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Abstract: An algorithm for retrieving aerosol parameters by taking into account the uncertainty
in aerosol model selection is applied to the retrieval of aerosol optical thickness and aerosol
layer height from synthetic measurements from the EPIC sensor onboard the Deep Space Climate
Observatory. The synthetic measurements are generated using aerosol models derived from AERONET
measurements at different sites, while other commonly used aerosol models, such as OPAC, GOCART,
OMI, and MODIS databases are used in the retrieval. The numerical analysis is focused on the
estimation of retrieval errors when the true aerosol model is unknown. We found that the best aerosol
model is the one with a value of the asymmetry parameter and an angular variation of the phase
function around the viewing direction that is close to the values corresponding to the reference
aerosol model.

Keywords: model selection; retrieval algorithm; DSCOVR/EPIC

1. Introduction

The retrieval of aerosol and cloud optical thickness, as well as aerosol layer height and cloud
top height, requires the selection of a model that describes their microphysical properties. If there is
insufficient information for an appropriate microphysical model selection, the solution accuracy can
be improved if this model uncertainty is taken into account and appropriately quantified.

In Ref. [1], we presented a retrieval algorithm that takes into account uncertainty in model
selection. The algorithm is based on (i) the iteratively regularized Gauss–Newton method to compute
the solution for each model, (ii) a linearization of the forward model around the solution, and (iii) an
extension of maximum marginal likelihood estimation and generalized cross-validation methods to
model selection and data error variance estimation. Essentially, the algorithm includes four selection
models corresponding to (i) the two parameter choice methods used (maximum marginal likelihood
estimation and generalized cross-validation), and (ii) the two settings in which the relative evidence
is treated (stochastic and deterministic). In practice, the algorithm can be used for the retrieval of (i)
aerosol parameters from different spectral instruments, and (ii) cloud parameters, when the selection
of the cloud type and/or the effective radius may play an important role.

The above algorithm was applied to the retrieval of aerosol optical thickness and layer height
from synthetic measurements corresponding to the EPIC instrument onboard the Deep Space Climate
Observatory [2]. Specifically, Channels 7 and 8 in the Oxygen B-band at 680 and 687.75 nm, respectively,
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and Channels 9 and 10 in the Oxygen A-band at 764 and 779.5 nm, respectively, were used for this
purpose. The simulations utilize aerosol models implemented in the MODIS aerosol algorithm over
land [3]; the surface albedo is either assumed to be known or included in the retrieval.

In this paper, we utilize the methodology developed in Ref. [1] to perform retrievals of synthetic
measurements from the EPIC instrument. For this purpose,

1. a set of aerosol models derived from Aerosol Robotic Network (AERONET) measurements at
different sites [4,5] is used as reference, under the simplified assumption that the surface albedo
is known,

2. the OPAC [6], GOCART [7], OMI [8], and MODIS [3] aerosol models are employed in the retrieval.

The numerical analysis is devoted to the estimation of errors in the retrieval of aerosol optical
thickness and layer height, when the true aerosol model is unknown.

The paper is organized as follows. In Section 2, we recapitulate the main features of the aerosol
retrieval algorithm. In Section 3, we describe the aerosol models used in this study. We present the
results of our numerical analysis in Section 4.

2. Algorithm Description

For Nm microphysical aerosol models, we consider the scaled white-noise data model

yδ = Fm(x) + δm, (1)

where Fm(x) ∈ RM is the forward model corresponding to the model m, m = 1, . . . , Nm, yδ ∈ RM

the measurement vector or the noisy data vector, and δm ∈ RM the data error vector summing the
contributions of the measurement and model error vectors.

In a stochastic setting, δm and x are random vectors, and Equation (1) is solved by means of
a Bayesian approach. Specifically, for x ∼ N(xa, Cx = σ2

m(αLTL)−1) and δm ∼ N(0, Cδm = σ2
mIM),

the maximum a posteriori estimator x̂δ
mα is computed as

x̂δ
mα = arg min

x
Vα(x | yδ, m), (2)

where
Vα(x | yδ, m) =

1
σ2

m

[∥∥yδ − Fm(x)
∥∥2

+ α
∥∥L(x− xa)

∥∥2
]

is the a posteriori potential, the notation N(xmean, Cx) stands for a normal distribution with mean xmean

and covariance matrix Cx, xa is the a priori state vector, α = σ2
m/σ2

x is the regularization parameter, i.e.,
the ratio of data error variance σ2

m and a priori state variance σ2
x , and L is the regularization matrix.

In a deterministic setting, δm is characterized by the noise level ∆m (defined as an upper bound
for δm i.e., ||δm|| ≤ ∆m), x is a deterministic vector, and we are faced with the solution of the nonlinear
equation yδ = Fm(x). In the framework of Tikhonov regularization, a regularized solution xδ

mα to the
nonlinear equation yδ = Fm(x) minimizes the Tikhonov function Fmα(x) = σ2

mVα(x | yδ, m); hence,
the maximum a posteriori estimate coincides with the Tikhonov solution, i.e., x̂δ

mα = xδ
mα. Since the

computation of the regularized solution xδ
mα in the framework of the method of Tikhonov regularization

requires knowledge of the optimal value of the regularization parameter α̂, the nonlinear equation
yδ = Fm(x) is solved by means of the iteratively regularized Gauss–Newton method. In addition to
the optimal value of the regularization parameter α̂, this method also provides the corresponding
regularized solution xδ

mα̂.
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The key quantity in Bayesian model selection is the relative evidence p(m | yδ), also known as the
a posteriori probability of the model m given the measurement yδ. In terms of this quantity, the mean
and maximum solution estimates are defined by

x̂δ
mean =

Nm

∑
m=1

xδ
mα̂ p(m | yδ), (3)

and
x̂δ

max = xδ
m? α̂, m? = arg max

m
p(m | yδ), (4)

respectively. The relative evidence p(m | yδ) can be computed in a stochastic or a deterministic setting.

1. In a stochastic setting, p(m | yδ) is calculated using the relation

p(m | yδ) =
p(yδ | m)

∑Nm
m=1 p(yδ | m)

,

where p(yδ | m) is the marginal likelihood density. By assuming a linearization of the forward
model around the solution, the marginal likelihood density p(yδ | m) can be computed
analytically provided that the data error variance σ2

m is known. Estimates for σ2
m can be

obtained in the framework of maximum marginal likelihood estimation [9–11] and generalized
cross-validation methods [12,13].

2. In a deterministic setting, p(m | yδ) is regarded as a merit function characterizing the solution
xδ

mα̂. More precisely, p(m | yδ) is defined in terms of the marginal likelihood function or the
generalized cross-validation function. In the latter case, we have

p(m | yδ) =
1/υ(m)

∑Nm
m=1 1/υ(m)

. (5)

where

υ(m) =
||rδ

mα̂||
2

[trace(I− Âmα̂)]2
, (6)

is the generalized cross-validation function, rδ
mα̂ = yδ − Fm(xδ

mα̂) is the nonlinear residual vector,

Âmα̂ = Kmα̂K†
mα̂ is the influence matrix, Kmα̂ is the Jacobian matrix, and K†

mα̂ is the generalized
inverse at the solution xδ

mα̂.

The numerical simulations performed in Ref. [1] show that

1. the differences between the results corresponding to the stochastic and deterministic settings are
not significant, and

2. the maximum solution estimate x̂δ
max is completely unrealistic.

In the present study, we assume a deterministic setting and compute the mean solution estimate
x̂δ

mean and the maximum solution estimate x̂δ
max by means of Equations (3) and (4), respectively, and the

relative evidence p(m | yδ) according to Equations (5) and (6).

3. Aerosol Models

To describe the wide range of possible compositions, the aerosol particles are modeled as
components, each of them representing an internal mixture of all chemical substances that have a
similar origin. The size distribution of an aerosol component is assumed to be log-normal, described by
the number size distribution

dN(r)
d ln r

=
N0√
2πσ

exp
[
− (ln r− ln rmod)

2

2σ2

]
, (7)
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where rmod is the modal or median radius of the number size distribution, σ is the standard
deviation, and

N0 =
∫ ∞

0

dN(r)
d ln r

d ln r (8)

is the total number of particles (per cross-section of atmospheric column). Alternatively, the log-normal
model can be described by the volume size distribution

dV(r)
d ln r

=
V0√
2πσ

exp
[
− (ln r− ln rv)2

2σ2

]
, (9)

where
rv = rmod exp(−3σ2) (10)

is the median radius of the volume size distribution and

V0 =
∫ ∞

0

4πr3

3
dN(r)
d ln r

d ln r = N0
4πr3

mod
3

exp(4.5σ2) (11)

is the volume of particles (per cross section of atmospheric column). Thus, the size distribution of an
aerosol component is characterized by (i) the modal radius rmod, (ii) the standard deviation σ, and (iii)
the total number of particles N0. Alternatively, in addition to the standard deviation σ, the median
radius of the volume size distribution rv and the volume of particles V0 can be used to characterize the
size distribution. When these parameters together with the wavelength-dependent refractive index
maer are specified, the scattering characteristics of an aerosol component, i.e.,

1. the size averaged extinction and scattering cross sections Cext and Csct,
2. the single scattering albedo ω, and
3. the coefficients an of the expansion of the size averaged phase function P(Θ) in terms of Legendre

polynomials Pn(cos Θ), i.e.
P(Θ) = ∑

n≥0
anPn(cos Θ)

can be computed using an electromagnetic scattering model. In particular, for spherical particles,
the size averaged quantities are calculated using the formulas

Cext =
∫ rmax

rmin

Cext(r)p(r)dr, (12)

Csct =
∫ rmax

rmin

Csct(r)p(r)dr, (13)

ω =
Csct

Cext
, (14)

an =
∫ rmax

rmin

an(r)p(r)dr, n ≥ 0, (15)

where p(r) is the probability density function associated with the number size distribution,

p(r) =
1

N0

dN(r)
dr

, (16)

for which we have

p(r)dr =
1

N0
dN(r) =

1
N0

dN(r)
d ln r

d ln r, (17)

Cext(r), Csct(r), and an(r) correspond to a spherical particle of radius r, and rmin and rmax are the lower
and upper limits of the size distribution.
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The aerosol components can be externally mixed to form aerosol models (classes). External mixture
means that there is no physical or chemical interaction between particles of different components. If an
aerosol model m consists of N aerosol components, and Cexti, Cscti, and ani correspond to the ith aerosol
component, the extinction cross section Cextm, the scattering cross section Csctm, the single scattering
albedo ωm, and the expansion coefficients amn of the aerosol model are computed using the external
mixing formulas

Cextm =
N

∑
i=1

wiCexti, (18)

Csctm =
N

∑
i=1

wiCscti, (19)

ωm =
Csctm

Cextm
, (20)

Csctmamn =
N

∑
i=1

wiCsctiani, n ≥ 0, (21)

where the weight

wi =
N0i

∑N
i=1 N0i

(22)

is the number mixing ratio, and N0i is the total number of particles of the ith aerosol component.
For the extinction coefficient, we have the computational formula

σextm = n0Cextm, (23)

where

n0 =
∑N

i=1 N0i

V
=

N

∑
i=1

N0i
V

=
N

∑
i=1

n0i, (24)

is the total number density of the aerosol particles, and n0i is the number density of the ith aerosol
component. Note that relation (22) can be expressed in terms of n0i as

wi =
N0i

∑N
i=1 N0i

=
n0i
n0

. (25)

3.1. Aerosol Model Sets

This section briefly describes the aerosol model sets used in this study. The parameters of the
particle size distributions (i.e., modal radii and standard deviations) and the refractive index data for
each set are summarized in Tables A1–A5 in Appendix A.

3.1.1. Set 1

The first model set includes the aerosol components from the Optical Properties of Aerosols and
Clouds (OPAC) database [6]. These are

1. the water-insoluble part of aerosol particles, consisting mostly of soil particles with a certain
amount of organic material;

2. the water-soluble part of aerosols, originating from gas to particle conversion and consisting of
various kinds of sulfates, nitrates, and organic, water-soluble substances;

3. the soot component, describing the absorbing black carbon (note that carbon is not soluble in
water and therefore, the particles are assumed not to grow with increasing relative humidity);
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4. sea-salt (accumulated and coarse) particles, consisting of the various kinds of salt contained
in seawater;

5. mineral aerosol (accumulated and coarse) or desert dust, consisting of a mixture of quartz and
clay minerals;

6. mineral transported, describing the desert dust that is transported over long distances with a
reduced amount of large particles; and

7. the sulfate component, describing the amount of sulfate found in the Antarctic aerosol (also used
as the stratospheric background aerosol).

Assuming that the aerosol particles are spherical, we generate a database using Mie scattering
theory. Essentially, the database gives the values of Cext, Csct, ω, and an, for (i) each aerosol component,
(ii) a set of wavelengths (61 values in the range 0.250µm− 40µm), and (iii) a set of relative humidities
(8 values: 0.00, 0.50, 0.70, 0.80, 0.90, 0.95, 0.98, and 0.99). The size distributions are between the radius
limits rmin = 0.005µm and rmax = 10.0µm. Note that mineral and water-insoluble aerosols have no
relative humidity induced swelling.

The aerosol components can be combined to form aerosol models, where for each of them,
the number of components N and the corresponding number mixing ratios wi have to be specified.
In the present application, we use the 10 aerosol models proposed in the OPAC database [6].

3.1.2. Set 2

The second model set includes the following aerosol components:

1. black carbon,
2. dust,
3. organic carbon,
4. sea salt, and
5. sulfate.

As in the previous case, we generate a database that gives the values of Cext, Csct, ω, and an,
for (i) each aerosol component, (ii) a set of wavelengths (61 values in the range 0.250µm–40µm),
and (iii) a set of relative humidities (36 values: 0.00, 0.05, . . . , 0.80, 0.81, 0.82, . . . , 0.99). The aerosol
single scattering properties are calculated based on the formalism presented in Ref. [14]. The following
peculiarities of the computational process can be pointed out.

1. A log-normal distribution with radius between 0.005µm and 0.3µm is assumed for black carbon,
organic carbon and sulfate, with size parameters as in Table 2 of Ref. [14].

2. The optical properties of dust and sea salt are computed across each of the five size bins used in
the simulation. For dust, a constant number size distribution across the bin is assumed, while for
sea salt, a functional form of the particle size distribution taken from Ref. [15] is considered.
The dry size bins for dust are between the following radius limits (in µm): 0.1–1, 1–1.6, 1.6–3, 3–6,
6–10. For sea salt, the limits are (in µm): 0.03–0.1, 0.1–0.5, 0.5–1.5, 1.5–5, 5–10.

3. Dust has no relative humidity induced swelling. Black carbon, organic carbon, sea salt and
sulfate have relative humidity dependent growth factors (ratio of wet to dry particle diameter).
The growth factors for organic carbon and sulfate are taken from the OPAC database [6],
with modifications as in Ref. [14]. The empirical relationship of Gerber [16] is used for obtaining
growth factors for sea salt.

4. The spectral complex refractive index is taken from the OPAC database. The scattering characteristics
are computed using the Mie theory, except for dust, where a precomputed database for ellipsoidal
particles is considered [17].

For this application, we use the 10 aerosol models (mixtures of sulfate, dust, sea salt, black carbon,
and organic carbon) obtained by a cluster analysis using the Goddard Chemistry Aerosol Radiation
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and Transport (GOCART) model [7]. This uses data from global circulation or chemical transport
models employing the sensitivity of multi-angle imaging to natural mixtures of aerosols. Multi-angle
imaging is sensitive to aerosol optical depth and aerosol type and this principle is employed here.

3.1.3. Set 3

The third set comprises the aerosol models included in the OMI multiwavelength aerosol retrieval
algorithm [8]. There are five major aerosol types, where each type consists of several aerosol models
depending on their optical properties and particle size distribution. On a global scale, four main
tropospheric aerosol types can be distinguished: (i) urban-industrial aerosols originating from fossil
fuel combustion, (ii) carbonaceous aerosols generated from natural and anthropogenic biomass
burning, (iii) desert dust aerosols, injected into the atmosphere by winds, and (iv) naturally produced
oceanic aerosols. After major volcanic eruptions, the aerosol optical thickness of the stratosphere can
be significantly increased for several years. For this reason, a volcanic aerosol type is also included.

3.1.4. Set 4

The fourth set comprises the aerosol models included in the MODIS aerosol retrieval algorithm [3].
These are derived by performing a cluster analysis on the entire time series of almucantur aerosol
properties from global AERONET sites. There are three fine-dominated (spherical) and one
coarse-dominated (spheroid) aerosol optical models that represent the range of likely and observable
global aerosol conditions. The fine-dominated aerosol models differ mainly in their values of
single scattering albedo ωm, i.e., moderately absorbing (ωm = 0.90), absorbing (ωm = 0.85),
and non-absorbing (ωm = 0.95). Each aerosol model is bilognormal, with dynamic (function of optical
depth) size parameters (radius, standard deviation, volume distribution) and complex refractive index.

3.1.5. Set 5

The fifth set includes the aerosol models derived from several AERONET sites [5]. At the
selected aerosol sites, with well-known meteorological and environmental conditions, the following
aerosol models are identified: (i) urban-industrial from fossil fuel combustion in populated industrial
regions, (ii) biomass burning produced by forest and grassland fires, (iii) desert dust blown into the
atmosphere by wind, and (iv) aerosol of marine origin. In addition, a mixed aerosol model over the
Maldives is included. The parameters of each aerosol model have dynamic variability as a function of
optical thickness.

4. Numerical Simulations

In this section, we apply the algorithm to the retrieval of aerosol optical thickness and layer
height by generating synthetic measurements corresponding to the EPIC instrument. The retrieval is
performed under the assumption that the surface albedo is known.

The state vector x comprises the aerosol optical thickness τ and layer height H, i.e., x = [τ, H]T .
As in Ref. [1], the true aerosol optical thicknesses to be retrieved are τt = 0.25, 0.50, 0.75, 1.0, 1.25,
and 1.5, while for the true aerosol layer height, we take Ht = 1.0, 1.5, 2.0, 2.5, and 3.0 km. The a priori
values, which coincide with the initial guesses, are τa = 2.0 and Ha = 4 km, while the surface albedo
is A = 0.06. The solution accuracy is characterized by the relative errors

ετ
mean =

|τmean − τt|
τt

and εH
mean =

|Hmean − Ht|
τt

corresponding to the mean solution estimate (cf. Equation (3)) x̂δ
mean = [τmean, Hmean], and

ετ
max =

|τmax − τt|
τt

and εH
max =

|Hmax − Ht|
τt
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those corresponding to the maximum solution estimate (cf. Equation (4)) x̂δ
max = [τmax, Hmax]. For the

mean solution estimate, the average relative errors over τt for Ht = 3.0 km are defined by

ε
τ(τ)
mean =

1
Nτ

Nτ

∑
i=1

ετ
meani and ε

H(τ)
mean =

1
Nτ

Nτ

∑
i=1

εH
meani,

where Nτ = 6, while the average relative errors over Ht for τt = 1.0 are defined by

ε
τ(H)
mean =

1
NH

NH

∑
i=1

ετ
meani and ε

H(H)
mean =

1
NH

NH

∑
i=1

εH
meani,

where NH = 5. For the maximum solution estimate, similar relations are valid for ε
τ(τ)
max , ε

H(τ)
max , ε

τ(H)
max ,

and ε
H(H)
nax .

To analyze the accuracy of the aerosol retrieval, we consider three test examples. In the first
example, the synthetic measurements are generated by choosing as truth, the urban industrial model
derived from AERONET measurements at the Goddard Space Flight Center (GSFC) in Greenbelt,
Maryland; in the second example, the true model is the mixed aerosol model derived from AERONET
measurements over the Maldives; in the third example, the true model is the biomass burning model
derived from AERONET measurements over the African savanna in Zambia. For each test, we consider
extended and reduced sets of aerosol models. These are illustrated in Table 1. The reduced sets of
aerosol models require less computational time and, in principle, should be sufficient to reproduce
the true model. Since the OPAC and GOCART aerosol models depend on the relative humidity U,
these models are applied with U = 0.80, 0.90, and 0.95.

Table 1. Extended (upper table) and reduced (lower table) sets of aerosol models. The reduced OMI
set of aerosol models labeled (1) is used for the first and second test examples, while the reduced set
labeled (2) is used for the third example.

OPAC GOCART OMI MODIS

Cont. clean
Cont. average

Cont. pol.
Urban
Desert

Sulfurous dusty smoke
Dusty sulfate

Dust
Sulfurous smoke
Sulfurous dust

Marine dusty sulfate
Sulfate

Smokey sulfate

WA120X
WA130X
BB210X
BB220X

Nonabs.
Modabs.

Abs.
Dust

OPAC GOCART OMI MODIS

Cont. clean
Cont. average

Cont. pol.
Urban

Sulfurous dusty smoke
Dusty sulfate

Sulfurous smoke
Sulfurous dust

Sulfate
Smokey sulfate

(
WA120X
WA130X

)(1)

(
BB210X
BB220X

)(2)

Nonabs.
Modabs.

Abs.

The relative errors for the three test examples corresponding to the extended and reduced sets of
aerosol models are given in Figures 1–4.
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Figure 1. Relative errors ε
τ(τ)
mean and ε

H(H)
mean for the first test example. The aerosol databases are OPAC

with U = 0.80 (1), U = 0.90 (2), and U = 0.95 (3), GOCART with U = 0.80 (4), U = 0.90 (5),
and U = 0.95 (6), OMI (7), and MODIS (8). The plots in the left panels correspond to the extended sets
of aerosol models, while those in the right panels correspond to the reduced sets.

Figure 2. Relative errors ε
τ(τ)
mean, ε

τ(τ)
max , ε

H(H)
mean , and ε

H(H)
max for the first test example using the extended

sets of aerosol models. The aerosol databases are labeled in the same way as in Figure 1.

The following inferences can be drawn.

1. For the first test example, the best results correspond to the OMI aerosol models (the relative
errors are ε

τ(τ)
mean = 0.154 and ε

H(H)
mean = 0.192). For the second and third test examples, the best

results correspond to the MODIS aerosol models (the relative errors are ε
τ(τ)
mean = 0.202 and

ε
H(H)
mean = 0.224 for the second case, and ε

τ(τ)
mean = 0.168 and ε

H(H)
mean = 0.205 for the third case),

followed by the OMI aerosol models. The latter result is not surprising because the MODIS
aerosol models are the result of a cluster analysis of aerosol retrievals from global AERONET sites.



Remote Sens. 2020, 12, 3656 10 of 17

Note that aerosol optical thickness errors are smaller, but not significantly smaller, than errors in
the layer height.

2. For the OPAC and GOCART aerosol models, the best fits correspond to a high and unrealistic
value of relative humidity, U = 0.95. Note that the annual relative humidity in Greenbelt,
Maryland is about 0.64; the corresponding value for Male, Maldives is about 0.79, and that for
Lusaka, Zambia is about 0.61 (with a maximum of 0.80 in January).

3. The results for the extended set of aerosol models are slightly better than those for the reduced set.

4. From Figure 2, it is apparent that ε
τ(τ)
max > ε

τ(τ)
mean and ε

H(H)
max > ε

H(H)
mean ; thus, as expected,

the maximum solution estimate x̂δ
max = [τmax, Hmax] is less accurate than the mean solution

estimate x̂δ
mean = [τmean, Hmean].

Figure 3. Same as Figure 1 but for the second test example.

Figure 4. Same as in Figure 1 but for the third test example.
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In the retrieval, the input parameters of the forward (radiative transfer) model are the single
scattering albedo and the expansion coefficients of the phase function. Therefore, in order to explain
the above findings, we show in Table 2 the single scattering albedo ωm, the asymmetry parameter
gm, and the relative error ετ

mean for a particular retrieval case of the first test example (τt = 1.0 and
Ht = 3.0 km). The corresponding phase functions are illustrated in Figure 5. Taking into account the
representation of the single scattering radiance, we deduce that the backscattering region of the phase
function (the angular domain around the viewing direction) is relevant for our analysis. The results
can be summarized as follows.

1. The best retrievals correspond to the OMI, followed by the GOCART-0.95, aerosol models.
2. The single scattering albedo ωm for the AERONET aerosol model is best approximated by the

scattering albedos associated with the GOCART-0.80 and OPAC-0.90 aerosol models. However,
all values of ωm are above 0.95, so that roughly speaking, all aerosol models are nonabsorbing.
Therefore, we believe that, for the present application, ωm is not a relevant indicator of the
goodness of fit.

3. The asymmetry parameter gm for the AERONET aerosol model is best approximated by the
asymmetry parameters associated with the OMI and GOCART-0.95 aerosol models. Moreover,
the phase function in the backscattering region is also accurately reproduced by the same
models. Thus, the accuracy of the asymmetry parameter, which is the first-order moment of the
phase function, and the phase function in a region around the viewing direction, determine the
retrieval errors.

4. From Figure 5, it is also apparent that (i) GOCART-0.95 is superior to GOCART-0.80 and
GOCART-0.90, and (ii) OPAC-0.95 is superior to OPAC-0.80 and OPAC-0.90. Thus, for these
aerosol databases, better approximations for the asymmetry parameter and the phase function
in the backscattering region correspond to larger values of U. Unfortunately, as previously
mentioned, these large values of U are physically unrealistic. The conclusion which can be drawn
is that climatologically correct GOCART and OPAC aerosol models are not always the best option
for retrievals.

Table 2. Single scattering albedo ωm, asymmetry parameter gm, and relative error ετ
mean for τt = 1.0 and

Ht = 3.0 km. The results correspond to the first test example and the extended sets of aerosol models.

Aerosol Models ωm gm ετ
mean

AERONET 9.765 ×10−1 7.327 ×10−1 -

OPAC-0.80 9.618 ×10−1 6.572 ×10−1 0.235

OPAC-0.90 9.743 ×10−1 6.776 ×10−1 0.221

OPAC-0.95 9.836 ×10−1 6.961 ×10−1 0.185

GOCART-0.80 9.753 ×10−1 6.906 ×10−1 0.201

GOCART-0.90 9.826 ×10−1 6.994 ×10−1 0.186

GOCART-0.95 9.871 ×10−1 7.139 ×10−1 0.171

OMI 9.672 ×10−1 7.321 ×10−1 0.152

MODIS 9.674 ×10−1 6.789 ×10−1 0.191



Remote Sens. 2020, 12, 3656 12 of 17

Figure 5. Phase functions for τt = 1.0 and Ht = 3.0. The results correspond to the first test example
and the extended sets of aerosol models.

5. Conclusions

This paper presents the results of aerosol retrieval using an algorithm that takes into account
the uncertainty in aerosol model selection. The solution corresponding to a specific aerosol model
is characterized by the relative evidence, which is a measure of how well the aerosol model fits
the measurement. Based on this quantity, the following solution estimates are used: the maximum
solution estimate, corresponding to the aerosol model with the highest evidence, and the mean solution
estimate, representing a linear combination of solutions weighted by their evidences.

We generated synthetic measurements for the EPIC instrument using as reference certain aerosol
models derived from AERONET measurements at different sites. In the retrieval, the surface albedo
was assumed to be known, and four aerosol models, included in the OPAC, GOCART, OMI, and MODIS
databases, were evaluated. The goal of our numerical analysis was to quantify errors in the retrieval of
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aerosol optical thickness and layer height, when the true aerosol model is unknown. The following
conclusions were drawn.

1. For the first test example, the best results correspond to the OMI aerosol models, while for the
second and third test examples, the best results correspond to the MODIS, followed by the OMI,
aerosol models.

2. The maximum solution estimate is less accurate than the mean solution estimate.
3. On average, the best relative retrieval errors, corresponding to the mean solution estimate,

are about 0.20 for both the aerosol optical thickness and layer height.
4. The best aerosol model is the one with (i) a value of the asymmetry parameter and (ii) an

angular variation of the phase function around the viewing direction that are close to the values
corresponding to the reference aerosol model. These criteria can also be fulfilled by aerosol
models that are climatologically incorrect.

Since the MODIS aerosol models are derived from AERONET measurements, it seems that in
practice, the OMI aerosol models are the most suitable option. However, the retrieval errors in the
mean solution estimate are large (on average, larger than 0.2). These can be improved if, instead of a
single-angle measurement, a multi-angle measurement approach is used. In this case, the weighting
factors for each aerosol component are included in the retrieval.
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Appendix A

In this appendix, we summarize the aerosol model sets used in this study.

Table A1. Geometrical and optical properties of the aerosol models included in the OPAC database.
The relative refractive index corresponds to the wavelength λ = 750 nm and the relative humidity
U = 0.8.

Model Component rmod(µm) s = eσ m = (Re(m), Im(m)) wi

Cont.
clean

Water sol. 0.0212 2.24 (1.40, 2.83× 10−3) 1.0
Water insol. 0.4710 2.51 (1.53, 8.0× 10−3) 0.577× 10−4

Cont.
avrg.

Water sol. 0.0212 2.24 (1.40, 2.83× 10−3) 0.95
Soot 0.0118 2.00 (1.75, 4.3× 10−1) 0.05

Water insol. 0.4710 2.51 (1.53, 8.0× 10−3) 0.261× 10−4

Cont.
pol.

Water sol. 0.0212 2.24 (1.40, 2.83× 10−3) 0.90
Soot 0.0118 2.00 (1.75, 4.3× 10−1) 0.10

Water insol. 0.4710 2.51 (1.53, 8.0× 10−3) 0.12× 10−4

Urban
Water sol. 0.0212 2.24 (1.40, 2.83× 10−3) 0.80

Soot 0.0118 2.00 (1.75, 4.3× 10−1) 0.20
Water insol. 0.4710 2.51 (1.53, 8.0× 10−3) 0.949× 10−5
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Table A1. Cont.

Model Component rmod(µm) s = eσ m = (Re(m), Im(m)) wi

Desert

Water sol. 0.0212 2.24 (1.40, 2.83× 10−3) 0.87
Mineral nuc. 0.0700 1.95 (1.53, 4.00× 10−3) 0.117
Mineral acc. 0.3900 2.00 (1.53, 4.00× 10−3) 0.133× 10−1

Mineral coa. 1.9000 2.15 (1.53, 4.00× 10−3) 0.617× 10−4

Marit.
clean

Water sol. 0.0212 2.24 (1.40, 2.83× 10−3) 0.987
See salt acc. 0.2090 2.03 (1.35, 2.73× 10−7) 0.132× 10−1

See salt coa. 1.7500 2.03 (1.35, 2.72× 10−7) 0.211× 10−5

Marit.
pol.

Water sol. 0.0212 2.24 (1.40, 2.83× 10−3) 0.422
Soot 0.0118 2.00 (1.75, 4.3× 10−1) 0.576

See salt acc. 0.2090 2.03 (1.35, 2.73× 10−7) 0.222× 10−2

See salt coa. 1.7500 2.03 (1.35, 2.72× 10−7) 0.356× 10−6

Marit.
trop.

Water sol. 0.0212 2.24 (1.40, 2.83× 10−3) 0.983
See salt acc. 0.2090 2.03 (1.35, 2.73× 10−7) 0.167× 10−1

See salt coa. 1.7500 2.03 (1.35, 2.72× 10−7) 0.217× 10−5

Arctic

Water sol. 0.0212 2.24 (1.40, 2.83× 10−3) 0.197
Soot 0.0118 2.00 (1.75, 4.3× 10−1) 0.803

Water insol. 0.4710 2.51 (1.53, 8.0× 10−3) 0.152× 10−5

See salt acc. 0.2090 2.03 (1.35, 2.73× 10−7) 0.288× 10−3

Antarctic
Sulfate 0.0695 2.03 (1.35, 1.39× 10−7) 0.998

See salt acc. 0.2090 2.03 (1.35, 2.73× 10−7) 0.109× 10−2

Mineral tra. 0.5000 2.20 (1.530, 4.0× 10−3) 0.123× 10−3

Table A2. GOCART aerosol models and the weighting factors (in percentage) corresponding to the
aerosol components: sulfate (SS), dust (DU), see salt (SS), black carbon (BC), and organic carbon (OC).

Model Component
SU DU SS BC OC

Sulfurous dusty smoke 27.4 30.7 5.9 5.9 30.1
Marine sulfate 44.6 4.7 36.7 3.0 11.0
Dusty sulfate 54.7 25.6 7.2 3.4 9.1

Dust 13.0 80.2 1.1 1.7 4.0
Sulfurous smoke 29.7 6.0 3.1 9.3 51.8
Sulfurous dust 31.0 53.1 4.7 3.2 8.0

Marine dusty sulfate 43.1 27.0 19.5 3.2 7.2
Sulfate 66.1 4.7 14.1 3.4 11.6

Sulfurous marine 28.8 3.8 58.4 1.7 7.3
Smokey sulfate 45.0 6.8 14.0 6.7 27.5
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Table A3. Geometrical and optical properties of the aerosol models considered in the OMI
multiwavelength aerosol retrieval algorithm.

Type Model rmod(µm) s = eσ m = (Re(m), Im(m)) wcoarse

Weakly
absorbing

WA1101 0.078
0.497

1.499
2.160 (1.4, 5.0× 10−8) 4.36× 10−4

WA1102 0.088
0.509

1.499
2.160 (1.4, 5.0× 10−8) 4.04× 10−4

WA1103 0.137
0.567

1.499
2.160 (1.4, 5.0× 10−8) 8.10× 10−4

WA1104 0.030
0.240

2.030
2.030 (1.4, 5.0× 10−8) 1.53× 10−2

WA1201 0.078
0.497

1.499
2.160 (1.4, 4.0× 10−3) 4.36× 10−4

WA1202 0.088
0.509

1.499
2.160 (1.4, 4.0× 10−3) 4.04× 10−4

WA1203 0.126
0.421

1.499
2.160 (1.4, 4.0× 10−3) 8.10× 10−4

WA1301 0.078
0.497

1.499
2.160 (1.4, 1.2× 10−2) 4.36× 10−4

WA1302 0.088
0.509

1.499
2.160 (1.4, 1.2× 10−2) 4.04× 10−4

WA1303 0.137
0.567

1.499
2.160 (1.4, 1.2× 10−2) 8.10× 10−4

Biomass
burning

BB2101 0.074
0.511

1.537
2.203 (1.5, 1.0× 10−2) 1.70× 10−4

BB2102 0.087
0.567

1.537
2.203 (1.5, 1.0× 10−2) 2.06× 10−4

BB2103 0.124
0.719

1.537
2.203 (1.5, 1.0× 10−2) 2.94× 10−4

BB2201 0.074
0.511

1.537
2.203 (1.5, 2.0× 10−2) 1.70× 10−4

BB2202 0.087
0.567

1.537
2.203 (1.5, 2.0× 10−2) 2.06× 10−4

BB2203 0.124
0.719

1.537
2.203 (1.5, 2.0× 10−2) 2.94× 10−4

BB2301 0.074
0.511

1.537
2.203 (1.5, 3.0× 10−2) 1.70× 10−4

BB2302 0.087
0.567

1.537
2.203 (1.5, 3.0× 10−2) 2.06× 10−4

BB2303 0.124
0.719

1.537
2.203 (1.5, 3.0× 10−2) 2.94× 10−4

Desert
dust

DD3101 0.042
0.670

1.697
1.806 (1.53, 4.0× 10−3) 4.35× 10−3

DD3102 0.052
0.670

1.697
1.806 (1.53, 4.0× 10−3) 4.35× 10−3

DD3201 0.042
0.670

1.697
1.806 (1.53, 1.0× 10−2) 4.35× 10−3

DD3202 0.052
0.670

1.697
1.806 (1.53, 1.0× 10−2) 4.35× 10−3
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Table A3. Cont.

Type Model rmod(µm) s = eσ m = (Re(m), Im(m)) wcoarse

Maritime

Maritime
mod. abs.

0.030
0.240

2.030
2.030

(1.4, 4.0× 10−3)
(1.4, 5.0× 10−8)

1.55× 10−4

Maritime
abs.

0.030
0.240

2.030
2.030

(1.4, 1.2× 10−2)
(1.4, 5.0× 10−8)

1.55× 10−4

Maritime
clean

0.030
0.240

2.030
2.030 (1.4, 5.0× 10−8) 1.53× 10−2

Volcanic VO4101 0.230
0.230

0.800
0.800 (1.45, 7.5× 10−7) 0.5

Table A4. Geometrical and optical properties of the aerosol models considered in the MODIS aerosol
retrieval algorithm. The four values of the refractive index for dust correspond to the wavelengths
λ = 0.470, 0.550, 0.660, 2.100µm.

Model rv(µm) σ m = (Re(m), Im(m)) V0(µm3/µm2)

Nonabs. 0.160 + 0.0434τ
3.325 + 0.1411τ

0.364 + 0.1529τ
0.759 + 0.0168τ

(1.42, 0.004–0.0015τ) 0.1718τ0.821

0.0934τ0.639

Modabs. 0.145 + 0.0203τ
3.101 + 0.3364τ

0.374 + 0.1365τ
0.729 + 0.098τ

(1.43, 0.008–0.002τ)
0.1642τ0.775

0.1482τ0.684

Abs. 0.134 + 0.0096τ
3.448 + 0.9489τ

0.383 + 0.0794τ
0.743 + 0.0409τ

(1.51, 0.02) 0.1748τ0.891

0.1043τ0.682

Dust 0.1416τ−0.052

2.2
0.7561τ0.148

0.554τ−0.052

(1.48τ−0.021, 0.0025τ0.132)
(1.48τ−0.021, 0.002)
(1.48τ−0.021, 0.0018τ−0.08)
(1.46τ−0.021, 0.0018τ−0.30)

0.0871τ1.026

0.6786τ1.057

Table A5. Geometrical and optical properties of the aerosol models derived at several AERONET
sites. Here, α is the Angström coefficient and the four values of the refractive index for desert dust
correspond to the wavelengths λ = 0.470, 0.550, 0.660, 2.100µm.

Model rv(µm) σ m = (Re(m), Im(m)) V0(µm3/µm2) α

Urban industrial
(GSFC, Greenbelt,

1993–2000)

0.12 + 0.11τ440
3.03 + 0.49τ440

0.38
0.75 (1.41–0.03τ440, 0.003)

0.15τ440
0.01 + 0.05τ440

1.90

Urban industrial
(Mexico City,
1999–2000)

0.12 + 0.04τ440
2.72 + 0.60τ440

0.43
0.63 (1.47, 0.014)

0.12τ440
0.11τ440

1.80

Mixed
(Maldives,
1999–2000)

0.18
2.62 + 0.61τ440

0.46
0.76 (1.44, 0.011)

0.12τ440
0.15τ440

1.55

Biomass burning
(African savanna,

Zambia,
1995–2000)

0.12 + 0.025τ440
3.22 + 0.710τ440

0.40
0.73 (1.51, 0.021)

0.12τ440
0.09τ440

1.95

Biomass burning
(Boreal forest,

USA and Canada,
1994–1998)

0.15 + 0.015τ440
3.22 + 0.710τ440

0.43
0.81 (1.50, 0.0094)

0.01 + 0.10τ440
0.01 + 0.03τ440

1.96

Desert
(Bahrain-

Persian Golf,
1998–2000)

0.15
2.54

0.42
0.61

(1.55, 0.0025)
(1.55, 0.0014)
(1.55, 0.0010)
(1.55, 0.0010)

0.02 + 0.10τ1020
−0.02 + 0.92τ1020

1.1

Maritime
(Lanai, Hawaii,

1995–2000)

0.16
2.70

0.48
0.68 (1.36, 0.0015)

0.4τ1020
0.8τ1020

1.4
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