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Abstract: Endmember extraction is a primary and indispensable component of the spectral mixing
analysis model applicated to quantitatively retrieve fractional snow cover (FSC) from satellite
observation. In this study, a new endmember extraction algorithm, the spatial–spectral–environmental
(SSE) endmember extraction algorithm, is developed, in which spatial, spectral and environmental
information are integrated together to automatically extract different types of endmembers from
moderate resolution imaging spectroradiometer (MODIS) images. Then, combining the linear spectral
mixture analysis model (LSMA), the SSE endmember extraction algorithm is practically applied to
retrieve FSC from standard MODIS surface reflectance products in China. The new algorithm of
MODIS FSC retrieval is named as SSEmod. The accuracy of SSEmod is quantitatively validated with
16 higher spatial-resolution FSC maps derived from Landsat 8 binary snow cover maps. Averaged over
all regions, the average root-mean-square-error (RMSE) and mean absolute error (MAE) are 0.136 and
0.092, respectively. Simultaneously, we also compared the SSEmod with MODImLAB, MODSCAG
and MOD10A1. In all regions, the average RMSE of SSEmod is improved by 2.3%, 2.6% and 5.3%
compared to MODImLAB for 0.157, MODSCAG for 0.157 and MOD10A1 for 0.189. Therefore, our SSE
endmember extraction algorithm is reliable for the MODIS FSC retrieval and may be also promising
to apply other similar satellites in view of its accuracy and efficiency.

Keywords: MODIS; fractional snow cover; spectral mixture analysis; endmember extraction

1. Introduction

Snow cover plays a crucial role in regulating energy budgets, hydrologic cycles, and climate
change. The snowmelt runoff offers an essential supply for fresh-water resources at mid-latitude
regions [1–3]. Furthermore, snow cover is also a vital input parameter for hydrologic and climate
models [4–6]. The monitoring and research of snow cover over long time-series are pivotal to provide
a scientific understanding of its role in the earth system and human society. The high–accuracy snow
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cover data can effectively improve the simulation accuracy of climate and hydrological models [7–9].
Therefore, it is of great significance to develop a more accurate algorithm for snow cover evaluation.

The traditional snow cover mapping method cannot more accurately estimate the snow cover.
As an alternative to the binary snow cover mapping method, the fractional snow cover mapping
method has a reliable and robust snow cover estimation performance. The binary snow cover mapping
method, based on the spectral reflectance characteristics of snow, i.e., high reflectance in the visible
band (0.4–0.7 µm) and low reflectance in the short-wave infrared band (1.55–1.75 µm), has been used
to produce the global-scale moderate resolution imaging spectroradiometer (MODIS) snow cover
products. However, each pixel, composed of different land cover types, was detected as snow-covered
and snow-free through the binary snow cover mapping algorithm. Obviously, employing this method
to estimate the snow cover is still problematic, especially in alpine or forest areas [10–12]. Fractional
snow cover mapping has been recognized as an effective alternative method to evaluate snow cover
areas. It describes the snow cover area using the fractions of snow and snow-free cover areas in each
pixel, which can significantly improve the accuracy of snow cover extent evaluations [13,14].

There are three main kinds of state-of-the-art methods to be used for retrieving fractional snow cover
(FSC) from the MODIS images: the semi-empirical linear regression model [15], the machine learning
model [16,17], and the linear spectral mixture analysis (LSMA) model [18–20]. The semi-empirical
linear model is based on the linear statistical relationship between the normalized difference snow
index (NDSI) and FSC, which has been adopted in the MODIS global snow cover products [21]. The
method has manifest physical significance and can be easily implemented. However, the accuracy of
the semi-empirical linear model is affected by the land cover types, snow depth, cloud, and thin-patches
of snow cover. It is problematic to evaluate the snow cover fraction using the linear model in forest and
mountainous areas, especially in forest areas [22–24]. Machine learning can handle high-dimensional,
multi-variate data and extract implicit relationships within extensive spatial data in a complex and
dynamic environment [25]. The outstanding advantages of the machine learning technique can discover
the nonlinear relationship between spatial-spectral-environmental information and FSC automatically.
Artificial neural networks (ANNs) have been successfully used for estimating the MODIS FSC, and
its performance is very similar to the standard MODIS snow fraction product [26]. Machine learning
generally adopts a supervised learning method to train the optimal model. Therefore, it is difficult to
obtain the truth value of FSC from MODIS images. In addition, model training also consumes a lot
of computing resources. Endmember extraction and abundance estimation are indispensable for the
LSMA model. The endmembers are usually extracted from the image by the endmember extraction
algorithm or selected from the spectral reference libraries. Endmember extraction algorithms mainly
include geometric algorithms and statistical algorithms [27]. However, these algorithms are suitable
only for the hyperspectral images and cannot be directly applied to the endmember extraction of
MODIS images. The traditional fully constrained least square is widely used for abundance estimation.
Recently, some optimization algorithms for abundance estimation, such as extended linear mixing
model and spectral bundles, have robust performance compared to traditional methods for FSC
retrieval [28]. However, the computational complexity of the algorithm also increases exponentially,
which is not suitable for the large-area or global-scale of FSC retrieval. Compared with the machine
learning and semi-empirical linear model, the LSMA model does not need to acquire reference FSC as
prior knowledge before FSC retrieval. Besides, the LSMA model can also obtain high-accuracy snow
cover fractions in the forest and alpine areas [19,29,30].

The LSMA approach has been widely used to retrieve FSC from satellite observed images in
different regions. The LSMA model was first used to estimate the snow cover fractions in each
pixel of airborne visible infrared imaging spectrometer (AVIRIS) data. The endmember spectra are
defined by manually choosing representative pixels in the image [18]. Vikhamar and Solberg et al.
used a forest-cover map as prior knowledge to develop a new method for subpixel mapping of
snow cover in forest areas, which can significantly improve the accuracy of snow cover mapping in
current regions [31]. A technique named MODIS snow covered area and grain sizes (MODSCAG)
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based on a multi-endmembers spectral mixture analysis model (MESMA) has been applied to MODIS
surface reflectance products to solve snow-covered areas, snow grain size, and albedo. In MODSCAG,
snow endmembers use different snow grain sizes of snow reflectance calculated by the radiative transfer
model. Other endmembers select from the spectral reference libraries built with the reflectance of
different materials measured in the field and laboratory [19,32]. Sirguey et al. developed a novel method,
named MODImLAB, to monitor the seasonal snow cover and obtain reliable accuracy. In MODImLAB,
the best endmembers are found by a trial-and-error strategy from spectral libraries created with the
reflectance of different materials selected from the image or measured in the ground [33]. Although the
MODSCAG and MODImLAB can accurately estimate the snow cover, they cannot automatically
extract endmembers from the image. A model named TMSCAG was developed based on MODSCAG
and had excellent performance for Landsat snow cover evaluation [34]. Applying a neighborhood
canopy adjustment approach, this algorithm can significantly improve the accuracy of assessment
of snow-covered areas in the forest with the forest canopy. However, a weakness of this method is
that it is unable to correct all pixels effectively. The canopy-adjusted accuracy depends on precise and
consistent prior knowledge, such as forest canopy information [35,36]. Additionally, based on MESMA,
the automatic get-endmember method of the MODIS subpixel snow-cover algorithm (MODAGE) has
also been used to evaluate snow-covered fractions from MODIS surface reflectance images successfully.
This method introduces a multi-index in terms of the normalized differential vegetation index (NDVI),
normalized differential snow index (NDSI), and reflectance of the second channel of MOD09GA to
extract the different endmembers from each image automatically [20,37,38]. Plentiful areas-of-interest
with varying fractions of snow were selected from surface reflectance images to establish thresholds
of multi-index for extraction endmembers from initial definite endmembers, and the number of
endmembers are constant. As mentioned above, these methods are unable to automatically extract
endmembers from different images. The set of endmembers selected from spectral reference libraries is
applied to the spectral mixture analysis model, which will reduce the accuracy of subpixel mapping
because the spectral information has significant diversity in different images.

These approaches for FSC retrieval, as mentioned above, continue to pose an enormous challenge
in distinguishing different spectral information that has little contrast in large-scale satellite observed
images. Additionally, environmental information, such as cloud cover, land cover type, and snow
condition, profoundly impact the surface reflectance of images on the pixel level. The different
materials have very small spectral discrepancies due to the influence of mixed pixels, making it
difficult to accurately extract endmembers from images [39,40]. Furthermore, the same surface feature
has different spectral curves on different images, whereas, the various surface objects have similar
spectral curves on different images. Although different land-surface objects have very similar spectral
information, their environmental information is very different, so the environmental information
can be used as the prior knowledge of endmember extraction to initially determine the number of
endmembers extracted from the image. Automatic extraction of endmembers from various images can
reduce uncertainty caused by the heterogenicity of environmental information on different images.

In this study, we developed a new endmember extraction algorithm based on integrating the
spatial-spectral-environmental (SSE) information, which can automatically extract endmembers from
images. Then, combining the LSMA model, the SSE endmember extraction algorithm was applied
to the MODIS FSC retrieval of China. The reference FSC generated by Landsat 8 binary snow cover
maps with 30 m spatial resolution were used to quantitatively evaluate the accuracy of SSEmod.
Meanwhile, the accuracy of SSEmod was compared with MODImLAB and MODSCAG for FSC
retrieval. MODImLAB and MODSCAG are currently the most reliable algorithms for MODIS FSC
retrieval based on LSMA model. MOD10A1 uses the semi-empirical linear model to calculate the
MODIS FSC.
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2. Materials

In this paper, we mainly utilize the MODIS surface reflectance product (MOD09GA Collection 6),
Landsat 8 surface reflectance product, MODIS land cover product (MCD12Q1 Collection 6), and MODIS
snow cover product (MOD10A1 Collection 6). MOD09GA is mainly used as the input data of
SSEmod, MODImLAB, and MODSCAG. Landsat 8 mainly generates reference FSC. MCD12Q1, as vital
environmental information, provides prior knowledge for the SSE endmember extraction algorithm.

2.1. MOD09GA

MOD09GA collection 6 was provided by NASA’s earth observing system data and information
system (EOSDIS). MOD09GA daily products have accomplished atmospheric correction caused by the
effects of atmospheric scattering and absorption [2].

MOD09GA images were selected according to Landsat 8 surface reflectance data with the
same observation time and location, and re-projected with the same projection system as Landsat 8
images. Then, cloud cover pixels were removed through the quality assessment (QA) band of MODIS
surface reflectance data. Finally, we implemented the SSE endmember extraction algorithm to extract
endmembers of MOD09GA after removing cloud contamination.

2.2. Landsat 8 Surface Reflectance Data

Landsat 8 surface reflectance products are provided by the United States Geological Survey and
have been completed atmospheric correction [41]. The Landsat 8 surface reflectance data were mainly
used to produce reference FSC for validating the accuracy of SSEmod FSC.

A total of 25 images were selected in three main snow cover regions of China (5 for northwestern
China, 9 for northeastern China, and 11 for Qinghai–Tibet Plateau). The screening conditions were
less than 1% in northwestern China and northeastern China, and less than 6% in the Qinghai–Tibet
Plateau. Low cloud cover images are rare in the Qinghai–Tibet Plateau, which is affected by the high
altitude of thin clouds and cirrus clouds. Screened images were divided into training datasets and
validation datasets. Among them, 9 images were used to obtain the thresholds of the SSE endmembers
extraction method, and 16 images were utilized to validate the accuracy of SSEmod FSC (Figure 1).
Image pre-processing included: removal of cloud-contaminated pixels, terrain correction, and reference
FSC retrieval. Firstly, the Quality Assessment (QA) band derived from the cloud and cloud shadow
detection algorithm (CFMask) was used to remove cloud contaminative pixels from Landsat 8 surface
reflectance images. C-correction is introduced to reduce the impact of topography on solar radiation,
which is the most effective illumination correction for Landsat imagery [42]. We utilized different binary
snow cover mapping methods for non-forest areas and forest areas. The SNOMAP algorithm, based on
the spectral reflection characteristics of snow, has been widely used to produce standard MODIS global
snow cover products. The NDSI is an integral part of the SNOMAP algorithm for the identification of
snow. In addition, the NDSI-NDVI threshold field in SNOMAP can improve the accuracy of snow
cover mapping in forest areas. Nevertheless, the forest-covered pixels were classified as snow-free
conditions when the NDSI values were lower than 0.4, and NDVI values were lower than 0.3 [43].
In this paper, the SNOMAP algorithm is used to generate the reference Landsat 8 FSC in non-forest
regions. In forest areas, the binary snow cover data is achieved by an improved algorithm for mapping
snow cover through the normalized difference forest snow index [44]. The 30 m spatial resolution of
binary snow cover images were re-sampled to 500 m spatial resolution of reference FSC using the
multi-pixels aggregation method. All of the pre-processing processes have been accomplished with
the Google Earth Engine [45].
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considered to represent forest-covered areas in which canopy height is more than 2 m and tree 
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Figure 1. The study area and spatial distribution of training and validation images of Landsat 8 that
were selected in three main snow cover regions of China (A: northwestern China, B: northeastern China,
C: Qinghai–Tibet Plateau).

2.3. MOD10A1

MOD10A1 Collection 6 is a widely used snow cover product globally. In C6, the FSC has been
replaced by NDSI snow cover, generated through a series of screenings, such as surface temperature,
low reflectance, cloud, and snow confusion, etc.

The pre-processing of MOD10A1 included image re-projection and FSC retrieval. MOD10A1
images were first re-projected with the same projection system as Landsat 8 surface reflectance.
Then, the semi-empirical linear statistical relationship between FSC and NDSI was used to calculate
MOD10A1 FSC. The empirical equation is given by:

FSC = 1.45 × (x/100) − 0.01 (1)

x is the MOD10A1 NDSI snow cover. MOD10A1 FSC is mainly used to evaluate the accuracy of
SSEmod FSC.

2.4. MCD12Q1

MCD12Q1 Version 6 products provide global land cover types at yearly intervals. The products
have six different classification schemes and are derived using supervised classifications of MODIS Terra
and Aqua reflectance data. The spatial resolution is 500 m, and the projection is a sinusoidal projection.

In this study, the International Geosphere-Biosphere Programme (IGBP) classification, as a very
important environmental information, is used to distinguish forest and non-forest areas as well as to
provide prior knowledge of endmember extraction. The number of endmembers extracted from images
can roughly be estimated through major land cover types. IGBP codes from 1 to 9 were considered to
represent forest-covered areas in which canopy height is more than 2 m and tree coverage is higher
than 60%, whereas, other IGBP codes are classified as non-forest areas.
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3. The SSE Endmember Extraction Method

This study developed a new endmember extraction algorithm combining spatial–spectral–
environmental information to automatically extract endmembers from different images [46]. The main
purpose of introducing land cover information is to initially estimate the number of endmembers and
reduce the spectral redundancy of candidate endmembers. Additionally, different numbers and types
of snow endmembers were extracted in forest areas and non-forest areas. Other endmembers were
selected by the dynamic threshold segmentation method. The ultimate endmembers were adjusted
through the spectral discrepancy of candidate endmember pixels. The SSE endmembers extraction
algorithm consists of four steps: extraction candidate endmembers, update candidate endmembers,
extraction snow endmembers, extraction other endmembers. A diagram of the SSE endmember
extraction processing flow is presented in Figure 2.
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Figure 2. The diagram of the processing flow for SSE endmembers extraction. The trial-and-error
method is utilized to obtain optimal thresholds. Numbers 1, 2, and 3 denote spatial, spectral,
and environmental information, respectively. The digital label in the endmember extraction indicates
which one of the three different information types is introduced. For example, number 2 after “Extraction
candidate endmembers” indicates that spectral information was adopted in this step.

3.1. Extraction Candidate Endmember

The entire image is divided into sub-regions of the same size. The optimal number of subregions
C can be calculated by:

C =

√
mn
4

(2)

m and n are columns and rows, respectively. Then, the PCA method is applied to calculate the
eigenvalues and eigenvectors. The subregion data projected onto the extracted eigenvectors with the
pixels that lie at either extreme of the vectors are retained, and these pixels represent the candidate
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endmembers set (Figure 3). The principal component analysis method radically enhances the spectral
contrast and makes it easier to distinguish different materials with a small spectral discrepancy.Remote Sens. 2020, 12, x FOR PEER REVIEW 7 of 23 
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Figure 3. Extraction candidate endmembers from diverse images. (a) the entire image is divided into
subregions of the same size. (b) calculate the eigenvectors for each subregion. (c) the subregions of the
original image are projected onto the extracted eigenvectors, and the candidate endmember pixels are
located at the extremes of the projection space. (d) the candidate pixels of the subregion S1.

3.2. Update Candidate Endmembers

We introduced the thresholds ω and $ to distinguish spectral similarity and update candidate
endmember pixels (Figure 4). The SID-SAM method is adopted to measure spectral similarity [47].
The trial-and-error strategy is utilized to establish the optimal thresholds (in this study, ω. is 0.1, $.
is 0.36). Let Subi denote the i-th subregion, Ui = {s1, s2, sk, · · · , sn} denote the candidate endmembers
set of Subi, and n denote the total number of endmembers. Iterate each candidate endmember pixel in
Ui and use it as the central pixel of the d× d square sliding window, where d is the Euclidean search
distance (in this study, d is 80). sk and rl = {r1, r2, rt, · · · , rm} denote central pixel and reference pixels
set in the sliding window, where m is the total number of reference pixels. The rule of endmember
update can be given by:

U∗i =

 Ui + rt S(sk, rt) > $, rt ∈ rl, sk ∈ Ui

Ui − sk +
sk +

∑t=n
t=1 rt

n + 1 S(sk, rt) < ω, rt ∈ rl, sk ∈ Ui
(3)

where U∗i is the updated candidate endmember set, S(sk, rt) is the similarity of spectral vectors sk and rt.



Remote Sens. 2020, 12, 3693 8 of 24

Remote Sens. 2020, 12, x FOR PEER REVIEW 8 of 23 

 

 
Figure 4. Update candidate endmembers pixels, where f is central pixels, and d is search distance. (a) 
the spectral diversity between the pixel marked with a number from 1 to 4 and the central pixel is less 
than 𝜔, and the pixel filled with a slash is higher than 𝜛. (b) those pixels with enormous spectral 
diversity and the central pixels are appended into the candidate endmember pixel set and all spectral 
vector pixels are averaged with the smallest spectral variety. 

3.3. Extraction Snow Endmembers 

We used land cover information to initially evaluate the numbers of endmembers that should 
be extracted from the image. Afterward, the spectral reference library was built with the reflectance 
of snow different underlying surfaces, grain sizes, and transformation periods measured by the 
Spectral Evolution’s PSR-3500 in the field is utilized to select the final snow endmembers from the 
candidate endmembers set. In this study, two snow endmembers and one snow endmember were 
extracted in forest areas and non-forest areas, respectively (Figure 5). Let 𝑅 = 𝑟𝑠 , 𝑟𝑠 , 𝑟𝑠 , ⋯ , 𝑟𝑠  
denote the reference spectra of snow, and 𝑈 = 𝑠 , 𝑠 , 𝑠 , ⋯ , 𝑠  and 𝑈 = 𝑠 , 𝑠 , 𝑠 , ⋯ , 𝑠  denote 
the candidate endmembers set of the forest and non-forest areas. In forest areas, the first type of snow 
endmember 𝐸  and the second type of snow endmember 𝐸  can be obtained by Equations (4) and 
(5): 𝐸 = ∑ 𝑠𝑙 𝑈 = 𝑠 𝑠 ∈ 𝑈  ⋀ 𝑆 𝑠 , 𝑟𝑠 𝜔2 , 𝑟𝑠 ∈ 𝑅   (4) 

𝐸 = ∑ 𝑠𝑡 𝑈 = 𝑠 𝑠 ∈ 𝑈 − 𝑈  ⋀ 𝑆 𝑠 , 𝑟𝑠 𝜔, 𝑟𝑠 ∈ 𝑅   (5) 

where 𝑈  and 𝑈  are the candidate endmember set that meets the constraint condition of 
Equations (4) and (5). In non-forest areas, the snow endmember 𝐸  can be calculated by Equation 
(6): 𝐸 = ∑ 𝑠𝑒 𝑈 = 𝑠 𝑠 ∈ 𝑈  ⋀ 𝑆 𝑠 , 𝑟𝑠 𝜔, 𝑟𝑠 ∈ 𝑅   (6) 

where 𝑈  is the updated candidate endmember pixel set. 𝑈  and 𝑈  are utilized to extract other 
endmembers for forest and non-forest areas in the next step. 

Figure 4. Update candidate endmembers pixels, where f is central pixels, and d is search distance.
(a) the spectral diversity between the pixel marked with a number from 1 to 4 and the central pixel is
less than ω, and the pixel filled with a slash is higher than $. (b) those pixels with enormous spectral
diversity and the central pixels are appended into the candidate endmember pixel set and all spectral
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3.3. Extraction Snow Endmembers

We used land cover information to initially evaluate the numbers of endmembers that should be
extracted from the image. Afterward, the spectral reference library was built with the reflectance of
snow different underlying surfaces, grain sizes, and transformation periods measured by the Spectral
Evolution’s PSR-3500 in the field is utilized to select the final snow endmembers from the candidate
endmembers set. In this study, two snow endmembers and one snow endmember were extracted
in forest areas and non-forest areas, respectively (Figure 5). Let R =

{
rs1, rs2, rs3, · · · , rsp

}
denote the

reference spectra of snow, and Uv =
{
s1

v, s2
v, s3

v, · · · , sm
v

}
and Uo =

{
s1

o , s2
o , s3

o , · · · , sn
o

}
denote the candidate

endmembers set of the forest and non-forest areas. In forest areas, the first type of snow endmember
Ea

v and the second type of snow endmember Eb
v can be obtained by Equations (4) and (5):

Ea
v =

∑k=l
k=1 sk

v
l U′v =

{
sk

v

∣∣∣∣sk
v ∈ Uv

∧ (
S
(
sk

v, rs j
)
< ω

2 , rs j ∈ R
) }

(4)

Eb
v =

∑k=t
k=1 sk

v
t U′′v =

{
sk

v

∣∣∣∣sk
v ∈ (Uv −U′)

∧ (
S
(
sk

v, rs j
)
< ω, rs j ∈ R

) }
(5)

where U′v and U′′v are the candidate endmember set that meets the constraint condition of Equations (4)
and (5). In non-forest areas, the snow endmember Ea

o can be calculated by Equation (6):

Ea
o =

∑k=e
k=1 sk

o
e U′o =

{
sk

o

∣∣∣∣sk
o ∈ Uo

∧ (
S
(
sk

o, rs j
)
< ω, rs j ∈ R

) }
(6)

where U′o is the updated candidate endmember pixel set. U′′v and U′o are utilized to extract other
endmembers for forest and non-forest areas in the next step.
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v are snow

endmembers, respectively. U′o, U′v and U′′

v are candidate endmember sets of snow. Uo and Uv are
the candidate endmember pixel sets in non-forest and forest areas. R is the spectral reference library
of snow.

3.4. Extraction Other Endmembers

The dynamic threshold segmentation method is applied to extract other endmembers in the forest
and non-forest areas (Figure 6). Let n denote the number of endmembers finally extracted from the
image (in this study, 4 ≤ n ≤ 6). U′′v and U′o are update candidate endmember pixel sets in forest and
non-forest areas, respectively. Ei

v, i ∈ {3, 4, · · · , 6}, and Et
o, t ∈ {2, 3, . . . , 6} denote other endmembers

extracted in the different regions. Ei
v and Et

o are given by Equations (7) and (8).

Ei
v =

∑ j=l
j=1 sk

v

l Ui
v =

{
sk

v

∣∣∣∣sk
v ∈ Ui−1

v
∧ (

δ < S
(
sk

v, Ei−1
v

)
< Smax

) }
(7)

Et
o =

∑ j=l
j=1 sk

v

l Ui
o =

{
sk

v

∣∣∣∣sk
v ∈ Ut−1

o
∧ (

δ < S
(
sk

o, Et−1
o

)
< Smax

) }
(8)

where δ = Smax − (Smax − Smin)/(n− 1). Smax and Smin are the maximum and minimum spectral
diversity between the updated candidate endmember set and the endmembers extracted in the
previous iteration. Ui−1

v and Ut−1
o are updated candidate endmember sets from the previous iteration

(for example, Ui−1
v = U′′v when extracting the third endmember set in forest areas). Repeat iteration

for Equations (7) and (8) until Ui
v = φ, Ui

o = φ or the number of extracted endmembers exceeds a
predetermined value.
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4. Application to MODIS Fractional Snow Cover Retrieval

The linear spectral mixture analysis model is a widely used approach to estimate the abundance
of materials present in an image pixel [48–50]. The linear spectral mixture analysis model can be
defined by

R = E× a + n (9)

where n accounts for the model error. R is the reflectance vector located in (x, y) in MOD09GA. E is an
endmembers matrix achieved by the SSE endmember extraction algorithm, and a is an abundance
vector. Fully constrained least square is the state-of-the-art method to calculate the snow cover fractions
for mixed pixels in the linear spectral mixture analysis model, which is comprised of the nonnegativity
constrained least square and abundance sum-to-one constraint [51]. The estimate from the least-squares
method is the one that minimizes the estimation residual. Finally, the fully constrained least square
can be given by

min
α
‖R− Eα‖22 (10)

subject to 
0 ≤ αi ≤ 1 i ∈ [1, m]

m∑
i=1

αi = 1 (11)

and m is the number of endmembers.
MOD09GA and land cover data feed into the spectral mixing analysis model. Adopt the SSE

endmember extraction method to automatically extract MOD09GA endmembers. The fully constrained
least square method is utilized to evaluate snow cover fractions on pixels level. In forest areas, the final
FSC is the cumulative sum of snow cover fractions estimated by different snow endmembers in a pixel.
The flowchart techniques for SSEmod FSC retrieval achieved through SSE endmember extraction and
spectral mixture analysis model is shown in Figure 7.
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Figure 7. SSEmod FSC retrieval workflow. Firstly, eliminate cloud-contaminated pixels because it’s
surface reflectance are very similar to snow-covered pixels. Afterward, MOD09GA and MCD12Q1
were re-projected as the same projection system with Landsat 8. Ultimately, the linear spectral mixture
analysis model is utilized for SSEmod FSC retrieval.

5. Validation

MODImLAB and MODSCAG models were utilized to retrieve FSC in the main snow cover
areas of China, respectively. We used a trial-and-error strategy to find the best numbers and types of
endmembers with reliable performance for FSC retrieval at different times of the year. In addition,
we adjusted the numbers and types of endmembers according to the land cover information in the
study areas. Finally, three snow endmembers (medium granular snow, coarse granular snow, and
transformed snow), dark vegetation, highlight vegetation, and soil, as the optimal endmembers, were
used to retrieve FSC for MODImLAB and MODSCAG. The accuracy of the SSEmod FSC is evaluated
with reference to Landsat 8 FSC. Simultaneously, we compared the accuracy of SSEmod FSC with
MODSCAG FSC, MODImLAB FSC, and MOD10A1 FSC. The root-mean-square error (RMSE) and
mean absolute error (MAE), as fractional metrics, were utilized to evaluate the accuracy of SSEmod
FSC. Furthermore, we used a binary metric to assess the accuracy of SSEmod to eliminate total snow
area influence on the fractional metric [52]. The precision estimates the probability that a pixel is
correctly detected as snow.

precison =
TP

TP + FP
(12)

where TP (true positive) is the number of snow pixels of correct detection according to the reference,
FP (false positive) is the number of snow pixels that should be snow-free according to the reference.
The recall is considered to evaluate the probability of a snow-covered pixel being detected.

recall =
TP

TP + FN
(13)

where FN (false negative) is the number of snow-free pixels that should be dictated as snow pixels
according to the reference. FScore evaluates the accuracy of snow detection without dependence on the
total snow cover area.

FScore =
2TP

(2TP + FN + FP)
(14)

For all of binary metrics, a pixel is considered as covered by snow if FSC > 0. To evaluate the accuracy
of snow-covered areas evaluated by SSEmod FSC, the snow-covered area is compared with Landsat 8
FSC, MODSCAG FSC, MODImLAB FSC, and MOD10A1 FSC. Snow cover areas were calculated by:

SCA =
n∑

i=1

Pi ∗ (s/1000)2 (15)
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Pi is FSC, s is the spatial resolution of pixels, and n is a total of pixels. We introduced the factor
K, which is used to evaluate the model’s overestimating or underestimating snow cover area.
K = (SCAa − SCAb)/SCAb, where SCAa is the snow cover area of the estimated snow cover
areas, and SCAb is snow cover area of Landsat 8 FSC. |K| can reflect the biases of the estimated snow
cover area.

5.1. Accuracy Assessment of SSEmod FSC in Different Snow-Covered Regions

The validation results of the RMSE and MAE (fractional metrics) of the new endmembers extraction
algorithm for FSC retrieval in different verification images in China’s main snow-covered areas are
shown in Figure 8.Remote Sens. 2020, 12, x FOR PEER REVIEW 12 of 23 
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and MOD10A1 FSC.

The validation results (Figure 8) show that the FSC retrieved by the linear spectral mixture analysis
model is generally more accurate than the semi-empirical linear model. In all spectral mixing analysis
models, we developed the new endmember extraction algorithm for FSC retrieval, which is more
accurate than the other two most popular methods. The MODImLAB usually has higher accuracy
than MODSCAG for FSC retrieval in different areas, although a few images have lower precision than
MODSCAG. In addition, comparison of the accuracy of different snow cover regions, SSEmod FSC
has poorer accuracy in northeastern China than that of northwestern China and the Qinghai–Tibet
Plateau. We also calculated the average root-mean-square error (RMSE), mean absolute error (MAE),
and binary metrics for different snow cover areas of China, simultaneously. The verification results are
shown in Table 1.
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Table 1. The average accuracy validation results of different metrics of different methods for FSC
retrieval in three snow-covered regions of China.

Regions. Method Precision Recall FScore RMSE MAE

Northeastern China

SSEmod 0.946 0.963 0.937 0.143 0.106
MODImLAB 0.908 0.959 0.931 0.166 0.109
MODSCAG 0.901 0.952 0.929 0.172 0.114
MOD10A1 0.893 0.940 0.914 0.179 0.133

Qinghai–Tibet Plateau

SSEmod 0.934 0.810 0.846 0.138 0.089
MODImLAB 0.904 0.788 0.807 0.161 0.100
MODSCAG 0.895 0.731 0.802 0.164 0.104
MOD10A1 0.873 0.718 0.782 0.174 0.117

Northwestern China

SSEmod 0.953 0.991 0.969 0.126 0.080
MODImLAB 0.951 0.979 0.966 0.145 0.094
MODSCAG 0.950 0.979 0.965 0.149 0.079
MOD10A1 0.943 0.960 0.952 0.214 0.139

The results of all evaluated metrics show that our method can significantly improve FSC
retrieval accuracy in different snow cover areas compared to other spectral mixture analysis models.
In northeastern China, the SSEmod has the highest average precision, recall, and FScore. The average
precision of SSEmod is 0.946, which indicates that our method has a small error for snow cover detection
and that snow-free pixels are incorrectly classified as snow-covered pixels. The average recall score of
MOD10A1 is the lowest compared to other models because many numbers of snow-covered pixels are
not detected correctly. The average FScore of SSEmod is slightly higher than that of MODImLAB, which
shows that SSEmod can more accurately identify the snow-covered or snow-free pixels. The average
RMSE and MAE of SSEmod are also higher than those of other models. In the Qinghai–Tibet Plateau,
the average precision of SSEmod is 0.934, which is higher than 0.904 for MODImLAB and 0.895 for
MODSCAG. Meanwhile, the average recall and FScore of SSEmod are 0.810 and 0.864, both of which
have significantly higher accuracy than other models. The RMSE and MAE of the semi-empirical linear
model are 0.174 and 0.117, which behind the other three approaches based on the spectral mixture
analysis model. In northwestern China, the ranking of the scores of evaluated metrics of all methods is
very similar to the previous two snow cover regions, except for the recall metric score. We found that
MODImLAB and MODSCAG have the same recall score. The MOD10A1 still has the lowest accuracy
compared to other spectral mixing analysis models, and the average RMSE and MAE are 0.214 and
0.139, respectively, which are the highest compared to other regions.

Overall, the results show that using the spectral mixture analysis model to retrieve FSC is usually
more accurate than that of the semi-empirical linear model. The MODImLAB method is slightly better
than MODSCAG. As demonstrated by the FScore in all snow cover areas, all methods have the highest
accuracy in northwestern China (0.969), followed by northeastern China (0.937), and the Qinghai–Tibet
Plateau is the lowest (0.846). As shown by scores of all binary and fractional metrics, the SSEmod
technique has the highest accuracy compared to the other methods, followed by MODImLAB, and the
lowest is MOD10A1.

The results of FSC retrieval using the spectral mixture analysis models and the linear regression
model are shown in Figure 9 (a selected from northeastern China, b and c selected from Qinghai–Tibet
Plateau, d, e, and f selected from northwestern China). It can be clearly shown that all of the spectral
mixture analysis models underestimate the snow-covered fraction in northeastern China, except for the
linear regression model. However, the spectral mixture analysis model is better than the semi-empirical
linear model in other snow cover areas.
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Figure 9. The result of SSEmod FSC, Landsat 8 FSC, MODImLAB FSC, MODSCAG FSC, and MOD10A1
FSC in different snow cover regions of China. (a–f) donates diverse validation images in the three main
snow cover areas of China.

5.2. Accuracy Assessment of SSEmod FSC in the Forest and Non-Forest Areas

The accuracy validation result of FSC in the forest and non-forest regions are shown in Figure 10.
The results of the validation of binary and fractional metrics are shown in Table 2.
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In forest areas, the SSEmod has a precision score of 0.941, the highest compared to the other
models, which shows that this method has a very small probability of identifying snow-free pixels
as snow-covered pixels. The average score of recall of the SSEmod is 0.668, which better than other
models. The 0.591 recall score of MOD10A1 is behind those of other spectral mixture analysis models
because this method incorrectly detects many numbers of pixels that are actually covered by snow
as snow-free pixels. The average FScore of SSEmod is 0.828, which is higher than other models and
indicates that this method can more accurately evaluate the snow cover fraction. The average RMSE
and MAE of SSEmod are 0.165 and 0.119, respectively. Compared to the different techniques for FSC
retrieval, the SSEmod is more accurate in evaluating the snow cover fraction (Figure 10b,d,f). However,
the spectral mixture analysis models and semi-empirical linear model underestimate the FSC due to
the influence of trees in forest areas.
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Table 2. The accuracy validation of binary and fractional metrics of FSC retrieved by the spectral
mixture analysis models and semi-empirical linear model in forest areas and non-forest areas of the
three main snow-covered regions of China.

Zone Method Precision Recall FScore RMSE MAE

Forest areas

SSEmod 0.941 0.668 0.828 0.165 0.119
MODImLAB 0.934 0.631 0.756 0.196 0.125
MODSCAG 0.930 0.617 0.742 0.201 0.127
MOD10A1 0.863 0.591 0.701 0.216 0.132

Non-forest areas

SSEmod 0.962 0.982 0.952 0.107 0.065
MODImLAB 0.928 0.975 0.946 0.126 0.092
MODSCAG 0.921 0.977 0.948 0.129 0.093
MOD10A1 0.903 0.948 0.945 0.162 0.128

In non-forest areas, the precision ranking of different models is the same as the forest area.
The average recall score of SSEmod is higher than other methods. Moreover, the average recall score of
MODSCAG of 0.977 is better than the MODImLAB score of 0.975. The FScore of MODSCAG is slightly
lower than that of MODSCAG. The RMSE and MAE of SSEmod are 0.107 and 0.065, respectively,
which are significantly lower than those of the forest area (Figure 10a,c,e). As presented by the validation
results of all evaluated metrics, whether of spectral mixture analysis models or semi-empirical linear
model, the accuracy of FSC retrieval in non-forest areas is higher than that in forest areas.

In summary, the SSEmod has reliable accuracy in all regions, especially in non-forest areas.
However, as shown in the recall score of Table 2, all of the FSC retrieval methods usually underestimate
the snow cover fraction on the pixel level in forest areas. According to the precision and recall, it is
challenging to find a universal approach to improve the accuracy of FSC retrieval in forest areas and
non-forest areas. Compared to the RMSE of MODImLAB and MODSCAG, the accuracy of SSEmod is
improved by 3.1% and 3.6% in forest areas, respectively, and in non-forest areas, it improved by 1.9%
and 2.2%.

5.3. Accuracy Assessment of SSEmod FSC for Evaluation of Snow Cover Areas

Figure 11a shows the accuracy validation results of the snow cover area (SCA) calculated with
FSC that was retrieved by the different models in three snow cover regions of China. Figure 11b
demonstrates the K value for various validation images. Figure 11c presents the accuracy validation
results of the snow cover area in the forest and non-forest areas. Table 3 shows the average of bias
factor K of absolute value for evaluation of SCA in different snow cover regions, and Table 4 shows the
average of bias factor K of absolute value in the forest and non-forest areas.

Table 3. The average of the absolute value of K in different snow cover regions.

Zone
|K|

SSEmod MODImLAB MODSCAG MOD10A1

Northeastern China 0.074 0.095 0.102 0.125
Qinghai–Tibet Plateau 0.026 0.062 0.068 0.094
Northwestern China 0.016 0.085 0.089 0.105

Average 0.039 0.081 0.086 0.108
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Figure 11. The validation of snow cover areas calculated by different FSC. (a) the validation results of
the SCA estimated by FSC in different snow cover regions. (b) the biases factor K of different validation
images. (c) the validation results of the SCA estimated by FSC in the forest and non-forest areas.

Table 4. The average of the absolute value of K in the forest and non-forest areas.

Zone
|K|

SSEmod MODImLAB MODSCAG MOD10A1

Forest areas 0.051 0.076 0.083 0.133
Non-forest areas 0.020 0.023 0.035 0.072

Average 0.036 0.050 0.059 0.103

K value and absolute K value represent the bias of applying FSC to estimate SCA. The negative
K value indicates an underestimation of SCA, and vice versa. Although the SSEmod FSC has a very
small estimation bias for 0.074, many validation images significantly underestimate the snow cover
areas in northeastern China. In the Qinghai–Tibet Plateau and northwestern China, the bias of using
the SSEmod FSC to estimate the SCA is 0.16 and 0.26, respectively, and which is better than that of
other FSC estimates. The MODImLAB FSC and MODSCAG FSC have very similar accuracy for SCA
estimation in different snow cover regions. In forest areas, the SSEmod FSC has an optimal estimation
bias of 0.051 compared to the MODImLAB bias of 0.076. In non-forest areas, the estimation bias of
SSEmod FSC is 0.020, which is very close to the estimation bias of MODImLAB of 0.023.

The result shows that SSEmod can more accurately estimate the SCA compared to other methods.
The reliability of employing the MODImLAB to evaluate SCA is very similar to MODSCAG. The ability
of SCA evaluation with FSC obtained by different approaches is consistent with the ranking of accuracy
evaluated by binary and fractional metrics, which shows that the accuracy of SCA estimation is closely
related to the FSC.

6. Discussion

6.1. The Error Source of FSC Retrieval

The surface temperature, environmental information (underlying surface information, topography,
etc.), and atmospheric condition are vital factors that affect snow detection or FSC retrieval [53]. In the
Qinghai–Tibet Plateau, the recall score is significantly lower than that of the other three regions, mainly
due to the following reasons: many snow-covered pixels cannot correctly detect or be contaminated
by the cloud. The reflectance of high-altitude cirrus clouds that include ice crystal is exactly similar
to the pure snow reflectance, which easily causes cloud pixels’ contamination when extracting
the endmembers. Although cloud mask can eliminate snow cover detection errors caused by the
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contamination of the cloud, it cannot completely remove cloud pixels from images due to errors of
the cloud pixels’ identification algorithm. The surface temperature varies significantly in different
regions due to its altitude differences. The solar radiation energy directly determines the different
rates of snow-melting. Most forest resources are located in northeastern China. Coniferous forests
are the primary land cover types in this area. Although the spectral mixture analysis methods have
achieved excellent accuracy compared to the linear regression model, all of the techniques will also
slightly underestimate the snow cover fraction. Two main factors cause the error in FSC retrieval
in this area. One is that the algorithm of FSC retrieval should be improved one more time in forest
areas, including the SSEmod, MODImLAB, and MODSCAG. The other is that a lot of dark pixels
generate after atmospheric correction in the MOD09GA. In the clear sky, the tree canopy blocks the
solar radiation reflected on the ground, which causes the satellite sensor to receive very low energy
from the earth’s surface. Respectively, the dark pixels that have low reflectance values are mainly
present in areas covered by dense vegetation. In the snow season, the dark pixels are usually covered
with snow, but it is too difficult for all models to accurately estimate the snow cover fraction in forest
areas, as shown in Tables 1 and 2. In northwestern China, the land cover types are mainly non-forest
land, which are grassland and cultivated land. Besides, the score of binary metrics is also higher
than that of other regions, which indicates that the spectral mixture analysis model has a very small
underestimation or overestimation error for snow detection. The local solar illumination and snow
conditions are the main influence factors for the accuracy of FSC retrieval.

A systematic error is introduced into the reference FSC. The higher resolution images are used to
produce binary snow cover data, and the multi-pixel aggregation technique is adopted to generate the
reference FSC. The binary snow cover mapping method is used to detect the snow-covered pixels in
non-forest areas and forest areas. Although the binary snow mapping method has reliable accuracy in
non-forest areas and identifies snow pixels with snow cover fractions above 60%, it is problematic that
only NDSI or NDFSI is employed to identify a thin-patch of snow cover for images [7,13]. The improved
method based on multi-index and multi-threshold will also slightly underestimate the snow cover
fractions in forest areas affected by trees, especially in dense vegetation-covered regions [13,43].
Besides, the SNOMAP method may not correctly detect the pixel that is actually covered by snow
as a snow-covered pixel when the snow cover faction of a pixel is less than 60% [10]. At present,
accurate identification of a thin patch of snow based on binary snow cover mapping is still a very
challenging problem, which is mainly limited by the spatial resolution of the image and the algorithm
for snow detection.

6.2. Comparison of Our Developed Method and Other Spectral Mixing Analysis Models

The new endmember extraction method for FSC retrieval can more accurately estimate snow
cover fractions in pixel levels than other different approaches, as shown in the binary and fractional
metrics score validation results. The fractional metrics are better than the binary metrics because the
accuracy of the latter depends on the predetermined threshold for identifying as snow-covered or
snow-free pixels.

The accuracy of diverse methods has a very significant discrepancy in different snow cover areas
and underlying surfaces. Compared with other spectral mixture analysis models, the SSEmod has
higher accuracy for estimating snow cover fraction. In northeastern China, the accuracy of SSEmod is
improved by 2.3% and 2.9% compared to that of MODImLAB and MODSCAG (RMSE), respectively.
In northwestern China, the accuracy of MODImLAB and MODSCAG are very close to SSEmod,
and they are improved by 1.9% and 2.3%. In the Qinghai–Tibet Plateau, the accuracy of MODImLAB
and MODSCAG are behind SSEmod by 2.3% and 2.6%. MODImLAB and MODSCAG have lower recall
scores than SSEmod in forest areas, demonstrating that our method can detect snow-covered pixels
more accurately. Likewise, the accuracy of SSEmod is also higher than MODImLAB and MODSCAG
in non-forest areas, which are improved by 1.9% and 2.2% compared to other approaches.
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The method of endmember extraction directly affects the accuracy of snow cover fractions
estimation in pixels level. The SSE endmember extraction algorithm can automatically extract
endmembers from the image. It has an excellent advantage in that it can automatically determine the
numbers and types of endmembers based on the spectral discrepancy of the candidate endmembers’
pixels. Nevertheless, MODImLAB and MODSCAG have fixed numbers and types of endmembers that
cannot automatically extract from the image. MODSCAG also needs to consume a lot of computing
resources. The snow endmembers of MODSCAG use the libraries of snow reflectance of different
snow particle size calculated by the radiative transfer model. Other endmembers select from the
spectral reference library of materials measured in the ground [19]. The MODImLAB finds the best
set of endmembers that would be more robust to estimate the snow cover fraction from candidate
endmembers directly chosen from the image using the trial-and-error strategy [20]. In reality, the best
endmember extraction method should be able to extract different numbers and types of endmembers
for diverse images, which can effectively reduce the error of endmember selection caused by the spectral
discrepancy due to the season and solar radiation intensity influence in the same area. Especially in
different seasons, the spectral contrast is the most significant. The average RMSE of all of the regions
shows that the accuracy of MODSCAG (0.157) and MODImLAB (0.162) is behind to SSEmod (0.136).
Overall, the SSE endmember extraction algorithm for snow cover fraction estimation can obtain
reliable accuracy.

6.3. Why Extraction Two Different Types of Snow Endmembers in Forest Areas

Extraction of different snow endmembers can more accurately estimate the snow cover fractions
in forest areas (Figure 12). The snow endmembers should be pure snow reflectance at the pixel level.
In fact, it is a great challenge to extract pure pixels from medium-resolution images due to the influence
of vegetation, especially in dense vegetation-covered areas. We found that the snow reflectance
of a pixel in dense vegetation-covered regions is hugely lower than that of sparsely forested areas.
In addition, the snow cover fractions are most likely to be underestimated in dense vegetation-covered
areas. The canopy region presents many dark pixels affected by the atmospheric correction for MODIS
standard surface reflectance products. In sparse forest areas, the reflectance of snow-coved pixels is
significantly higher than that of dense forest-covered areas. The error of estimation of snow cover
fractions mainly comes from the influence of vegetation in this area. A trial-and-error strategy was
used to find the optimal numbers of endmembers to a robust estimation of snow cover fractions for
different images. When we extracted two snow endmembers, the mean error of all the training samples
was ultimately the smallest in forest areas. One snow endmember was extracted from the area covered
by dense vegetation, and the other was selected from the sparse vegetation-covered area.

6.4. Outlook of SSEmod

Compared with other spectral mixture analysis models for FSC retrieval, the SSE endmember
extraction method achieves reliable accuracy in different snow cover regions. Our purpose is to develop
an algorithm suitable for high accuracy FSC retrieval on a global scale. In future research, the SSEmod
algorithm can still be improved in the following aspects:

The thresholds of spectral similarity assessment should be a series of dynamic values for different
images. The SSE endmember extraction method introduces two different thresholds to evaluate
the spectral similarity. We predetermine the optimal thresholds using the trial-and-error strategy to
improve the execution efficiency of this algorithm, which can efficiently and robustly estimate the
snow cover fractions of images at different time series and spatial locations. In reality, the spectral
similarity of candidate endmembers varies with extra incident radiation energy observed by the
satellite that is influenced by the solar intensity, solar zenith angle, atmospheric condition, and plant
growth. Consequently, the best method is to select the optimal threshold according to different images.

More vital environmental information as prior knowledge should be absorbed into the endmember
extraction algorithm or pre-processing. We consider the influence of underlying surface types
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on endmember extraction because the relationship between other environmental information and
endmember extraction is very complicated, which will inevitably increase the time complexity of the
algorithm. We are exploring this strategy, which absorbs the different environmental information,
for example vegetation fraction, into the SSE endmember extraction algorithms to improve the accuracy
of snow cover fraction estimation.
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Figure 12. Validation of the effect of different numbers of snow endmembers on the accuracy of
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endmembers, respectively. (c) the different types of snow endmembers were extracted from the image.
(d) snowpack photo was taken in the field.

7. Conclusions

In this study, we developed a new method for the integration of spatial-spectral-environmental
information to automatically extract endmembers from different images. Then, combined the linear
spectral mixture analysis model to evaluate the snow cover fractions in different snow cover areas
of China. Landsat 8 surface reflectance products were utilized to generate reference FSC to validate
the accuracy of the SSEmod FSC. Simultaneously, we compared SSEmod FSC with MODImLAB,
MODSCAG, and MOD10A1 FSC. The main conclusions are as follows:

The spectral analysis model can more accurately estimate the FSC compared to the semi-empirical
linear model. The accuracy of the SSEmod, MODImLAB, and MODSCAG are significantly higher
than the MOD10A1. For the average RMSE of all regions, the SSEmod is 0.136, which is improved
by 2.1% and 2.6% compared to MODImLAB and MODSCAG, respectively. The SSEmod has a
robust performance for FSC retrieval compared to MOD10A1. The RMSE of SSEmod is improved by
5.20% in all regions. The accuracy of all approaches has significantly improved in non-forest areas.
SSEmod has the best performance for snow cover fraction estimation in northwestern China and has
poor performance in northeastern China. Overall, the SSE endmember extraction method can more
accurately evaluate the snow cover fraction in different snow cover areas of China.

Endmembers extraction from the medium-resolution image has a better advantage to estimate the
snow cover fraction compared to endmembers extraction from spectral reference libraries built with
the reflectance of materials measured in the field. In addition, the method of fixing the number and
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type of endmembers usually has lower precision than the method of not fixing it. The SSE algorithm
can automatically extract different numbers and types of endmembers from diverse images.

Introducing environmental information into the endmember extraction can remarkably improve
the accuracy of FSC retrieval. Land cover types, as crucial environmental information, are absorbed
into the SSE endmember extraction algorithm, which can initially estimate the number of endmembers
and effectively reduce the spectral redundancy of the candidate endmembers. Especially when the
spectral contrast is very low, the land cover information can effectively distinguish different materials.
The endmember extraction method, combined with multi-source information, can effectively utilize
spatial and environmental information to increase the spectral diversity of the entire image so that
endmembers can be extracted more easily from different images.

Extracting different types of snow endmembers can effectively improve the accuracy of FSC
retrieval in forest-covered areas. The SSEmod method achieves a reliable accuracy for FSC retrieval in
forest areas. The average RMSE of MODImLAB and MODSCAG is behind by 3.1% and 3.6% compared
to SSEmod in forest areas. Compared with MOD10A1, the RMSE of SSEmod is improved by 5.1% in
this area. All of the approaches slightly underestimate the snow cover fraction due to the influence
of the trees and dark pixels in forest areas. In summary, the SSEmod has reliable accuracy for FSC
retrieval compared to MODImLAB and MODSCAG in forest areas.
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