8]. The largest errors were noted in the detection of the ground wires
in Dataset IV and were related to their diameters and the difference in sag from the transmission wires.
Most of them were fixed by a second iteration of the detection for problematic images.

The catenary was also fitted into the data collected using TLS and TS. A single wire was usually
represented by several thousand TLS-derived points and a few dozen points obtained from TS
measurement. The RMSEs of the curve fitting into TLS-derived points varied between ±0.4 cm and
±3.9 cm for Dataset III. For Dataset IV, it varied from ±0.7 cm to ±9.3 cm. In the case of TS data,
the RMSEs of the catenary fitting were between ±0.2 cm and ±9.2 cm for medium-voltage power lines
(Dataset III), and between ±2 cm and ±15.1 cm for high-voltage power lines (Dataset IV). Multiple
discrepancies were observed in the data, most likely due to small momentary vibrations in the wires.
During two days of the survey, there was a strong wind, which led to high-amplitude vibrations in the
wires. This had a direct impact on the quality of the results obtained.
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The accuracy of the proposed method was verified in three ways: comparisons in both the vertical
and the horizontal plane, and a comparison of the parameters of the catenary curve.

A comparison of the calculated heights of the corresponding points was carried out between the
proposed and the reference methods. The catenary curves were represented by 1000 points for the
UAV-based method, with 1000 points calculated with respect to the XY positions for the TS, and source
data for the TLS. The corresponding comparative points were found by locating the nearest points in
between points from TLS and UAV datasets.

As a measure of accuracy, the RMSEs of the differences in height for individual wires were
calculated. The results of the comparison are presented in Table 7.

Table 7. The accuracy of wire reconstruction using the proposed method.

Dataset Error Type RMSE [cm]
TS–TLS TS–UAV TLS–UAV

Dataset III
Height ±2.3 ±6.9 ±6.7

Horizontal ±0.9 ±1.0 ±1.0

Maximum sag ±9.7 ±14.5 ±16.5

Dataset IV
Height ±6.1 ±11.2 ±10.8

Horizontal ±9.6 ±3.8 ±12.3

Maximum sag ±16.4 ±26.3 ±29.6

TS—total station measurements, TLS—terrestrial laser scanning, UAV—proposed method based on UAV imagery;
TS–TLS—difference between TLS and TS; TS–UAV—difference between UAV and TS; TLS–UAV—difference between
UAV and TLS.

The results of the recorded wire geometry using TS and TLS measurements were highly consistent.
The mean difference in height for Dataset III was−2.0 cm, and for Dataset IV it was−3.0 cm, with RMSEs
of ±2.3 cm and ±6.1 cm, respectively. After removing outliers, the mean differences in height between
the reference data and the UAV-derived data varied from −13.0 to −11.0 cm for Dataset III, and from
−17.2 to −14.3 cm for Dataset IV. This means that, within the vertical profile, wires reconstructed
using UAV imagery were placed higher than those determined by means of the reference methods.
The discrepancies can be attributed to differences in the densities of points at wires and the continuity
of TLS point clouds representing the wires. This was especially prominent in the longest span—a 500 m
long span in Dataset IV. The span length is one of the most important factors in changes to the
sag of the wire due to temperature differences. Since the TLS survey took a significant amount of
time, discrepancies were to be expected. In light of this, as well as the expected accuracy of the
3D reconstruction for the provided data, we can conclude that the proposed method achieved the
expected accuracies.

To assess the proposed method along the horizontal plane, discrete descriptions of the UAV-derived
catenary curves were used. For the TS and TLS, line representations of the catenary curves in the
XY plane were utilized. The distances between UAV-derived points and horizontal lines fitted to
TS and TLS data were calculated for each point regardless of its position toward the reference lines
(absolute value).

For Dataset III, the results of the analysis were promising. The mean horizontal distance between
the UAV-derived data and the reference data was, on average, 2.8 cm, with a maximum value not
exceeding 7.8 cm. A comparison of the TLS and TS data gave similar results. In the case of Dataset
IV, the horizontal accuracy of the geometry of the wires determined using UAV imagery was worse.
The mean value of the parameter analyzed was 12.0 cm for TS–UAV differences and 26.1 cm for
TLS–UAV differences. RMSE values were ±3.8 cm for TS–UAV differences and ±12.3 cm for TLS–UAV
differences (Table 7). The maximum value obtained for the ground wires reached up to 1.2 m and was
significantly higher compared to transmission wires. The discrepancies can be attributed to many
factors: the complexity of the power line captured within Dataset IV, significantly longer spans (which
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translated into larger geometrical changes), and the height of wires above the ground. The root of
the problem probably lay within the bundle adjustment procedure, where most of the tie points were
located on the ground. The longer the distance to the ground, the larger the errors are to be expected in
the 3D reconstruction.

Another parameter used for comparison was the value of the maximum sag fs of the wire calculated
for each method, according to Equation (4). This parameter is required for power line inspections
in many countries. The differences in the maximum sag of the wires ∆fs were calculated among
the measurement methods. The RMSEs of ∆fs are listed in Table 7. The occurrence of outliers was
connected with incomplete TS and TLS data, collected during wire measurements. The results are
presented here for medium- (Dataset III) and high-voltage (Dataset IV) power lines.

For Dataset III, the results obtained using UAV data differed on average by −3.6 cm and −6.1 cm
from the results of TLS and TS data processing, respectively. The RMSEs of these differences were
±16.5 cm and ±14.5 cm, respectively.

There was no significant decrease in the accuracy of the reconstruction of the vertical geometry
of the wire for spans of the medium-voltage power line (Dataset III) located in forested areas, which
occurred when the maximum values of the sag of the wires were determined. In the case of Dataset
IV, a cross-comparison of all measurement methods used gave similar results, both in terms of the
values of mean difference and RMSEs. Therefore, the accuracy of determining the maximum sag of the
wire using UAV images did not significantly differ from the accuracy of calculating this parameter by
means of TS and TLS measurements.

3.4. Validation of Detection of Obstacles within the Power Line Corridor

Reference data were used to validate obstacle detection in data processed by the created solution.
The TLS data were chosen as a reference owing to the great detail of geometry reconstruction, both for
the wires and in the vicinity of the power line.

Two analyses were conducted, visual and quantitative. The visual analysis included comparing
data resulting from distance analysis in Cloud Compare software. A check was performed to see
if similar places were included in the resultant occlusion sets. The exemplary results are shown in
Figure 18, where points in the point cloud are colored according to the distance to the power lines.

The results obtained using the two methods (TLS, UAV) were consistent, especially in places
where abnormalities related to the maintenance of an appropriate separation between the wires and
elements of land cover were significant.

Then, for quantitative analysis, occlusion points were submitted to a voxelization procedure and,
lastly, clustered into separate objects (Figure 19). For each object summary, the approximated volume
was calculated as a sum of the volume of all voxels that formed it. Then, all the data were summed up
and compared to UAV and TLS data results (Table 8).

Table 8. Summary of detected occlusions within the power lines corridor. The corridor for Dataset III
was 5 m distance from the power lines, while for dataset IV it was 15 m.

Dataset III Dataset IV

TLS UAV TLS UAV

No. of objects 264 98 214 709
No. of voxels (0.5 m3) 62,794 4217 228,573 93,451

Volume (m3) 7849.25 527.125 28,571.625 11,681.375

Big differences can be observed between TLS and UAV data. This was to be expected. TLS and
UAV products due to their acquisition procedures being widely different. Photogrammetric products
do not penetrate greenery, while TLS does. Thus, TLS data have the advantage of a more continuous
representation of lattice objects. This can cause an effect of one object in TLS data being represented
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by multiple objects in UAV data (Figure 19e,f). As a consequence, the recorded volume of obstacles
determined using TLS data will be far higher than using UAV data.

Similarly, very small vegetation elements could have been picked up by TLS but would not
come up within dense point cloud reconstruction (Figure 19a,b). The importance of such objects is
negligible. Nonetheless, that also causes differences in the total volume of occlusions. The date of
the data acquisition was also not without consequence. Bare trees are quite difficult to reconstruct in
photogrammetric data, so—for better results—data should be acquired during the growing season.
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(a) based on TLS data; and (b) based on UAV data. The red color indicates points less than 10 m from
the wires and the blue color indicates those more than 15 m away.
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4. Discussion

This paper presents a comprehensive method of processing UAV images to detect and reconstruct
3D power lines, then subsequently compare them with a point cloud representation of DSM to localize
any objects threatening the safety of the power lines.

Power line inspections are a topical issue these days. Modeling wires in 3D space is essential for
the assessment of power line safety. Thus, their reconstruction has received much attention. However,
unlike other studies on the subject, this paper presents the entire workflow for corridor clearance
monitoring. Each step of the proposed method, starting with data acquisition requirements and
ending with obstacle detection, is described comprehensively. The wire detection in UAV images was
performed using a decorrelation stretch for initial image processing, the modified Prewitt filter for edge
enhancement, and RANSAC with additional parameters for line fitting. This classic approach causes
the line extraction in the UAV images to take place in a controlled way and, if necessary, the user can
modify the processing parameters (thresholds) and even manually restart the process when detection
errors occur. The combination of these elements creates a solution that is robust to low-quality input
data (images). Despite a variety of backgrounds and the dubious visibility of wires, the created solution
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managed to consistently detect power lines in a series of images. Its highest achieved success rate
exceeded 98% and remained above 90% for more challenging data. Good performance in the highly
changeable environment can be attributed to complete disregard for the wire color, as well as the
implementation of a local, ordered approach, which made the method adaptable to both contrast
change as well as angle change in the wire positions.

The algorithm does not require an extensive learning set, which makes it different from many
deep learning methods [37,38], which are currently gaining popularity. Similar to some other
solutions [23,35,40,41], wire reconstruction in 3D space is performed using epipolar geometry. However,
the proposed RANSAC-based approach to fit the catenary curve to previously obtained points
representing the wires minimizes the noise.

Despite the fact that the algorithm is not completely autonomous, it is relatively flexible and
robust. The minor user intervention allows the system to be applied in a variety of cases, either to a
low or high voltage. However, there is room for improvement in the proposed method. Such errors
as pixel discrepancies due to detection transfer are removed while fitting the chain curve to the 3D
data. Others, such as a complete loss of detection, or overlay with neighboring wires, can be solved by
implementing a two-step approach: after initial processing, the algorithm automatically directs the
user to problematic sections where the process can be restarted or corrected manually.

There are multiple thresholds set in the method, though it must be said that, after an initial threshold
sensitivity analysis, none were changed for any of the tested sets, nor in further commercial exploitation.

Another drawback might be the mandatory initial user input. However, it must be stated that
this is limited to two points per wire for the whole survey section, which takes no more than a couple
of minutes. Many methods can be applied instead of initial user input. The approximate direction
based on the positions of the utility poles and the Hough transform [50] was used to detect the wires in
a test phase in this research. The initial results were encouraging for medium-voltage power lines.
However, with the diversification of the background and the introduction of wires at multiple heights in
high-voltage lines, this method failed. The problem of the relative positioning of wires between images
in stereopairs is complex. It is the process of recognizing the same wire in images within a stereopair.
As wires are made of the same material, and due to the large distance between the background and
them, there is no information linking two images that capture the same wire. An alternative here would
be to include a third verification strip of images or to create multiple 3D reconstructions containing all
combinations of wires and then deciding on the pairing. The first process would extend the duration of
the survey and necessitate different mission planning methodologies. The second would also require
either manual input or prior knowledge of the number of wires and types of utility poles.

In many studies on power line inspections, datasets have been small or numerical quality analyses
have been omitted [23,40,41]. The method presented in this paper has been profusely tested beyond its
scope since it has already been commercially implemented. This study demonstrates that the accuracy
of the proposed method for the 3D reconstruction of power lines is consistent with that achieved using
classical measurements. Similar accuracies are reported by Oh and Lee [40], but their accuracy analyses
were limited to only two wires whose geometry was determined using the reference method.

It should be noted that none of the verification methods used for accuracy assessment in this
study were free from errors or significantly more accurate than any other. As the true value of the
measured sag of the wires or their 3D geometry was unknown, it was only possible to assess the
mutual compatibility of the methods used, and not their absolute accuracy.

The results of the accuracy assessment described in this paper were also influenced by the fact
that surveys of power lines using three methods (UAV, TLS, TS) were not carried out simultaneously,
or under the same weather conditions. This was due to the technical feasibility of surveys. For most
spans, the TS and TLS measurements were performed in parallel (except for one span of a high-voltage
power line) and lasted four days. On the contrary, UAV flights over power lines in Datasets III and
IV were completed in one day. For this reason, different conditions of the power lines were recorded
between the methods.
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The mapping of vegetation around power lines is also an issue of great importance. In this paper,
we assessed whether UAV-derived point cloud representations of DSM, generated using a classic
approach, are sufficient to monitor power line corridors. In the case of the UAV-based photogrammetric
products, the most common error was missing data in representing the DSM. The solution to this
was to take UAV images in more than two strips. However, this did not significantly increase the
correctness of tree reconstruction for the DSM, which, in turn, was the main reason for incorrect DSM
extraction. One way to solve this problem is to capture UAV-based photogrammetric data during the
vegetation period. However, as a rule, in the immediate vicinity of the power line (up to ~10 m from
the line axis), the quality of the UAV-derived DSM was adequate to analyze the separation between the
wires from and elements of the land cover.

5. Conclusions

The aim of this research was to create a novel method based on UAV imagery for occlusion
monitoring in the corridor of power lines. The proposed method mainly consists of three parts:
the reconstruction of the geometry of the wires in 3D space, the reconstruction of point cloud
representation of the DSM, and subsequently detecting obstacles in the power lines corridor. Power line
reconstruction, which was carried out using images captured for the DSM calculation, is its essential
part. Well-known computer vision algorithms and epipolar geometry were adopted for this task.
This makes the proposed method user-friendly and allows for image processing to be performed in a
fully controlled way. There are other merits: no training data are required, the method is robust to
low-quality input data, and the RANSAC-based approach to model the wires reduces the influence of
the noise.

An integral part of the proposed method is a workflow for the detection of obstacles in the power
line corridor. Obstacles are selected by calculating the distance between power lines and each point in
the point cloud representation of the DSM and simplified into voxels and then objects. The analyzed
data are georeferenced. Thus, the parts of the power line corridor where the maintenance work has to
be performed are documented using both the precise information of their locations and images.

The feasibility of the proposed UAV-based method for the 3D reconstruction of power lines and
corridor clearance monitoring was confirmed by reference surveys. They achieved results similar to
those obtained using other available solutions. The method’s relatively high accuracy, comparable
with that obtained by means of the reference measurements, was also verified. The accuracy of its
3D reconstruction for medium-voltage power lines was 15 cm. In the case of high-voltage power
lines, it did not exceed 30 cm. The proposed method allows for measurement data to be collected in a
relatively short time, and is cheaper than other commonly used methods in the area.

In the case of corridor clearance monitoring, the results are also satisfying. Visual analysis proved
that obstacles were detected in the same places for both UAV and TLS data. However, there were
big differences in the volume of calculated obstacles in between methods. This was expected due to
the properties of both data acquisition methods. However, this does not disprove the usability of the
method. Crucial obstacles were identified, and the presence of obstacles is of the utmost importance.
In future works, more focus should be placed on DSM.

The results of this study were implemented for commercial use by FlyTech UAV. The algorithm
has already been used to measure several hundreds of kilometers of power lines.
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Appendix A

To establish appropriate threshold values, a set of seven images was chosen from Dataset I.
The choice was made to maintain the maximum diversity of backgrounds within the images:

• ID 8—low vegetation (crops),
• ID 25—road and low vegetation,
• ID 32—low vegetation, buildings,
• ID 36—low vegetation, bare soil, car (Figure A1b),
• ID 192—bare soil, low vegetation
• ID 193—low vegetation (crops), bare soil, and
• ID 217—sparse crops, bare soil (Figure A1a).

Threshold sensitivity analysis was performed on the given images. As all thresholds were
connected in a sense, it was not possible to perform separate tests, and not all values were tested
numerically to simplify the process.

Multiple thresholds were used. They can be divided into two categories. The first, and less
important, consisted of thresholds that were dependent on the size of the image or had been arbitrarily
chosen. This group included segment window size, segment overlap and binarization threshold. It was
decided to use five segments per image, though—depending on whether the sag of the wires was big
or small—the number could be increased or decreased. The overlap value was set between 0% and
10% to avoid excessive calculations. The binarization threshold depended on the width of the wires in
the images and, as a consequence, on the approximated values of pixels in segments that captured the
wire. Within the data used in this study, each wire was around two pixels in width; thus, at a segment
size of 1000, the binarization threshold was set to 0.003.Remote Sens. 2020, 12, x FOR PEER REVIEW 27 of 31 
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The second group of thresholds consisted of thresholds that needed to be set based on the threshold
sensitivity analysis. They included:
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• filter size,
• cr—right edge coherence, a quotient of RANSAC inliers of the right edge image for all pixels in

the image segment,
• cl—left edge coherence, a quotient of RANSAC inliers of the left edge image for all pixels in the

image segment,
• e_distmax—a maximum distance between the right and the left edge lines within the image segment,
• p—parallelism coefficient, a quotient of the minimal and maximum distances between the right

and left edge lines within the image segment.

The filter size was tested first. Filtration was performed on all test images, and each one was then
normalized. Their results were compared to find the maximal difference between the wires and the
background. The following values were tested: 5, 10, 20, 30, 40, 50, and 60 (Figure A2). In the listed
thresholds, the wires became more distinguishable with a filter size of up to 30.
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To test the remaining thresholds, a different approach was used. The approximated positions
of the wires were defined on the test images, and detection was performed to identify the relevant
parameters that were saved in a file. A manual classification was then performed to sort the results
into correct and incorrect detection groups. The values of the descriptive statistics were then calculated
for each group (Figure A3).

A clear difference can be seen in results for both cr and cl. The distributions of those parameter
values with resultant incorrect detection are quite narrow and focused below 0.25, with a couple of
outliers. The spread for parameter values with resultant correct detection is wider, but only a few values
fall below 0.5. The opposite can be observed for e_distmax and p parameters. The parameter values
with resultant correct detection have a narrow range, while the opposite ones are quite widespread.
For e_distmax only, outliers have a higher value than 10, while, for p only, outliers reach above seven.
Parameter values for incorrect detection are far more widespread in the case of e_distmax and p
parameters. There is an overlap between values for the p parameter with resultant correct and incorrect
detection. Thus, based on the p parameter value, only gross errors can be filtered out.

Following an analysis of the results, the same threshold was chosen for cr and cl. A more rigid
approach was then chosen, and the threshold was set to 0.4. Parameters e_distmax and p were more
challenging because these thresholds relied on the size of the wire in the image. It was nearly impossible
to keep the GSD on the power lines constant. In the case of Dataset I, the width of the power line varied
from two to eight pixels. The threshold for e_distmax and p was set to 10 pixels to provide enough space
to pass all possible correct detections while filtering out gross errors.



Remote Sens. 2020, 12, 3698 29 of 31

Remote Sens. 2020, 12, x FOR PEER REVIEW 28 of 31 

 

A clear difference can be seen in results for both 𝑐𝑟 and 𝑐𝑙. The distributions of those parameter 

values with resultant incorrect detection are quite narrow and focused below 0.25, with a couple of 

outliers. The spread for parameter values with resultant correct detection is wider, but only a few 

values fall below 0.5. The opposite can be observed for 𝑒_𝑑𝑖𝑠𝑡𝑚𝑎𝑥 and p parameters. The parameter 

values with resultant correct detection have a narrow range, while the opposite ones are quite 

widespread. For 𝑒_𝑑𝑖𝑠𝑡𝑚𝑎𝑥 only, outliers have a higher value than 10, while, for p only, outliers reach 

above seven. Parameter values for incorrect detection are far more widespread in the case of 

𝑒_𝑑𝑖𝑠𝑡𝑚𝑎𝑥 and p parameters. There is an overlap between values for the p parameter with resultant 

correct and incorrect detection. Thus, based on the p parameter value, only gross errors can be filtered 

out. 

Following an analysis of the results, the same threshold was chosen for 𝑐𝑟 and 𝑐𝑙. A more rigid 

approach was then chosen, and the threshold was set to 0.4. Parameters 𝑒_𝑑𝑖𝑠𝑡𝑚𝑎𝑥 and 𝑝 were more 

challenging because these thresholds relied on the size of the wire in the image. It was nearly 

impossible to keep the GSD on the power lines constant. In the case of Dataset I, the width of the 

power line varied from two to eight pixels. The threshold for 𝑒_𝑑𝑖𝑠𝑡𝑚𝑎𝑥 and 𝑝 was set to 10 pixels 

to provide enough space to pass all possible correct detections while filtering out gross errors. 

 

Figure A3. Boxplots of the parameter values against detection results. 

References 

1. Mirallès, F.; Pouliot, N.; Montambault, S. State-of-the-art review of computer vision for the management of 

power transmission lines. In Proceedings of the 3rd International Conference on Applied Robotics for the 

Power Industry, Foz do Iguassu, Brazil, 14–16 October 2014; pp. 1–6, doi:10.1109/CARPI.2014.7030068. 

2. Li, Z.; Walker, R.; Hayward, R.; Mejias, L. Advances in vegetation management for power line corridor 

monitoring using aerial remote sensing techniques. In Proceedings of the 1st IEEE International Conference 

on Applied Robotics for the Power Industry (CARPI), Montreal, QC, Canada, 5–7 October 2010, pp. 1–6, 

doi:10.1109/CARPI.2010.5624431. 

3. Li, Z.; Hayward, R.; Zhang, J.; Liu, Y. Individual Tree Crown Delineation Techniques for Vegetation 

Management in Power Line Corridor. In Proceedings of the Digital Image Computing: Techniques and 

Applications, Canberra, Australia, 1–3 December 2008; pp. 148–154, doi:10.1109/DICTA.2008.21. 

4. Stylianidis, E.; Akça, D.; Poli, D.; Hofer, M.; Gruen, A.; Sánchez Martín, V.; Smagas, K.; Walli, A.; Altan, O.; 

Jimeno, E. FORSAT: A 3D forest monitoring system for cover mapping and volumetric 3D change 

detection. Int. J. Digit. Earth 2019, 1–32, doi:10.1080/17538947.2019.1585975. 

5. Chen, C.; Yang, B.; Song, S.; Peng, X.; Huang, R. Automatic Clearance Anomaly Detection for Transmission 

Line Corridors Utilizing UAV-Borne LIDAR Data. Remote Sens. 2018, 10, 613, doi:10.3390/rs10040613. 

Figure A3. Boxplots of the parameter values against detection results.

References

1. Mirallès, F.; Pouliot, N.; Montambault, S. State-of-the-art review of computer vision for the management of
power transmission lines. In Proceedings of the 3rd International Conference on Applied Robotics for the
Power Industry, Foz do Iguassu, Brazil, 14–16 October 2014; pp. 1–6. [CrossRef]

2. Li, Z.; Walker, R.; Hayward, R.; Mejias, L. Advances in vegetation management for power line corridor
monitoring using aerial remote sensing techniques. In Proceedings of the 1st IEEE International Conference
on Applied Robotics for the Power Industry (CARPI), Montreal, QC, Canada, 5–7 October 2010; pp. 1–6.
[CrossRef]

3. Li, Z.; Hayward, R.; Zhang, J.; Liu, Y. Individual Tree Crown Delineation Techniques for Vegetation
Management in Power Line Corridor. In Proceedings of the Digital Image Computing: Techniques and
Applications, Canberra, Australia, 1–3 December 2008; pp. 148–154. [CrossRef]

4. Stylianidis, E.; Akça, D.; Poli, D.; Hofer, M.; Gruen, A.; Sánchez Martín, V.; Smagas, K.; Walli, A.; Altan, O.;
Jimeno, E. FORSAT: A 3D forest monitoring system for cover mapping and volumetric 3D change detection.
Int. J. Digit. Earth 2019, 1–32. [CrossRef]

5. Chen, C.; Yang, B.; Song, S.; Peng, X.; Huang, R. Automatic Clearance Anomaly Detection for Transmission
Line Corridors Utilizing UAV-Borne LIDAR Data. Remote Sens. 2018, 10, 613. [CrossRef]

6. Guo, B.; Li, Q.; Huang, X.; Wang, C. An Improved Method for Power-Line Reconstruction from Point Cloud
Data. Remote Sens. 2016, 8, 36. [CrossRef]

7. Jwa, Y.; Sohn, G.; Kim, H. Automatic 3D powerline reconstruction using airborne lidar data. IAPRS 2009, 38,
105–110.

8. Jwa, Y.; Sohn, G. A piecewise catenary curve model growing for 3D power line reconstruction. Photogramm.
Eng. Remote Sens. 2012, 78, 1227–1240. [CrossRef]

9. Lehtomäki, M.; Kukko, A.; Matikainen, L.; Hyyppä, J.; Kaartinen, H.; Jaakkola, A. Power line mapping
technique using all-terrain mobile laser scanning. Autom. Constr. 2019, 105, 102802. [CrossRef]

10. Wang, Y.; Chen, Q.; Liu, L.; Li, X.; Sangaiah, A.K.; Li, K. Systematic comparison of power line classification
methods from ALS and MLS point cloud data. Remote Sens. 2018, 10, 1222. [CrossRef]

11. Sohn, G.; Jwa, Y.; Kim, H.B. Automatic powerline scene classification and reconstruction using airborne lidar
data. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, I-3, 167–172. [CrossRef]

12. Axelsson, P. Processing of laser scanner data—Algorithms and applications. ISPRS J. Photogramm. Remote Sens.
1999, 54, 138–147. [CrossRef]

13. Zhu, L.; Hyyppä, J. Fully-automated power line extraction from airborne laser scanning point clouds in
forest areas. Remote Sens. 2014, 6, 11267–11282. [CrossRef]

http://dx.doi.org/10.1109/CARPI.2014.7030068
http://dx.doi.org/10.1109/CARPI.2010.5624431
http://dx.doi.org/10.1109/DICTA.2008.21
http://dx.doi.org/10.1080/17538947.2019.1585975
http://dx.doi.org/10.3390/rs10040613
http://dx.doi.org/10.3390/rs8010036
http://dx.doi.org/10.14358/PERS.78.11.1227
http://dx.doi.org/10.1016/j.autcon.2019.03.023
http://dx.doi.org/10.3390/rs10081222
http://dx.doi.org/10.5194/isprsannals-I-3-167-2012
http://dx.doi.org/10.1016/S0924-2716(99)00008-8
http://dx.doi.org/10.3390/rs61111267


Remote Sens. 2020, 12, 3698 30 of 31

14. Lu, M.L.; Kieloch, Z. Accuracy of Transmission Line Modeling Based on Aerial LiDAR Survey. IEEE Trans.
Power Deliv. 2008, 23, 1655–1663. [CrossRef]

15. Ax, M.; Thamke, S.; Kuhnert, L.; Kuhnert, K.-D. UAV based laser measurement for vegetation control at
high-voltage transmission lines. Adv. Mater. Res. 2012, 614–615, 1147–1152. [CrossRef]

16. Azevedo, F.; Dias, A.; Almeida, J.; Oliveira, A.; Ferreira, A.; Santos, T.; Martins, A.; Silva, E. LiDAR-Based
Real-Time Detection and Modeling of Power Lines for Unmanned Aerial Vehicles. Sensors 2019, 19, 1812.
[CrossRef]

17. Yan, G.; Li, C.; Zhou, G.; Zhang, W.; Li, X. Automatic extraction of power lines from aerial images. IEEE Geosci.
Remote Sens. Lett. 2007, 4, 387–391. [CrossRef]

18. Matikainen, L.; Lehtomäki, M.; Ahokas, E.; Hyyppä, J.; Karjalainen, M.; Jaakkola, A.; Kukko, A.; Heinonen, T.
Remote sensing methods for power line corridor surveys. ISPRS J. Photogramm. Remote Sens. 2016, 119,
10–31. [CrossRef]

19. Mills, S.J.; Castro, M.P.G.; Li, Z.; Cai, J.; Hayward, R.; Mejias, L.; Walker, R.A. Evaluation of Aerial Remote
Sensing Techniques for Vegetation Management in Power-Line Corridors. IEEE Trans. Geosci. Remote Sens.
2010, 48, 3379–3390. [CrossRef]

20. Kobayashi, Y.; Karady, G.G.; Heydt, G.T.; Olsen, R.G. The Utilization of Satellite Images to Identify Trees
Endangering Transmission Lines. IEEE Trans. Power Deliv. 2009, 24, 1703–1709. [CrossRef]

21. Jiang, S.; Jiang, W.; Huang, W.; Yang, L. UAV-Based Oblique Photogrammetry for Outdoor Data Acquisition
and Offsite Visual Inspection of Transmission Line. Remote Sens. 2017, 9, 278. [CrossRef]
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