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Abstract: Recent global warming has been accompanied by high water temperatures (HWTs) in
coastal areas of Korea, resulting in huge economic losses in the marine fishery industry due to disease
outbreaks in aquaculture. To mitigate these losses, it is necessary to predict such outbreaks to prevent
or respond to them as early as possible. In the present study, we propose an HWT prediction method
that applies sea surface temperatures (SSTs) and deep-learning technology in a long short-term
memory (LSTM) model based on a recurrent neural network (RNN). The LSTM model is used to
predict time series data for the target areas, including the coastal area from Goheung to Yeosu,
Jeollanam-do, Korea, which has experienced frequent HWT occurrences in recent years. To evaluate
the performance of the SST prediction model, we compared and analyzed the results of an existing
SST prediction model for the SST data, and additional external meteorological data. The proposed
model outperformed the existing model in predicting SSTs and HWTs. Although the performance
of the proposed model decreased as the prediction interval increased, it consistently showed better
performance than the European Center for Medium-Range Weather Forecast (ECMWF) prediction
model. Therefore, the method proposed in this study may be applied to prevent future damage to the
aquaculture industry.

Keywords: high water temperature; HWT; long short-term memory; LSTM; recurrent neural network;
RNN; sea surface temperature; SST; time series data

1. Introduction

Due to global warming, high water temperatures (HWTs) are frequently observed along the coast
of the Korean Peninsula. This phenomenon has led to mass mortality of farmed fish, resulting in
massive economic losses to fishermen. The HWT warning period lasted for a total of 32 days in 2017,
but persisted for 43 days in 2018. If this trend continues, the damage resulting from HWTs will likely be
further exacerbated. To prevent and mitigate exposure risk, it is necessary to predict HWT occurrence
accurately in advance. Therefore, in this study, we present a recurrent neural network (RNN)-based
long short-term memory (LSTM) model based on deep-learning technology [1,2], to predict sea surface
temperatures (SSTs).

Generally, extreme MHW is defined as the top 10% of all SST values observed over the past
30 years for a particular body of water [3,4]. However, in this study, we define HWTs in the context of
typical water temperatures in Korea. We follow the criteria defined by the Korean Ministry of Maritime
Affairs and Fisheries, which operates a HWT alert system to prevent damage to the aquaculture sector
and respond as needed to these events. The HWT alert system consists of the following three stages:
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level of interest, which occurs 7 days prior to onset of the temperature increase; level of watch, when the
water temperature reaches 28 ◦C; and level of warning, when the water temperature exceeds 28 ◦C
and lasts for 3 or more days. Since the Korea Ministry of Maritime Affairs evaluates HWT based on a
threshold of 28 ◦C, we defined HWT as > 28 ◦C. In this study, the area selected for HWT prediction
was the coastal region extending from Goheung to Yeosu, Jeollanam-do, Korea. This region has a high
concentration of fish farms. Thus, persistent HWTs cause serious damage to the local fishing industry,
as observed in the 2018 disaster, which involved the loss of 54.1 million fish/shellfish in Jeollanam-do,
with a total property damage of USD 38 million [5].

In this study, we used the ERA5 product reanalysis SST data provided by the European Center for
Medium-Range Weather Forecast (ECMWF) because the reliability and continuity of input data are
important for training LSTM deep-learning models. The ECMWF creates numerical weather forecasts,
monitors the dynamics of Earth/planetary systems that affect the weather, and provides researchers
with stored weather data to improve forecasting technology [6,7].

Recently, studies on SST prediction have been actively conducted. SST prediction methods can
be classified into two categories: numerical methods and data-centric methods. Some of the earlier
numerical methods for SST prediction combine physical, chemical, and biological parameters and
the complex interactions among them. A representative example of a mathematical model is the
fully compressible, non-integer Advanced Research Weather Research and Forecasting model [8,9],
developed by the University Corporation for Atmospheric Research/National Center for Atmospheric
Research [10,11]. In recent studies, the performance of the physical model NEMO-Nordic in the
North and Baltic seas was improved by assimilating high-resolution SST data for the model [12,13].
In contrast, data-based methods produce SST predictions from a data-centric perspective. Data-driven
methods require less knowledge of the oceans and atmosphere but require large amounts of data.
Methods in this category include statistical schemes such as the Markov model [14–16], machine
learning, and artificial intelligence methods. Support vector machine [17,18] and RNNs are widely
used machine-learning methods for SST prediction [19–21].

Although the RNN algorithm specializes in processing time-series data, long-term dependency
problems arise because SST and HWT predictions require significant amounts of data from the past.
The LSTM model is widely used to solve these long-term dependency problems [22–25]. The LSTM
model consists of cells with multiple gates attached. The gates are divided into three types: forget,
input, and output. Here, the long-term dependency problem is resolved via the forget gate. LSMT is
suitable for training data based on its high correlation with previously inputted data, which has made
it useful for linguistics applications [26]. LSMT has also been applied to predict concentrations of
air pollutants based on traffic volume, air pollution, and meteorological time series data [27]. In the
present study, we applied an LSTM model to predict SSTs and HWTs in the coastal area spanning from
Goheung to Yeosu, Jeollanam-do, Korea.

In previous studies, SSTs have been predicted near the Bohia Sea in China using LSTM [28] and
near the East China Sea using temporal dependence-based LSTM (TD-LSTM) [29] using large datasets
of past SST observations; SST prediction is rarely achieved using other types of meteorological data in
active research. Therefore, in this study, we proposed an LSTM model that uses other meteorological
data to improve SST prediction performance.

This paper is organized as follows. In Section 2, we explain SST data acquisition and describe
the coastal region around the Korean Peninsula selected for HWT prediction. Section 3 discusses the
LSTM training methodology and SST prediction concept, and the indicators used to evaluate SST and
HWT prediction performance. In Sections 4 and 5, we describe experiments conducted using common
methods and the proposed method, and their performance is compared and analyzed. Section 6
provides our conclusions.



Remote Sens. 2020, 12, 3654 3 of 21

2. Study Area and Data

2.1. Study Area

This study used the HWT definition of a SST > 28 ◦C, which was set by the Korean Ministry of
Maritime Affairs and Fisheries [30,31]. Figure 1 shows the number of SSTs exceeding 28 ◦C in the seas
around the Korean Peninsula over the past 5 years and the selected target area for HWT prediction
for this study; red corresponds to areas in which HWT was recorded more than 40 times, and blue
represents areas in which HWT did not occur.
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Figure 1. Incidence number of sea surface temperature (SST) readings exceeding 28 ◦C in the seas
around the Korean Peninsula from 2014 to 2018 and the target area selected for high water temperature
(HWT) prediction.

The HWT area and frequency are increasing in coastal areas off the Korean Peninsula due to global
warming [32,33]. Figure 2 shows average SSTs for the target area. The maximum SST in the 7-year
period between 2009 and 2015 was about 27 ◦C, and that from 2016 to 2018 (3 years) was about 28.5 ◦C.
Thus, the target area, which contains numerous fish farms, experienced concentrated HWTs during the
past 3 years. If HWT events in this area can be forecast in advance, the fishing industry may be able to
respond more quickly to moderate the economic damage.
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Figure 2. Time series of average SSTs in the target area shown in Figure 1.

In general, HWTs in Korea are generated for the following reasons. First, as the heat-dome
phenomenon becomes stronger due to the strengthening of the power of the North Pacific high pressure
and the influence of Tibetan high pressure, the duration and frequency of the heat wave continued to
grow [34,35]. Second, the power of the Tsushima warm current, which supplies heat at low latitudes,
has been showing strong in the summer in Korea in recent years [36,37]. Third, since the frequency of
typhoons that were concentrated in July and August every year decreased, the external force to mix
the high-temperature surface sea water with the low-temperature sea water was weakened. For this
reason, SST was continuously heated, leading to HWT.

HWTs in Korea are generally caused by the above 3 points. However, since the target area selected
in this study is a very shallow area, it is greatly affected by the ocean depth. Figure 3 shows the ocean
depth and current flow patterns around Korea. The Kuroshio warm current flows northeast from
Philippines to the east coast of Japan, and these warm currents are separated into the Tsushima warm
current and the Jeju warm current [38,39]. The Jeju warm current rotates clockwise on Jeju Island and
merges with the Tsushima warm current. However, since the target area selected in this study was
located on the coast, the effect of these warm current was small. Studies have shown that ocean depth
has a significant effect on SST [40,41], and shallow coasts respond quickly to atmospheric changes due
to their low heat storage capacity [42]. The ocean depth of the target area is also very shallow, and its
SST tends to rise rapidly in midsummer. Therefore, it can be seen that the HWT phenomena occurred
frequently in the target area while the HWT phenomena did not occur much in coasts near Busan and
Jeju where the ocean depth was deeper and the current flow was faster than the target area.
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2.2. Data

SST data were obtained from the ERA5 product released by ECMWF. ERA5 is the fifth-generation
ECMWF atmospheric reanalysis of global climate, and is the successor to FGGE reanalysis of the 1980s,
which included ERA-15, ERA-40, and ERA-Interim. Reanalysis combines the model with observations
to provide a numerical explanation of recent climate and is used by thousands of researchers worldwide.
At present, ECMWF provides data such as SST, wind, dewpoint, and snowfall. We focused on ERA5
reanalysis SST data [43,44].

Hourly SST data were provided by ECMWF; we considered the noon measurement of SST to be
representative of daily SST values. The SST data format consisted of 721 × 1440 data points, with a
spatial resolution of 0.25◦ latitude and 0.25◦ longitude. The target coastal area from Goheung to Yeosu
selected for SST and HWT prediction included a total of five pixels at a latitude of 34.45◦, with a
longitude spanning from 127.3 to 128.3◦.

Dataset citable as: Copernicus Climate Change Service (C3S): ERA5: Fifth generation of ECMWF
atmospheric reanalysis of the global climate. Copernicus Climate Change Service Climate Data Store
(CDS), date of access. (https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-
levels?tab=overview).

3. Methods

3.1. Structure of the LSTM

Figure 4 shows the structure of an LSTM. LSTM solves the long-term dependency problem,
a disadvantage of the RNN algorithm, using a forget gate. The forget gate allows the previous data to
be forgotten if the current data are important; additionally, the previous data are remembered if the
current data are unnecessary. The forget gate is calculated as follows:

ft = σ
(
W f ·[ht−1, xt] + b f

)
(1)

where σ is a sigmoid activation function. In previous studies, σ can use various types of functions,
but there are studies using sigmoid functions [45,46], so in this study, the sigmoid function was applied.
ht−1 and xt are the output of the previous step and the current input, respectively, and W f and b f
represent the weight and bias values, respectively. If ft, which is composed of the sigmoid function,
approaches 0, the previous data are forgotten; if it approaches 1, the previous data are remembered.
The next step, the input gate, determines which of the new data are stored in the cell state:

it = σ(Wi·[ht−1, xt] + bi)

C̃t = tanh(WC·[ht−1, xt] + bC)

Ct = ft ×Ct−1 + it ×Ct

(2)

where the input-gate layer it determines which value to update, and the tanh layer creates a new
candidate value C̃t. By combining the data from these two stages, the model creates a value to update
the cell state. The new cell state Ct is available by updating Ct−1 in the past state. The last gate,
the output gate, determines what to output:

Ot = σ(WO·[ht−1, xt] + bO)ht = Ot × tanh(Ct) (3)

where ht represents the new output value.

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis- era5-pressure-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis- era5-pressure-levels?tab=overview
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Figure 4. Structure of the long short-term memory (LSTM) model, including the forget, input,
and output gates.

3.2. LSTM Training Concept

To illustrate the LSTM training concept, consider typical 1-year SST values, as shown in Figure 5a.
In this figure, the 1-year SST increased to approximately 30 ◦C in the summer and decreased to
approximately 10 ◦C in the winter. Especially between days 210 and 250, roughly from July to August,
HWTs exceeding 28 ◦C appeared more frequently. Figure 5b shows a schematic diagram of LSTM
training based on input/output (I/O) data pairs. The input dataset used for LSTM training can be
expressed as [tk−n+1, tk−n+2, · · · , tk] with n days of SST data, and the output data can be expressed
as [tk−n+2, tk−n+3, · · · , tk+1], where t refers to the SST, and n and k represent the number of I/O data
and the start day of the input data, respectively. The start day of input data k was set to be random,
to prevent certain parts from being trained.
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Once the I/O data pairs are determined and trained, a trained LSTM model can be generated
to predict the SST. The important point here was that unused data, i.e., data not used in the LSTM
training, should make up the input data of the trained LSTM model; otherwise, the outcome could
only be used as an index to judge whether the training was successful but would not be meaningful in
predicting future water temperatures.

3.3. SST Prediction Concept using the Trained LSTM Model

Section 3.3 describes a method for predicting the m days SST based on the trained LSTM model.
The predicted SST after 1 day was selected as the last component of the output. The SST prediction
then proceeded to forecast the SST after m days using the following process.

Figure 6 shows schematic diagrams for predicting SST after m days. The key concept is that
LSTM’s outputs are reused as an element of the input array to predict after m days. Where p is the
output of the trained LSTM. To predict the SST after m days the following procedure was used

(1) Extract the predicted SST after 1 day from the trained LSTM.
(2) To predict the SST after 2 days, the predicted SST after 1 day was substituted as the last component

of the second input.
(3) Extract the predicted SST after 2 days as a result of step 2.
(4) To predict the SST after 3 days, the predicted SST after 2 days was substituted as the last component

of the second input. Here, the predicted SST after 1 day was located before the last component.
(5) Repeat this process m times.

By repeating the above procedure, the trained LSTM could generate the predicted SST after m days
as an output.
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3.4. HWT Determination Algorithm and Performance Evaluation

In this study, we assumed a HWT threshold of 28 ◦C in Korea. So we designed the state transition
diagram of the algorithm used to determine HWT occurrence based on this threshold. If the predicted
SST was < 28 ◦C after m days (pm), then the state was deemed normal; otherwise, the state was changed
to HWT. To evaluate the performance of the HWT prediction algorithm, a space analysis of the receiver
operating characteristic (ROC) curve was performed. Performance was assessed based on the true
positive rate (TPR) or false positive rate (FPR) [47], which were calculated as follows:

TPR =
TP

TP + FN
(4)

FPR =
FP

FP + TN
(5)
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where TP, TN, FP, and FN are the numbers of data points representing true positive, true negative, false
positive, and false negative cases, respectively. If the outcome from a prediction is positive, and the
real value is also positive, then the outcome is referred to as a TP; however, if the real value is negative,
then it is called an FP. Conversely, a TN occurs when both the prediction outcome and real value are
negative, and a FN is assigned when the prediction outcome is negative and the real value is positive.
When the TPR approaches 1 and FPR approaches 0, the prediction performance is excellent; in the
ROC space composed of TPR and FPR, the distribution of values in the upper left shows superior
prediction performance.

We also performed F1 score analysis to investigate how the HWT prediction algorithm responded
to changes in the prediction interval. In statistical analyses, the F1 score represents the harmonic
average between precision and sensitivity, as follows [48]:

F1 score =
2TP

2TP + FP + FN
(6)

3.5. Method of SST Prediction Performance Evaluation

To evaluate SST prediction performance, the predicted SST of the trained LSTM model was
compared with actual SST data using the coefficient of determination (R2), root mean square error
(RMSE), and mean absolute percentage error (MAPE). R2, RMSE, and MAPE were calculated as
follows [49]:

R2 = 1−

∑n
i

(
SSTreal

i − SSTpredicted
i

)2

∑n
i

(
SSTreal

i − SSTreal
)2 , SSTreal =

1
n

∑n

i
SSTreal

i (7)

RMSE =

√√∑n
i

(
SSTreal

i − SSTpredicted
i

)2

n
(8)

MAPE =
100%

n

n∑
i

∣∣∣∣∣∣∣∣
SSTreal

i − SSTpredicted
i

SSTreal
i

∣∣∣∣∣∣∣∣ (9)

where SSTpredicted and SSTreal are the predicted SSTs from the trained LSTM model and ERA5 SST data,
and n is the number of samples.

4. Experiments

4.1. LSTM Network for Experiments

Figure 7 shows the structure of the actual LSTM network used in the experiments to predict the
SST after m days. B, N, and n represent the numbers of batch sizes, neurons, and inputs, respectively.
Datasets 1 through m are external meteorological data to be reflected during training. To prevent
confusion of symbols, m used for “after m days” is in italics, and m is used to mean the number of
datasets. For example, if only SST data are used in training, then dataset 1 becomes SST data, and if
SST, wind, and air-temperature data are used, then dataset 1 becomes SST data, dataset 2 becomes
wind data, and dataset 3 becomes air-temperature data. As such, the LSTM network was designed as a
structure to which desired meteorological data can be continuously added. Each LSTM cell generates
an output vector having the form (B, N). However, the output required is a vector having the form
(B, 1). To convert the shape of the output, we used the following procedure.

(1) The output vectors of form (B, N) of each LSTM cell with n inputs were stacked in the vector
having the form (B × n, N).
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(2) A fully connected layer with one unit was applied to reshape the vector having the form (B × n,
N) into a vector having the form (B × n, 1; because the fully connected layer is only a layer for
dimension reduction, the activation function is not used).

(3) The vector is reduced from the form (B × n, 1) into n outputs. Now the output is a vector of form
(B × 1).

By performing the steps above, we could obtain the predicted SST value.Remote Sens. 2020, 12, x FOR PEER REVIEW 9 of 22 
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4.2. Parameter Values for the Simulation

For convenience, the target areas for predicting SSTs from 1 day to m days is defined as shown in
Figure 8a–e; the parameter values and training data of the LSTM network used in the simulation are
presented in Table 1.
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Table 1. Parameter values of the LSTM network and the number of training and test data.

Parameter Values Number of Training Data

B 30 Input data (SST) 3650 × 1 (m = 1)
Input data (Multi) 3650 × 3 (m = 3)

N 100 Output data 3650
Year 10-year dataset (2008–2017)

n 30 Number of test data

Optimization function Adam optimizer Test data 335
Cost function Mean square error Year 1-year SST dataset excluded

30-days (2018)

Figure 8 shows the target area along the coast from Goheung to Yeosu in Jeollanam-do, which
experienced a high occurrence of HWTs. The target area was divided into five areas, designated as
a–e in the figure, corresponding to a latitude of 34.45◦ and longitude spanning from 127.3 to 128.3◦.
The color shown for each area corresponds to the number of HWT occurrences in 2018, as given in
Figure 1.

The simulation was conducted using only one type of training data (SST) and three types of data
(SST, wind, and air temperature); the latter case is referred to as the multi dataset. In session 2 said that
HWTs in Korea are caused by strong Tsushima warm current, typhoons that were not concentrated in
July and August, and heat wave caused by the heat-dome. Therefore, air temperature and wind that
can be used as indicators of heat wave and typhoon were added to the multi dataset.

We used data collected during the past 10 years (2008–2017) to predict SSTs in 2018. The SST
dataset (m = 1) contained 3650 input data and the multi dataset (m = 3) contained 3650 × 3 input data.
However, both datasets resulted in 3650 output data because daily SSTs were the only output.

Table 1 shows the parameter values and the I/O datasets for training the LSTM network used in
the simulation. To perform the simulation, the number of batch sizes B, the number of neurons N,
and the number of inputs n were selected as 30, 100, and 30, respectively. The cost function, which is an
indicator of the performance of the model, was based on the mean square error. Minimizing the cost
function means that the error between the LSTM output and the correct answer is small. The Adam
optimizer was used as the optimization function to minimize the cost function.

As a result of experiments as the number of neurons and training data were varied, it was
determined that 100 neurons and 3650 training data were appropriate. For better understanding,
the sensitivity of the model to various experiments is shown in Appendix A’s Table A1.

To predict the SSTs in the five areas shown in Figure 8a–e, the LSTM was trained using 10 years of
data for the individual areas, thus effectively creating a trained LSTM model for that particular area.
The trained LSTM model was then used to predict the SSTs in 2018. Since the SST prediction year was
2018, 335 data were needed (30 input data were required as the initial input for the LSTM model).

4.3. Results

4.3.1. Results Obtained Using only SST Input Data

In this simulation, SSTs were predicted using only the widely used SST dataset for LSMT training.
The simulation was conducted for area (a). To calculate R2, RMSE, and MAPE, the number of samples
n was set to 335; only the data between 31 and 365 in 2018 were compared, in which the head data
were eliminated for improved accuracy. The input of the trained LSTM model required SST data
from 30 samples; thus, the SST data from these 30 samples were eliminated from the data head (i.e.,
used data elimination as discussed earlier).

Figure 9 shows a comparison of real and predicted SSTs produced using only the SST dataset as
input for area (a) in 2018; scatter plots were used to evaluate the performance of the trained LSTM
model. Simulation results revealed a similar trend between the real and predicted SST data for SST
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prediction after 1 day. The results of the scatter plot analysis also showed that the LSTM model using
only the SST dataset as input was very accurate. In the SST prediction after 1 day, the R2, RMSE,
and MAPE values between the predicted SST and real data were 0.9936, 0.5076, and 2.2577, respectively.
However, looking at the SST prediction after 7 days, the overall trend showed a lower accuracy than
the prediction after 1 day, with R2, RMSE, and MAPE values (0.959, 1.3238, and 5.5454, respectively)
between the predicted SST and real data.
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4.3.2. Results Obtained Using the Multi Dataset as Input

When only SST data were used as input, the SST prediction performance of the LSTM network
rapidly deteriorated as the prediction interval increased. This result occurred because external
meteorological data, which have a large influence on SSTs, were not used as input. To confirm that
external meteorological data can improve SST prediction performance, we predicted SSTs using the
multi dataset composed of SST, wind and air temperature datasets. The reanalysis dataset of ERA5 on
the wind and air temperature were obtained in the same way as in Section 2.2.

Figure 10 compares real and predicted SST results produced using the multi dataset as input for
area (a) in 2018. Scatter plots were used to evaluate the performance of the trained LSTM model. After
1 day, SST predictions did not differ significantly between the two cases because the prediction interval
was very short. However, after 7 days, the overall trend produced using the multi dataset was much
more faithful to the observation data, with less variation than shown in the result produced using only
the SST input dataset. Thus, the external meteorological data had a great influence on SST prediction
performance. The R2, RMSE, and MAPE values between the predicted and real SST were 0.9832, 0.8242,
and 4.1703, respectively, which indicated that the multi dataset improved our SST predictions.
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5. Performance Evaluation

5.1. Comparison of Performance Between SST and Multi Dataset Inputs

Figure 11 shows a comparison of R2, RMSE, and MAPE values between LSTM results produced
using the SST and multi datasets as input, for different prediction intervals. For both input cases,
the prediction performance of the LSTM model decreased as the prediction interval increased. However,
the multi dataset led to better performance than the SST dataset in terms of R2, RMSE, and MAPE.
Thus, to accurately predict SSTs, SST and external meteorological data (wind and air temperature) are
important factors.Remote Sens. 2020, 12, x FOR PEER REVIEW 13 of 22 
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Both models had similar performances in predicting SST after 1 day, therefore the SST dataset
may be used for predicting 1 day. When using the SST dataset, the number of input data is three times
less than that of the multi dataset, which has the advantage of shortening the training time. However,
the processing (prediction) time is similar because both trained models were used to predict the SST.
Therefore, it would be desirable to use the multi dataset with superior prediction performance as the
prediction interval increases.

Figure 12 shows the ROC space and plots of HWT occurrence predictions from 1 to 7 days using
the TPR and FPR. For both input cases, the calculated values plotted in the upper left corner, which
indicates that the proposed algorithm was performed correctly, with the multi-dataset case showing
better performance. Model performance was particularly good in terms of the FPR because SST
exceeded 28 ◦C during the summer months of the study year. TN is the value when the real and
predicted SSTs do not exceed 28 ◦C. Therefore, it is necessary to focus on the TPR with respect to
HWT prediction.
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from 1 to 7 days using the true positive rate (TPR) and false positive rate (FPR) in area (a) for 2018.

F1 score is a statistical analysis method that evaluates the performance of the model when the data
has an unbalanced structure. The frequency of occurrence of HWTs assumed in this study corresponds
to this structure because it is concentrated in the summer of a year. Therefore, the performance of the
proposed model was evaluated through the F1 score using the harmonic average rather the arithmetic
average between precision and sensitivity. Figure 13 shows the comparison of F1 scores obtained using
the two input datasets. For the HWT occurrence results obtained using only the SST dataset, the F1
score decreased from 0.8 to 0.6 as the prediction interval increased. However, for the multi-dataset
case, even when the prediction interval increased, the F1 score remained constant at about 0.8. In terms
of F1 score, it can be seen that the model using multi dataset had better performance in predicting
HWTs than the case using the SST dataset.

Additionally, in order to confirm that the model proposed in this study could be applied not only
to the target area but also to other areas, an additional experiment was conducted on the sea area near
Jeju where HWT occurs frequently. The performance evaluation for this area is shown in Appendix A’s
Figure A2.
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5.2. Performance Comparison with ECMWF Forecast Data

To verify the performance of the SST prediction model using the multi dataset, the results of the
proposed model were compared with those produced using ECMWF forecast data. The ECMWF
forecast data provide predicted SSTs every 6 h starting from midnight on the first of every month and
spatial resolution is composed of 1◦. For accurate comparative analysis, we used noon forecast data
(to match our output data) for the region located at latitude of 34◦ and longitude of 127◦ closest to area
(a). Since the SST prediction model proposed in this study requires 30 days of data as an initial input,
January was excluded from the comparison. For area (a), the HWT intensively occurred 18 times in
August 2018. Therefore, in Figure 14, the performance of the proposed model and ECMWF forecast
data was compared and analyzed by increasing the prediction interval from 7 to 20 days. Additionally,
for the remaining months where HWT was not concentrated, the prediction interval was set to 7 days,
and its performance was represented in Appendix A’s Figure A3.

ECMWF forecast dataset citable as: Copernicus Climate Change Service (C3S): Copernicus Climate
Change Service Climate Data Store (CDS), date of access. (https://cds.climate.copernicus.eu/cdsapp#!/
dataset/seasonal-original-single-levels?tab=overview).
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Figure 14 shows the predicted SST results for the first to twentieth days of August 2018 obtained
using the proposed model with multi-dataset input and ECMWF forecast data. SST predictions for
August 2018 demonstrate that the proposed model showed superior performance to ECMWF forecast
data. The ECMWF forecast data failed to predict HWTs, whereas the proposed model predicted HWT
in most prediction interval except for blue circle 1 and green circle 2 and 3. Blue circle 1 indicates that
the HWT prediction failed, and green circle 2 and 3 indicate that HWT was determined even though
HWT did not occur. These results indicate that the proposed model will be helpful for SST or HWT
predictions in the field.

6. Conclusions

In this study, we proposed a deep-learning-based SST and HWT prediction methodology to
prevent mass mortality of aquaculture fish caused by HWTs. To predict SSTs and HWTs, we applied an
RNN-based LSTM model for the coastal area between Goheung to Yeosu, Jeollanam-do, Korea, which
suffered great economic damage due to HWTs in 2018. To train the SST prediction model, we used
daily noon SST data provided by the ECMWF.

Previous studies have predicted SSTs by training deep-learning-based prediction models using
only large SST datasets. However, these methods have limited accuracy because they do not take
external meteorological factors into account. Therefore, in this study, we added external meteorological
data (wind and air temperature) as input for the SST prediction model. The SST prediction model was
designed to predict the SST after 1 day; to obtain predictions over a period of m days, this result was
placed at the end of the next input, and the method was repeated.

First, the LSTM model was trained using a 10-year SST dataset for the study area. The model’s
1 day SST prediction performance was excellent, but decreased as the prediction interval increased
because predicted SSTs formed the basis of each subsequent day’s predictions. Prediction of HWT
occurrence was also evaluated based on TPR, FPR, and F1 score values. As the prediction interval
increased, the prediction performance decreased overall.

To compensate for the decreases in the SST and HWT prediction performance as the prediction
interval increased, we changed the training dataset. In the initial experiment, we used a training
dataset composed of SST data only; we subsequently created a multi dataset composed of wind,
air-temperature, and SST data. Our results obtained using the multi dataset were superior to those
obtained using the SST training dataset, in area (a) as well as in other areas (b–e), according to R2,
RMSE, and MAPE values. Model performance in each study area (b–e) is described in Appendix A’s
Figure A1. HWT was also better predicted using the multi dataset than using the SST dataset as input
because wind and air temperature play important roles in contributing to SSTs. Further analyses of
the impact of wind and air temperature input data on model training would improve the accuracy of
SST prediction.

The deep-learning-based SST prediction methodology proposed in this paper shows very accurate
performance when the prediction interval is short but deteriorates as the prediction interval increases.
For this reason, it is possible to predict SSTs over a short period in real environments; however,
the method is limited in its long-term forecasting ability. In this study, we used a multi dataset
consisting of a 3D array as input for the LSTM model to predict the SST after m days. In a future
study, we intend to train the LSTM model using multi-dimensional arrays (m ≥ 3) that include ocean
currents, air pressure, heat flux, and salinity data in addition to wind and air-temperature data, which
directly affect SST. We also plan to analyze how each type of meteorological data affects SST prediction
performance to create an optimal training dataset for the model. These modifications are expected
to improve the accuracy of the generated prediction model to improve prediction performance for
m days.

We have a plan to contribute to the prevention of damage to the Korean aquaculture industry by
recommending the SST and HWT prediction model using the multi dataset proposed in this study to
Korean Ministry of Maritime Affairs and Fisheries and related organizations.
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Appendix A

Table A1 is the result of comparing the SST and HWT prediction performance according to the
changes in the number of neurons and the number of training data. Except for the red background
with the smallest number of neurons and training data, it can be seen that the similar accuracy in
terms of SST prediction performance. However, in this study, not only SST prediction but also HWT
prediction was one of the main purposes, therefore we tried to select the numbers of neurons and
training data that satisfied both SST and HWT prediction performances.

Table A1. Sensitivity of LSTM model to changes in the number of neurons and training data.
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Appendix A 

Table A. Sensitivity of LSTM model to changes in the number of neurons and training data. 

Number of 
Training Data 

Number of 
Neurons 

Prediction 
Interval 

Prediction Performance 
SST HWT 

R2 RMSE MAPE F1 Score 
1825 past 5 year 

(2013–2017) 50 
1 0.9883 0.693 2.5784 0.5128 
7 0.8785 2.2615 7.0832 0.057 

1825 past 5 year 
(2013–2017) 

100 
1 0.9926 0.5488 2.4148 0.7391 
7 0.9538 1.3789 5.7256 0.44 

1825 past 5 year 
(2013–2017) 150 

1 0.9946 0.4728 2.1033 0.7391 
7 0.9707 1.0953 5.134 0.44 

3650 past 10 year 
(2008–2017) 

50 
1 0.9921 0.5677 2.5429 0.66 
7 0.9564 1.3059 5.6304 0.58 

3650 past 10 year 
(2008–2017) 100 

1 0.9936 0.5076 2.2577 0.7391 
7 0.959 1.3238 5.5454 0.6086 

3650 past 10 year 
(2008–2017) 

150 
1 0.9949 0.4542 2.0829 0.76 
7 0.961 1.251 5.736 0.6249 

5475 past 15 year 
(2003–2017) 50 

1 0.9962 0.398 1.8067 0.7272 
7 0.9788 1.0027 5.0365 0 

5475 past 15 year 
(2003–2017) 

100 
1 0.9922 0.5696 2.6503 0.66 
7 0.9616 1.2514 5.7366 0.4571 

5475 past 15 year 
(2003–2017) 

150 
1 0.9937 0.5065 2.375 0.69 
7 0.9649 1.2011 5.6122 0.51 

Table A is the result of comparing the SST and HWT prediction performance according to the 
changes in the number of neurons and the number of training data. Except for the red background 
with the smallest number of neurons and training data, it can be seen that the similar accuracy in 
terms of SST prediction performance. However, in this study, not only SST prediction but also 
HWT prediction was one of the main purposes, therefore we tried to select the numbers of neurons 
and training data that satisfied both SST and HWT prediction performances. 

As a result of experiments for 9 cases, when the number of neurons was small (gray 
background), the F1 score values indicating HWT prediction performance tended to be low. In 
addition, it was confirmed that the F1 score value was also low when there were a lot of past data 
not related to the current pattern (blue box) and when a sufficient amount of training data was not 
included (green box). Therefore, in this study, considering the above three cases, among red box 

As a result of experiments for 9 cases, when the number of neurons was small (gray background),
the F1 score values indicating HWT prediction performance tended to be low. In addition, it was
confirmed that the F1 score value was also low when there were a lot of past data not related to the
current pattern (blue box) and when a sufficient amount of training data was not included (green box).
Therefore, in this study, considering the above three cases, among red box with similar HWT and SST
prediction performance, we selected a blue background with 100 neurons and 10 year’s training data.

http://osic.kosc.kr/
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Figure A2 is the result of evaluating HWT and SST prediction performance by applying the
proposed model (multi-dataset) for additional test area. Figure A2a shows the sea area near Jeju where
HWT is generated frequently, and the area selected for an additional test is marked with a black box.
Figure A2c shows the value of R2, RMSE, and MAPE according to the prediction interval. It can be
seen that the performance was degraded as the prediction interval increases but the proposed model’s
performance was similar to that of Appendix B. In Figure A2b, it be seen that the F1 score also remained
constant at about 0.8 as the prediction interval increased. Through these results, it was confirmed that
the model proposed in this study had the ability to predict HWT not only in the target area but also in
other areas.Remote Sens. 2020, 12, x FOR PEER REVIEW 18 of 22 
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Figure A3 shows the predicted SST results for the first to seventh day of each month (excluding
January) of 2018 obtained using the proposed model with the multi-dataset input and ECMWF forecast
data. SST predictions for February to March, June to October, and December demonstrated that
the proposed model showed excellent performance. However, in other months, the performance of
the proposed model was similar to or slightly inferior to that of ECMWF forecast data. Even when
the performance of the proposed model was poor, the difference was as little as about +0.5 ◦C.
From February to December, the difference between the real SST and ECMWF forecast data was 1.9 ◦C
in average, and the difference from the proposed model (with multi dataset) was 0.45 ◦C on average.
These results show that the accuracy of SST prediction was about 4 times better than the ECMWF
forecast data.
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