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Abstract: Understanding how, where, and when a city is expanding can inform better ways to make
our cities more resilient, sustainable, and equitable. This paper explores urban volumetry using
the Building 3D Density Index (B3DI) in 2001, 2010, 2019, and quantifies changes in the volume of
buildings and urban expansion in Luxembourg City over the last two decades. For this purpose,
we use airborne laser scanning (ALS) point cloud (2019) and geographic object-based image analysis
(GEOBIA) of aerial orthophotos (2001, 2010) to extract 3D models, footprints of buildings and calculate
the volume of individual buildings and B3DI in the frame of a 100 × 100 m grid, at the level of parcels,
districts, and city scale. Findings indicate that the B3DI has notably increased in the past 20 years from
0.77 m3/m2 (2001) to 0.9 m3/m2 (2010) to 1.09 m3/m2 (2019). Further, the increase in the volume of
buildings between 2001–2019 was +16 million m3. The general trend of changes in the cubic capacity
of buildings per resident shows a decrease from 522 m3/resident in 2001, to 460 m3/resident in 2019,
which, with the simultaneous appearance of new buildings and fast population growth, represents
the dynamic development of the city.
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1. Introduction

As the urban is extending, monitoring change over space and time is important for supporting
decisions about appropriate development practices and land resource use. Increasing demands in
urban management sectors need the coordinated use of remote sensing and a geographic information
system (GIS) for monitoring urban intensification [1]. Building density is one of the most important
indices for city monitoring [2]. Urban structure analyzes are carried out in two dimensions (2D),
where building footprints are solely considered, or in three dimensions (3D), where building heights
and footprints are considered [3]. However, in growing countries, obtaining accurate, complete, and
current building information from cadastral data is hard to come by [4,5]. Two metrics often used in the
regulations of city planning are the floor area ratio (FAR) and the building coverage ratio (BCR). FAR is
the relationship of the gross floor area of a building to the total buildable area of the lot/parcel. BCR is
calculated by dividing the total buildable area of a lot/parcel by the total area of the lot/parcel [6].

Remotely sensed imagery and GIS analysis are often used to extract building footprints.
Various classification methods based on high-resolution satellite imagery have been used to derive
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the 2D building surface area [7–10] and landscape metrics [11,12]. One method of automatic image
classification is the geographic object-based image analysis (GEOBIA) approach, which creates new
spatial information within the GIS environment [13]. An object-based classification, based on groups
of pixels, creates homogeneous and conceptually logical segments (objects) that reflect real-world
entities more realistic than geometric systems of individual pixels [14,15]. This approach approximates
algorithmic data processing to the way people perceive objects or spatial units, which makes it possible
to create objects that are more intuitive during image segmentation [13]. GEOBIA enables the use of,
besides spectral features, spatial features, such as height, shape, texture, surface, topology, relationships
between segments, etc., forming the knowledge base [16]. The development of technologies such as
LiDAR (Light Detection and Ranging) increases the usage of height models, i.e., the digital terrain
model (DTM) and the digital surface model (DSM) in the city monitoring characterizing build-up
areas. Currently, an increased number of cities offer open access to point clouds obtained from
airborne laser scanning (ALS), so the next step is to implement buildings segmentation algorithms to
generate shapes easy to process for future analysis. Therefore, recent studies are using data fusion
of high-spatial resolution satellite imagery and DSM for building detection [17–19] and applying,
for instance, neural networks [20,21].

Information about the geometry of buildings in 3D provides short- and long-term advantages for
urban analysis [22]. Several studies focused on building height estimation using remotely sensed data
via different methods, for example using building shadows [23,24], synthetic aperture radar (SAR)
imagery [25–27] or stereo images matching [28]. Yet, many satellite sensors have limited detection
capabilities; often, sensors can only estimate an average height, not including various roof parts
heights, for each building [29]. Solid theoretical background for building height estimation and
3D reconstruction with roof structures provides LiDAR data [30]. A little research has been done
for analyzing the 3D of urban structure, to develop spatial pattern metrics in landscape scale [31]
and visualization of city model [32], which also have high potential for supporting the ‘smart city’
concept [33]. One of the most comprehensive research was carried out in 2020 by Li et al. [34],
where random forest models were used to generate a map of urban 3D building structure at a
continental scale (1 km2 spatial resolution). Wang et al. (2018) investigated fusion of Landsat images
(L5, L8) and global DSMs data (SRTM, ASTER GDEM, AW3D30) to produce building height and volume
maps (GSD 30 m) to the entire England using object-based and machine learning algorithms [35].
Additionally, EMU Analytics company made a “Building Heights in England” map, based on DTM
and DSM too (open data from the Environment Agency for the UK) to explore how building density
varies across the country in the top 25 urban cores in UK. They used local and open street maps for the
building footprint and added the mean heights from nDSM to the buildings layer [36]. Krehl et al.
(2016) calculated built-up volume in German City Regions using Cartosat-1 stereo images and the
footprint of buildings [37]. Shirowzhan at al. (2019) presented 3D metrics for the assessment of an
urban form and changes: ratio of volume change bases on DSM and mass or space index as the relation
of the volume of buildings to the total volume of an assumed cube. However, to use these metrics, the
LiDAR time series are needed [38].

In the Grand Duchy of Luxembourg, the rapid pace of economic development and population
growth put pressure on the available land stock [39]. The population of Luxembourg has been
increased by over 60% in the past three decades (from 379,300 to 626,108 inhabitants in 1990 and 2020,
respectively). The Luxembourg city has experienced a population growth rate of 62% within the same
period (from 75,800 to 122,273 inhabitants) [40]. According to recent population forecasts made by
EUROSTAT, Luxembourg’s population will continue to grow, exceeding one million inhabitants by
2062. Although Luxembourg City provides public spatial data at the country level (opendata.lu),
there is a lack of built-up volumetric studies for Luxembourg. The concepts of digitization and smart
sustainable densification quoted by the State were the reason for choosing Luxembourg as a study area,
with a focus on the capital of the country. Challenges related to urban densification, and particularly the
impact on quality of life, ecological functions, and social acceptability, seem justified to be considered
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in this case. The question of buildings density is closely connected to urbanization and how cities may
grow in the future. Thus, it is important to track the city over time and across space: how does the
three-dimensional density of buildings evolve in Luxembourg City over time?

In this paper, we propose a 3D index to detect changes in building volume density in the last
20 years in Luxembourg City employing ALS LiDAR point cloud (2019) and GEOBIA approach
of archival orthophoto maps (2001, 2010). Our analysis was supported by datasets collected from
orthophotos during the last 20 years concerning demolish and newly constructed buildings. We process
ALS classified point clouds to extract the points reflecting a rooftop surface and generate 3D models
only for buildings class. A building’s volume density has been calculated for all buildings in the city
including residential and non-residential categories. The detection of archival footprints of buildings
was carried out using the object-based method. The complex integration of final datasets is unique
in research and gives us very detailed information about the urban spatiotemporal (4D) changes,
considering volume, vertical, and horizontal buildings’ changes.

Our methodology is general and can be applied to several cities when LiDAR data is available.
In this study, our key objectives are:

(1) To automate 3D building modelling and object-based footprints of buildings extraction;
(2) To define Building 3D Density Index (B3DI);
(3) To quantify changes in volume density in Luxembourg City over the last two decades

(between 2001, 2010, and 2019).

2. Materials and Methods

2.1. The Geographical Localisation of the Study Area

Luxembourg City is the capital of the Grand Duchy of Luxembourg and the country’s most
populous city (Figure 1). Luxembourg City at municipality level occupies an area of 51 km2. The city
has a complex topographic heterogeneous configuration, lying at the different levels with parks and
forested areas. The city hosts several EU institutions, and it is one of the major international financial
hubs. Changes in land use in Luxembourg in recent decades reveal a rapid urban development and
land artificialization [41,42]. According to Corine Land Cover (CLC), made available by the European
Environment Agency, urban land use in Luxembourg City covered about 35% and about 39% in 1990
and 2018, respectively. At the same time, the industrial, commercial, and transport uses increased
by 3.3% whereas agricultural areas decreased by 6.6%, and forest and semi-natural areas decreased
by 2.3%.

2.2. Datasets and Data Sources

In this study, we used ALS LiDAR point clouds from airborne mission obtained in February 2019
for Luxembourg City (mean point density was 15 points/m2 with horizontal and vertical accuracies
was to ±3 cm and ±6 cm, respectively; in the area of the Luxembourg City, the average density was
25 points/m2) and archival RGB and CIR (color-infrared) aerial orthophoto maps from 2001, 2010,
and 2019 (ground sampling distance (GSD) 50/25/20 cm), provided the Luxembourg Government’s
open data (data.public.lu). The acquired point clouds were previously classified (ASPRS standard).
The dataset was supplemented with cadastral information from 2019. However, the footprints of
buildings were not updated and contained some errors in the geometries, thus, we generated footprints
based on ALS LiDAR point cloud and added information about the use of buildings (residential or
non-residential), according to cadastral data. We also used an archival database from the Housing
Observatory of an on-going project [43,44] concerning the demolition/reconstruction (2001–2019) of
buildings for Luxembourg, to detect buildings where there was a significant height change during
the last two decades. This data was collected through the visual comparison of orthophotos every
3 years starting in 2001. To estimate the volume of buildings existing only in 2010, we acquired
a layer of “Copernicus Urban Atlas—Building Height” from the European Environment Agency,
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within the framework of the Copernicus program. The product is a 10 m resolution and provides
the height of buildings information that is generated for urban cores of capitals as part of the Urban
Atlas project. Height information is based on IRS-P5 stereo images acquired as close as possible to the
defined reference year and derived datasets like the digital surface model (DSM), the digital terrain
model (DTM), and the normalized digital surface model (nDSM). Table 1 lists the data used in the
current study.Remote Sens. 2020, 12, x FOR PEER REVIEW 4 of 24 
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Figure 1. (a) Location of the study area. Left top: location of Luxembourg in Europe, left bottom: 
Grand Duchy of Luxembourg and Luxembourg City borders; (b) Orthophotomap of Luxembourg 
City at municipality level (2019). 
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Table 1. Details of geospatial data used in the study.

Data Name Data Sources Date of Data
Acqusition Format Density/GSD/

Resolution/Accuracy

ALS LiDAR point cloud Open Data 1 7–25 February 2019 .las ~15 pts/m2

Orthophotos RGB/CIR Open Data 1
24–26 August 2001 3

.tif
0.50 m

1–2 July 2010 0.25 m
22 August 2019 0.20 m

Cadastral shapefile Open Data 1 24 February 2019 .shp -

Demolition-reconstruction
information

Housing
Observatory 2 2001–2019 .shp -

Urban Atlas—Building
Height

European
Environment

Agency
2011 .tif 10 m

Corine Land Cover (CLC)
European

Environment
Agency

2000
.shp

25 m
2012 25 m
2018 10 m

1 data.public.lu/en/datasets/; 2 Luxembourg Housing Ministry and the LISER; 3 CIR was not available.

data.public.lu/en/datasets/
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2.3. Methods

Monitoring of spatiotemporal changes in the volume of buildings in Luxembourg City in 2001,
2010 and 2019 required integration of multi-source datasets and different methods of data analysis.
This section presents a detailed description of all steps of analysis (Figure 2).
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Figure 2. Workflow of the performed analyses (ALS—airborne laser scanning; nDSM—normalized
digital surface model; LoD2—level of details 2; GEOBIA—geographic object-based image analysis;
B3DI—Building 3D Density Index).

2.3.1. Generation of 3D Models of Buildings

ALS LiDAR point clouds were used to obtain precise information about the 3D configuration of
the terrain and buildings in 2019. The processing was started by generating the DTM and the DSM
of buildings from the classified point cloud (ASPR standard): class ground and building with 0.5 m
resolution using Area Processor in FUSION software, ver. 3.70 (USDA Forest Service, Pacific Northwest
Research Station). The nDSM, which represents the relative heights of buildings, was generated based
on the difference of DSM and DTM rasters. The nDSM, generated from all classes of the point cloud,
contains objects that could disturb the height or volume calculations of buildings (e.g., tree branches
next to buildings or cranes on newly constructed buildings—example in Figure 3). For this reason,
filtered nDSM, created only from buildings class, was used in further analysis.
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Figure 3. nDSM of building, vegetation and cranes on newly constructed buildings (a); nDSM of
buildings only (b).

Buildings vectorization was performed fully-automatically to generate non-planar roof shapes of
buildings and 3D models of buildings in LoD2 (Level of Details; CityGML standard) based on classified
ALS point clouds with two classes: ground and building (Figure 4) in TerraScan (Terrasolid) and
MicroStation V8i (Bentley) software. These tools check and correct buildings’ topology. The quality of
the automatic buildings’ vectorization depends not only on the quality of the LiDAR data processing
that is done in preparation of the vectorization but also on the point density of the data. Based on
3D models, building footprints were generated and exported in the shapefile format. The minimum
mapping area units (MMU) were 20 m2, and smaller objects were not included.
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Figure 4. Classified ALS point cloud (2019); class (2) ground in pink color; class (6) buildings—in red;
and vegetation—in green color.

The nDSM of buildings (GSD 0.5 m) was shrunk to a roof polygon generated from ALS point
cloud to eliminate errors on the height model. The model of buildings was used to determine the
total volume of buildings [m3] and including the classification into residential and non-residential
uses in Luxembourg City. The information about the category of buildings from cadastral data has
been added to the shapefile of buildings in 2019. The volume of buildings was calculated for single
buildings, at the districts-level and for standardization in cells (100 × 100 m) using ArcMap software
(Esri) with the Zonal Statistics and Surface Volume tool, which calculates the volume of the region
between a surface and a reference plane.

2.3.2. Extraction of Building Footprints Using GEOBIA and Volume Calculation

The object-based approach was applied to extract all buildings in Luxembourg City with RGB
(2001, 2010) and CIR (2010) orthophoto maps using ruleset prepared in eCognition Developer 9.3
(Trimble Geospatial) software. The ruleset creation was started with generating the derivative layers
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based on spectral channels of CIR orthophotos. Using bands NIR (near-infrared) and Red, a normalized
difference vegetation index (NDVI) layer was generated for separate areas with different spectral
characteristics. In order to improve the contrast between the objects and the background and reduce
the noise, which occurs in very high-resolution images, median filter images of NIR, Red, and Green
bands were created as an additional input layer for the segmentation algorithm. This produces image
segments that are smoother and better representing the object. principal component analysis (PCA)
was performed based on orthophotos bands to generate three derivatives components for recognizing
objects in a higher-level concept of computer vision. We used PCA to reduce the dimensionality
of the data and to increase the quality of processing, transforming linearly correlated variables into
uncorrelated. On the analyzed orthophotos in the borders of the city of Luxembourg, the greatest
correlation was found between bands 2 (Red) and 3 (Green). Hence, there was a redundancy in
information between these bands, which means that the reflection coefficients are somewhat correlated
between the bands. For this reason, we used the second PCA component to improve buildings’
classification process, because in this layer, data compression was achieved, reducing data correlation.
After initial image processing, we applied a multi-resolution segmentation algorithm [45] with scale
parameter: 10, shape: 0.5, and compactness value: 0.7 in eCognition (Trimble Geospatial) software.
The input layers (NIR, Red, Green, PCA_2) were smoothed with a median filter and have been assigned
the following image layer weights respectively: 2, 2, 1, 2 according to experience from previous
work on image classification [46,47]. Using an iterative algorithm, the segments were generated,
whereby objects (starting with individual pixels) are grouped until a threshold generated representing
the upper object variance is reached. Thereafter, we executed the spectral difference segmentation,
where neighboring objects with a spectral mean threshold: 10 (maximum spectral difference) were
merged to produce the final objects and then to improve classification accuracy.

The process of classification was modular, in the first phase all segments were divided into two
temporary classes (vegetated and non-vegetated) using threshold-based approach of value in Red
band and NDVI layer. Next, parameters of brightness and mean values of NIR, Red, and Green bands
were used to capture buildings from non-vegetated areas. In addition to spectral values, geometry,
texture features, and context information was also used. Finding the optimal value of features such as
asymmetry, boundary index, object size, and relative boundary to class object features were helpful
for capturing buildings. In the final phase of the GEOBIA process, we removed single objects from
buildings class with an area smaller than 20 m2 that, during visual interpretation, did not correspond
to a building, but were rather parts of walls, terraces, or small garden gazebos. The shape of the
final objects has been smoothed using “Morphology” and “Pixel-based object resizing” algorithms
(Figure 5).
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Figure 5. Stages of the GEOBIA building segmentation and classification in eCognition software
(Trimble Geospatial); 1—input data: CIR orthophoto; 2—multiresolution segmentation; 3—spectral
difference segmentation; 4—classification: buildings class.

These procedures were performed separately for orthophotos in 2001 and 2010 with changed
parameters. In 2001, Red-Green-Blue bands were used for segmentation and classification processes.
The NDVI layer has been replaced by the green-red vegetation index (GRVI) and PCA components
were generated based on RGB orthophotos spectral bands. The MMU for all layers was the same
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(20 m2). Due to the different resolutions of orthophotos, the MMU was 80 pixels in 2001, and 320 pixels
in 2010. A simplified flowchart of the GEOBIA process was presented in Figure 6.
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The number of reference points required to generate the error matrix and estimate the accuracy
assessment was calculated using the binomial distribution [48]. The 298 test points were generated using
a random sampling pattern approach. For each class, buildings, and unclassified, the 149 segments
were placed and matched with the final classification. The quality control of the GEOBIA classification
was performed by visual analysis using reference data from high-resolution orthophotos. The overall
accuracy (OA), producer (PA), user accuracies (UA), and Kappa coefficient were generated by using an
error confusion matrix (i.e., cross-tabulation matrix between observed and predicted values) [49].

To calculate the volume of buildings in 2010, we used demolition-reconstruction shapefile [44] to
detect plots of land where buildings that have changed between 2010 and 2019. For buildings that have
not changed at all, we used nDSM (2019) to calculate the volume. Buildings that changed (for example,
buildings that have had a significant roof change or a different shape) during that time or that only
existed in 2010, the volume was calculated from the Urban Atlas layer (2011).

To estimate the volume of buildings in 2001, several GIS operations were performed on available
data. From the shapefile obtained in the GEOBIA analysis in 2001, all buildings that changed after
2001 were separated using the intersection with Housing Observatory demolition-reconstruction
data. For unchanged buildings between 2001–2019, the height was calculated using LiDAR 2019 data
(layer 1). The buildings that have changed between 2001 and 2019 were divided into two layers:
the height of the buildings changed before 2010 (layer 2) and the height of the buildings changed
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after 2010 (layer 3). For layer 2, as it was not available in our datasets, the volume of buildings was
calculated using the estimated height values. For this purpose, an additional layer was made with the
difference in height of modified buildings between 2010 and 2019 and the mean value of change in
building height during this period was calculated (based on 100 randomly selected buildings on nDSM
in 2019 and Urban Atlas—Building Height in 2011), which was 4.6 m. This value was used to estimate
the height value for 2001 buildings that have changed by subtracting the value 4.6 m from the Urban
Atlas—Building Height raster. For the second group of buildings, the height value was calculated
directly from the Urban Atlas data. Layer 4 was created for these buildings that existed only in 2001
and were demolished after without any reconstruction structures. To do so, it was necessary to remove
all buildings that existed or have changed after 2001 with a 3-step process to keep only buildings in
2001 (layer 4). Based on vector buildings layer obtained in GEOBIA process (2001), we used historical
data from demolition-reconstruction layer and clip tool (Arc Map function) to separate all buildings
unmodified (step 1), modified buildings before 2010 (step 2), and modified ones after 2010 (step 3).
The result was layer 4 containing the unique buildings demolished after 2001. The mean of buildings
heights was computed using the Urban Atlas layer.

2.3.3. Data Fusion to Calculate Building 3D Density Index

To quantify the built-up area, we proposed a spatial index for assessment of urban form in
three dimensions. The 3D index describes the density of buildings in 2001, 2010, 2019. To calculate
the quantitative spatial volume density of urban buildings, to make it closer to realistic status [50],
a volumetric descriptor of Building 3D Density Index (B3DI) was proposed, expressed as (Equation (1)):

B3DI =
VB

S
=

∑n
i=1 Vi

S
(1)

where VB demonstrates the total volume of buildings [m3], Vi volume of a single building in the area
of interest (AOI), n number of buildings, and S represents AOI land area [m2].

The B3DI was calculated at entire city and district scale (residential and non-residential
buildings separately in 21 districts according to cadaster data (Luxembourg City cadastral districts:
Basse Pétrusse, Beggen, Bonnevoie, Cessange, Clausen, Dommeldange, Eich, Gasperich, Grund, Hamm,
Hollerich, Kockelscheuer, Limpertsberg, Merl-Nord, Merl-Sud, Neudorf, Pfaffenthal, Pulvermuehl,
Rollingergrund, Ville Haute, Weimerskirch.), per plot of land in the city and in a grid with cell
dimension of 100 × 100 m, which has been adapted to Luxembourg municipal buildings. A higher
B3DI means higher 3D density of the building, and therefore a higher intensity of regional land use.

Due to the lack of archival cadastral data of building footprints in 2001 and 2010 and incomplete
data from 2019, an object algorithm and automatic 3D vectorization of LiDAR point cloud were
developed to extract buildings in the city of Luxembourg at different years.

3. Results

3.1. Buildings Detection and Accuracy Assessment

The results of 3D modeling based on ALS (2019) and object-based classification of CIR (2010) and
RGB orthophoto map (2001) are building vector objects that will serve as an input layer for further
spatial analysis. The GEOBIA classification results from 2010 show an overall accuracy (OA) of 97.3%
with the Kappa index agreement (KIA) of 0.95. The results from 2001 have an OA of 96.0% and Kappa
of 0.92. The producer accuracy (PA) and the user accuracy (UA) for buildings and unclassified class
are listed in Tables 2 and 3, based on a randomly selected individual sample reference. The objects
representing buildings in 2001 and 2010 were exported to shapefile (Figures 7 and 8).
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Table 2. Error matrix for the GEOBIA analysis in 2001 (PA: producer accuracy; UA: user accuracy).

Classification
Results/Reference Data Buildings Unclassified Sum UA (%)

Buildings 142 7 149 95.3
Unclassified 5 144 149 96.6

Sum 147 151
PA (%) 96.6 95.4

Overall Accuracy 96.0%

Table 3. Error matrix for the GEOBIA analysis in 2010.

Classification
Results/Reference Data Buildings Unclassified Sum UA (%)

Buildings 144 5 149 96.6
Unclassified 3 146 149 98.0

Sum 147 151
PA (%) 98.0 96.7

Overall Accuracy 97.3%
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Figure 8. New and reconstructed buildings between (a) 2001–2010 and (b) 2010–2019 in
Luxembourg City.

Based on ALS point cloud acquired in 2019 with a high density about 25 pts/m2, we generated
models (LoD2) which include detailed modeling of the shape of roofs (without architectural elements
such as skylights, chimneys, antennas, solar panels, etc.) with vertical projection to the ground
(Figure 9). The high density of ALS point cloud > 10 pts/m2 allows to generate accurate models
with details and roof constructions [51]. At a point cloud density of 25 pts/m2, the XY accuracy of
constructed 3D building models was approximately 20 cm. The accuracy of the roof planar surface for
the Z coordinate was approximately 10 cm and for the edges 20 cm. The roof shape of the building
has been exported to shapefile format and divided into residential and non-residential buildings
(Figure 10). A visual assessment of the cadastral shapefile was performed based on orthophoto (2019)
to check the correctness of the administrative data.
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Figure 10. Residential and non-residential buildings based on ALS point cloud (2019) and cadastral
data in Luxembourg City (a); (b) Ville Haute as a residential district (at the right top, b-1), and Gasperich
a non-residential part (at the right bottom, b-2).

3.2. Urban Volumetry and Building 3D Density Index (B3DI)

The volume calculation and 3D spatial analyses performed on the model of buildings from 2019
show that total building volume in Luxembourg City is about 56 million m3, which is 460 m3 per
resident. The mean volume of all types of buildings is 2349 m3 per building. The tallest building
(in the business center of Kirchberg) reaches 114 m in height (84,683 m3), and the largest volume of a
single building is 580 thousand m3 in Gasperich district (Cloche d’Or Shopping Center). The other
largest buildings in the city are hypermarkets in Kirchberg, European Union edifices, some banks,
ArcelorMittal company, European School, and hospitals.

The volume in 2019 was calculated separately for the residential and non-residential buildings.
The volume of all residential buildings in Luxembourg City is 30 million m3. The mean volume of a
residential building is 1460 m3 and the mean height is 12.5 m. Buildings marked as non-residential
were assigned to a sub-category: commercial, industrial, or agricultural buildings (86%) and public
buildings (14%). The total volume of non-residential buildings is 25 million m3. The mean volume
of a non-residential building is about 13 thousand m3 and the mean height is 13.5 m. The volume of
individual buildings in the city and in conversion to a 100 × 100 m grid was presented in Figures 11
and 12.
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The Building 3D Density Index (B3DI) calculated for the City in 2019 is 1.09 m3/m2. The city center
is characterized by the highest B3DI, for the Ville Haute (B3DI > 4.0), Basse Pétrusse and Hollerich
district (south of the center) the B3DI > 3.0 (Figure 13). Districts with significantly built-up constitute
57% of all density (B3DI > 1.0). The smallest Building 3D Density Index is found in districts located in
the vicinity of the city border: Kockelscheuer, Rollingergrund, Pulvermuehl, Cessange, Eich, Hamm,
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Dommeldange, and Beggen, with B3DI between 0.01–0.76. A similar distribution occurs for plots of
land. The most built-up plots with B3DI > 10.0, that occupy 5.7% of plots in the city are in the center,
especially in Ville Haute district and in business parts of Neudorf (Kirchberg), Hollerich, and Gasperich
district, where the plots of land are small (mean area of plots is 5.5 are). The level of built-up plots with
B3DI between 1.0–10.0 occurs 67.5% of cases, where the average plot size is 670 m2. The plots with the
lowest ratio (B3DI < 1.0) are larger plots (mean area is 37 are), which constitute 26.8% and are located
mainly outside the city center.
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For residential buildings, the total B3DI is 0.59 m3/m2. The residential districts that have the
highest indicator value (B3DI > 2.0) are Ville Haute and Limpertsberg (residential area near the center),
next Basse Pétrusse, Hollerich, Merl-Nord and Bonnevoie (B3DI > 1.0). Other districts have a low index
(B3DI between 0.01–0.89). For non-residential buildings, the total B3DI is 0.49 m3/m2. The highest
level of the index falls for the Grund district (B3DI = 1.72), Basse Pétrusse (1.42) in the center of the city,
and for the Neudorf district (1.36) with the business part of Kirchberg. The volume of buildings and
Building 3D Density Index (B3DI) by districts of Luxembourg City in 2019 is presented in Appendix A
(Table A1).

The volume of buildings in 2010 was 46.5 million m3 that is 512.7 m3 per resident in 2010. The total
B3DI in 2010 was 0.9 m3/m2, the highest index was in the Ville Haute and Basse Pétrusse district
(B3DI > 3.0). Districts that were significantly built-up constituted 48% of all (B3DI > 1.0). The smallest
B3DI below 0.5 was in districts: Dommeldange, Hamm, Eich, Cessange, Pulvermuehl, Rollingergrund,
and Kockelscheuer. In 2001, the volume of buildings was 40 million m3

, which is 521.9 m3 per resident.
The Building 3D Density Index in 2001 was 0.77 m3/m2. The Ville Haute district had a 3D density index
> 3.0, while 43% of the districts showed B3DI > 1. The smallest B3DI was in the same districts as in
2010, and in addition the Gasperich district, which was later significantly developed. Detailed table on
the volume of buildings and B3DI in 2001 and 2010 can be found in Appendix A (Table A2).
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3.3. Changes in City Volumetry over the Past 20 Years

The dynamics of change in building urban volumetry over the last 20 years in Luxembourg City
was analyzed by comparing the Building 3D Density Index in grid of 100 m and at the district-level
in 2001, 2010, and 2019 (Figures 14 and 15). Overall change in the past 20 years in Buildings 3D
Density Index was +0.31 m3/m2, where, between 2001 and 2010, it was +0.13 m3/m2

, and between
2010 and 2019 the change was +0.19 m3/m2. Major changes between 2001 and 2010 are observed
in the Hollerich (+0.58), Neudorf (+0.45), Basse Pétrusse (+0.39), and Weimerskirch (+0.3) districts.
Many new office buildings were built, and the public service part was expanded. At the same
time, more than half of the districts have not changed significantly (B3DI change was < 0.1). In the
following years (2010 and 2019), the major changes in the districts were observed in Gasperich (+0.62),
Limpertsberg (+0.44), Weimerskirch (+0.38), Neudorf (+0.35), and Ville Haute (+0.31) as a result of
significant urbanization. In the Pulvermuehl (industrial district) a decrease in the B3DI index (−0.11)
was observed, due to the demolition of the factory and new residential and office buildings are planned
in the future. Remarkable changes over the last 20 years have occurred in the districts: Hollerich (+0.86),
Neudorf (+0.8), Weimerskirch (+0.68), and Gasperich (+0.67) (Figure 16). The Neudorf and Kirchberg
districts now enjoy a high level of economic activity. The Kirchberg plateau saw its fields disappear
in favor of large buildings with the arrival of the European institutions and still develop financial
activities in this district. Weimerskirch is a very attractive residential area. In Gasperich, in 2017
massive construction began on a new development providing for dozens of large office buildings,
hundreds of residences and a new shopping center.
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4. Discussion

The spatiotemporal monitoring of changes in the volume of built-up areas and 3D modeling
of buildings is a very actual topic that can reshape the perception of the urban landscape and the
environment in which we live. Our research shows that the combination of up-to-date remote sensing
data, spatial data, and archival aerial orthophotos offers an accurate estimation of changes that
have occurred in urban volumetry over time and across space. Hence, our methodology allows
supplementing incomplete time series data for exploring changes in 3D urban structure using ALS
LiDAR point cloud and GEOBIA approach of the archival orthophoto maps. The concepts of the spatial
index based on 3D information contained in the ALS point clouds allow for a synthetic representation
of the spatial features such as buildings volume and 3D density. The automatic 3D modeling was
used to calculate the volume, and by combining the results with data of demolition-reconstruction in
plots of land (Housing Observatory project, LISER-Luxembourg), it was possible to use the models
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in previous years on unmodified buildings, where 3D information was not available. The proposed
ruleset of GEOBIA classification yielded high accuracies in 2010 and 2001 with a Kappa respectively of
0.95 (CIR) and 0.92 (RGB).

The 3D spatial indicator developed, concerned the change in building volume density. In the past
20 years, the volume of buildings and B3DI has increased significantly from 0.77 m3/m2 (2001) and
0.9 m3/m2 (2010) to 1.09 m3/m2 (2019). Luxembourg City in 2019 has a volume for all buildings equal to
56 million m3

, with an average height of 13 m. The B3DI index of residential buildings has a value of
0.59 m3/m2 and the B3DI index of non-residential buildings has an index of 0.49 m3/m2, which means
that the volume of residential buildings still accounts for a larger share at the entire city scale.

The general trend of changes in the volume of buildings per resident shows a decrease from
522 m3/resident in 2001 and513 m3/resident in 2010 to 460 m3/resident in 2019. The most frequently
observed situation concerned the demolition of small houses and erecting larger apartments in this
place. At the same time, the population increases, and newly built apartments are smaller, but there are
more built within a year. In comparison to the continental scale mapping and analysis of 3D building
structure with 1 km2 resolution [34], the building volume per resident in Luxembourg City is higher
than the average in Europe (404.6 m3) and China (302.3 m3) but it is still lower than in the US (565.4 m3).
This value significantly equates to a higher land take and land consumption per person due to the big
share of non-residential buildings in the Luxembourg City.

Previous research on 3D cities reported the need to measure similar indicators in many
cities. A method with mean height of buildings based on nDSM was used by EMU Analytics
to calculate buildings density in 25 cities in United Kingdom, where average of density index indicates
0.68 m3/m2 [36]. Krehl et al. (2016) estimated the built-up volume for the selected cities in Germany, the
index was adopted for Cologne, Munich, Frankfurt, and Stuttgart respectively: 1.86 m3/m2, 1.76 m3/m2,
1.27 m3/m2, and 1.20 m3/m2 [37]. Santos et al. (2013) characterized urban volumetry in the city of
Lisbon (Portugal) [52]. Built volume was over 204 million m3, which indicates a much higher index
(B3DI = 2.4) than in other European cities. The results show that in Luxembourg City the B3DI index
and volume of buildings per resident are higher than most of the Cities in the UK and lower than
German Cities (Figures 17 and 18). The high value of B3DI for Luxembourg City compared to the UK
cities (city borders at municipality level) can be explained by the fact that Luxembourg is a relatively
small-sized city (51 km2). However, the separation of residential and non-residential buildings in other
European cities is needed for better comparability.

Previous work [53,54], performed the detection of buildings using a similar GEOBIA approach,
showed comparable accuracy to our results (KIA: 0.95 and 0.92). Tiwari et al. (2020) developed an
object-based algorithm on orthophoto (GSD 0.25 m) to extract all buildings in a small city in Israel with
a Kappa index of agreement of 0.95 (UA and PA of the building classes are 99.38% and 98.03%) [53].
Our methodology is not limited to aerial orthophotos, very high resolution (VHR) satellite imagery is
often used for building detection and offers high flexibility when it comes to data available. Fan et al.
(2016) based on Quickbird-2 image satellites (GSD 0.61 m) extracted information of buildings in an
urban area with an overall accuracy of 87% and Kappa value of 0.87 [54]. Warth et al. (2020) predicted
socio-economic indicators for urban planning using WorldView-1 (GSD 0.5 m), PlanetScope (3.0 m)
satellite imagery, and collected ground-truthing data [55]. The growing number of the upcoming new
Earth Observation missions and accompanying increase in VHRS imagery (e.g., Pléiades Neo [56] and
WorldView Legion [57]) ensure an average daily revisit time and thus flexibility in terms of available
data. Therefore, our approach does not have to depend on the available open data, if we consider the
satellite image fee, we can get data from a specific day. Additionally, 3D data is also becoming more
common and open access. The wall-to wall LiDAR ALS point clouds coverage is available for many
European countries (e.g., in Denmark, Estonia, Finland, Latvia, Luxembourg, the Netherlands, Poland,
Slovenia, Spain, Sweden, Switzerland, UK), but time series analysis is still not always possible due to
some gaps in the data from several years.
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Our study has some limitations. First, lack of ALS LiDAR data for the three years 2001, 2010,
and 2019. For this reason, only in 2019, we were able to carry out 3D modeling of buildings.
For detecting changes in the last 20 years, we used available data with various resolutions, in 2010
CIR and RGB orthophotos with 0.25 m, and in 2001 only RGB with 0.5 m spatial resolution, but this
did not significantly affect the overall accuracy (the difference was 1.3%). To obtain the height of the
buildings for the archival data, the Urban Atlas Buildings Height layer (2011) was used to compute the
volume of the buildings that had been modified and could cause a significant demolition-restoration
error. For buildings that did not change between 2001–2019 and 2010–2019, LiDAR data was used to
eliminate errors caused by lower data resolution. The comparison of the results (volume of buildings
in 2001, 2010, 2019) obtained by data fusion was possible by using the historical data from the
demolition-reconstruction layers, which contained information about buildings that had changed
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(with details of the date) or buildings which never changed. This allowed the use of LiDAR data
wherever no changes were recorded. In 2001, 90.9% of the building volume could be calculated with
LiDAR, as no changes were recorded for these buildings between 2001 and 2019. In 2010, as much as
94.5% of the volume of buildings could be calculated with LiDAR, as there was no change between
2010 and 2019 in buildings. Therefore, due to the availability of the demolition-reconstruction layer,
the error in comparing the building volumes in 2001, 2010, and 2019 does not affect the results to a
large extent. Second, we were unable to assess how index changes for residential buildings because in
2001 and 2010 no cadastral information of this type was available.

Future work will simulate urban densification and assess its socioeconomic, population,
environmental impacts, and will monitor urban greenery and its relation to built-up areas. The debate
about the urban growth of Luxembourg for the coming future should be open as soon as possible. As the
different strategies elaborated 20 years ago concerning polycentric concentration or deconcentrated
concentration [58] are not efficient enough and should be revised. Even if the third industrial revolution
is coming quickly, it does not resolve all problems of a growing population, urban development,
and densification, or big pressure on the land. Luxembourg City is still maintaining its principal role in
the country and attracting people to live in the capital. The discussion surrounding the distribution of
densities across the urban area can certainly be one of the most controversial issues in urban planning.
The measure of the current situation and geovisualization of 3D changes over years assists the analysis
of cities and can help urban planners for smart solutions in urban form for future developments.
From this perspective, defining volumetric ratios that explain the dynamics of urban areas can bring
more clarity to the city’s evolution debate and management of urban space.

5. Conclusions

The methodology presented in is paper that employed ALS LiDAR point cloud and archival
aerial orthophotos allows quantifying changes in urban volumetry over time and space. Further,
our methodology can provide monitoring based on buildings 3D density index as an effective tool that
can be used to characterize the built-up configurations in our cities. Due to the increasingly widespread
use of LiDAR technologies, point clouds present valuable spatial information about buildings in a clear
and synthetic way, thus being a tool for extracting 3D features difficult to determine by traditional
methods. Our findings demonstrate the value of ALS LiDAR data for monitoring effectively the city
volume density at some specific dates. Despite airborne laser scanning data is widely recognized as a
highly precise data source, time-series data are not available in many cities to detect temporal changes.
Therefore, we proposed the use of GEOBIA classification based on archival orthophotos. The ruleset
produced for this study to extract buildings can be used in other cities based on CIR aerial photos or
VHR satellite images supported by other technology like SLS—satellite laser scanning (e.g., GEDI,
ICESat-2 missions NASA) or radar technology (e.g., TerraSAR-X; IceEye-1).

We believe that this paper provides an important methodological approach for urban planners
and city authorities. Tracking changes in city volume and 3D index are critical for urban policies
that concern equality in the distribution of benefits, e.g., equal access to green spaces and amenities,
for city residents. Due to the increasing availability of VHR satellite images and the potential of
using unmanned aerial vehicles (UAVs), or the rapidly evolving high-altitude platform station (HAPS)
systems for cost-effective mapping of urban areas in 2D/3D, it could ensure constant access to quickly
obtain data in an area of interest.
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Appendix A

Table A1. Volume of buildings and Building 3D Density Index (B3DI) for residential (R) and
non-residential (NR) buildings in Luxembourg City in 2019.

Districts Area Volume
All

B3DI
All

Volume
R

B3DI
R

Volume
NR

B3DI
NR

Name [m2] [m3] [m3/m2] [m3] [m3/m2] [m3] [m3/m2]

Ville Haute 1,058,465.54 4,241,563.93 4.01 2,965,917.06 2.80 1,275,646.87 1.21
Basse Pétruss 453,111.05 1,508,814.68 3.33 863,309.87 1.91 645,504.81 1.42

Hollerich 1,800,838.97 5,560,073.12 3.09 3,232,718.75 1.80 2,327,354.37 1.29
Limpertsberg 1,176,055.91 3,073,585.62 2.61 2,356,861.75 2.00 716,723.87 0.61

Grund 155,076.80 400,620.12 2.58 134,047.56 0.86 266,572.56 1.72
Neudorf 3,220,259.14 5,923,257.37 1.84 1,542,721.43 0.48 4,380,535.94 1.36

Merl-Nord 2,890,428.02 4,767,710.43 1.65 3,299,263.37 1.14 1,468,447.06 0.51
Bonnevoie 3,546,872.29 5,697,965.93 1.61 3,823,082.43 1.08 1,874,883.50 0.53

Weimerskirch 3,522,342.37 5,323,061.25 1.51 1,680,753.50 0.48 3,642,307.75 1.03
Pfaffenthal 175,462.57 242,085.75 1.38 156,145.56 0.89 85,940.19 0.49
Gasperich 3,449,516.40 4,006,822.43 1.16 635,693.43 0.18 3,371,129.00 0.98
Merl-Sud 4,011,460.83 4,069,067.81 1.01 2,743,936.25 0.68 1,325,131.56 0.33
Clausen 601,469.02 571,229.93 0.95 249,419.43 0.41 321,810.50 0.54
Beggen 1,133,763.20 867,089.81 0.76 718,394.62 0.63 148,695.19 0.13

Dommeldange 2,926,149.86 1,693,941.06 0.58 650,902.87 0.22 1,043,038.19 0.36
Hamm 5,775,969.44 2,974,906.93 0.52 2,233,381.43 0.39 741,525.50 0.13

Eich 2,381,337.22 1,090,239.43 0.46 853,657.81 0.36 236,581.62 0.10
Cessange 4,934,991.40 2,149,884.18 0.44 1,154,016.31 0.23 995,867.87 0.20

Pulvermuehl 302,362.01 105,390.06 0.35 75,326.25 0.25 30,063.81 0.10
Rollingergrund 7,790,154.86 1,974,078.50 0.25 1,280,569.56 0.16 693,508.94 0.09
Kockelscheuer 428,491.16 3732.25 0.01 3720.18 0.01 12.07 0.00

Luxembourg City 51,734,578.06 56,245,120.59 1.09 30,653,839.42 0.59 25,591,281.17 0.49

Table A2. Volume of buildings and Building 3D Density Index (B3DI) in Luxembourg City in 2001
and 2010.

Districts Area Volume
Buildings 2001 B3DI 2001 Volume

Buildings 2010 B3DI 2010

Name [m2] [m3] [m3/m2] [m3] [m3/m2]

Ville Haute 1,058,465.54 3,900,303.13 3.68 3,910,583.68 3.69
Basse Pétrusse 453,111.05 1,267,927.25 2.80 1,443,160.43 3.19

Hollerich 1,800,838.97 4,012,451.86 2.23 5,054,810.87 2.81
Limpertsberg 1,176,055.91 2,425,831.81 2.06 2,553,438.43 2.17

Grund 155,076.80 350,627.13 2.26 380,842.43 2.46
Neudorf 3,220,259.14 3,340,875.63 1.04 4,780,859.81 1.48

Merl-Nord 2,890,428.02 3,831,744.44 1.33 4,007,072.43 1.39
Bonnevoie 3,546,872.29 4,961,248.69 1.40 5,236,639.31 1.48

Weimerskirch 3,522,342.37 2,937,256.44 0.83 3,982,745.5 1.13
Pfaffenthal 175,462.57 214,528.875 1.22 217,273.93 1.24
Gasperich 3,449,516.40 1,694,743.56 0.49 1,856,934.37 0.54
Merl-Sud 4,011,460.83 3,210,661.38 0.80 3,423,023.68 0.85
Clausen 601,469.02 399,212.13 0.66 459,198.93 0.76
Beggen 1,133,763.20 626,895.06 0.55 755,686.25 0.67

Dommeldange 2,926,149.86 1,323,058 0.45 1,420,293.18 0.49
Hamm 5,775,969.44 1,849,161.06 0.32 2,550,945.12 0.44

Eich 2,381,337.22 722,590.13 0.30 791,180.93 0.33
Cessange 4,934,991.40 1,159,693 0.23 1,820,010 0.37

Pulvermuehl 302,362.01 126,943 0.42 138,498.81 0.46
Rollingergrund 7,790,154.86 1,668,265.25 0.21 1,765,808.25 0.23
Kockelscheuer 428,491.16 3567.5 0.01 3597.25 0.01

Luxembourg City 51,734,578.06 40,027,585.30 0.77 46,552,603.59 0.90
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47. Wężyk, P.; Hawryło, P.; Janus, B.; Weidenbach, M.; Szostak, M. Forest cover changes in Gorce NP (Poland)
using photointerpretation of analogue photographs and GEOBIA of orthophotos and nDSM based on
image-matching based approach. Eur. J. Remote Sens. 2018, 51, 501–510. [CrossRef]

48. Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data Principles and Practices, 2nd ed.;
CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2009.

49. Foody, G.M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 2002, 80, 185–201.
[CrossRef]

50. Chen, X.; Yu, Y.; Zhu, P. Study from Building Density to Building 3D Density. In Proceedings of the IEEE
International Conference on Management and Service Science, Wuhan, China, 20–22 September 2009; pp. 1–5.
[CrossRef]

51. TerraScan User’s Guide. 2016. Available online: https://www.terrasolid.com/download/tscan.pdf (accessed on
12 March 2020).

52. Santos, T.; Rodrigues, A.M.; Tenedório, J.A. Characterizing urban volumetry using LiDAR data. Int. Arch.
Photogramm. Remote Sens. Spat. Inf. Sci. 2013, 40, 71–75. [CrossRef]

53. Tiwari, A.; Meir, I.A.; Karnieli, A. Object-based image procedures for assessing the solar energy photovoltaic
potential of heterogeneous rooftops using airborne LiDAR and orthophoto. Remote Sens. 2020, 12, 223.
[CrossRef]

54. Fan, S.; Liu, Z.; Hu, Y. Extraction of Building Information Using Geographic Object-Based Image Analysis.
In Proceedings of the 4th International Workshop on Earth Observation and Remote Sensing Applications
(EORSA), Guangzhou, China, 4–6 July 2016. [CrossRef]

55. Warth, G.; Braun, A.; Assmann, O.; Fleckenstein, K.; Hochschild, V. Prediction of socio-economic indicators
for urban planning using VHR satellite imagery and spatial analysis. Remote Sens. 2020, 12, 1730. [CrossRef]

56. Airbus Defence and Space. Pléiades Neo. Trusted Intelligence. Available online: https://www.intelligence-
airbusds.com/en/8671-pleiades-neo-trusted-intelligence (accessed on 31 July 2020).

57. Maxar. WorldView Legion. Our Next-Generation Constellation. Available online: https://www.maxar.com/

splash/worldview-legion (accessed on 31 July 2020).
58. Programme Directeur d’Amenagement du Territoire. 2003. Available online: https://amenagement-territoire.

public.lu/damassets/fr/publications/documents/programme_directeur/programme_directeur_2003_fr_
partie_a_hr.pdf (accessed on 15 May 2020).

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1080/22797254.2018.1455158
http://dx.doi.org/10.1016/S0034-4257(01)00295-4
http://dx.doi.org/10.1109/icmss.2009.5302351
https://www.terrasolid.com/download/tscan.pdf
http://dx.doi.org/10.5194/isprsarchives-XL-4-W1-71-2013
http://dx.doi.org/10.3390/rs12020223
http://dx.doi.org/10.1109/eorsa.2016.7552783
http://dx.doi.org/10.3390/rs12111730
https://www.intelligence-airbusds.com/en/8671-pleiades-neo-trusted-intelligence
https://www.intelligence-airbusds.com/en/8671-pleiades-neo-trusted-intelligence
https://www.maxar.com/splash/worldview-legion
https://www.maxar.com/splash/worldview-legion
https://amenagement-territoire.public.lu/damassets/fr/publications/documents/programme_directeur/programme_directeur_2003_fr_partie_a_hr.pdf
https://amenagement-territoire.public.lu/damassets/fr/publications/documents/programme_directeur/programme_directeur_2003_fr_partie_a_hr.pdf
https://amenagement-territoire.public.lu/damassets/fr/publications/documents/programme_directeur/programme_directeur_2003_fr_partie_a_hr.pdf
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	The Geographical Localisation of the Study Area 
	Datasets and Data Sources 
	Methods 
	Generation of 3D Models of Buildings 
	Extraction of Building Footprints Using GEOBIA and Volume Calculation 
	Data Fusion to Calculate Building 3D Density Index 


	Results 
	Buildings Detection and Accuracy Assessment 
	Urban Volumetry and Building 3D Density Index (B3DI) 
	Changes in City Volumetry over the Past 20 Years 

	Discussion 
	Conclusions 
	
	References

