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Abstract: Two methods are widely used for evaluating the precision of satellite clock products,
namely the single-satellite method (SSM) and the multi-satellite method (MSM). In the satellite clock
product evaluation, an important issue is how to eliminate the timescale difference. The SSM selects
a reference satellite to eliminate the timescale difference by between-satellite differencing, but its
evaluation results are susceptible to the gross errors in the referenced satellite clock offsets. In the MSM,
the timescale difference is first estimated and then removed. Unlike the GPS, the BeiDou Navigation
Satellite System (BDS) consists of three types of satellites, namely geosynchronous earth orbit (GEO),
inclined geosynchronous orbit (IGSO), and medium earth orbit (MEO) satellites. The three types
of satellites have uneven orbital accuracy. In the generation of satellite clock products, the orbital
errors are partly assimilated into the clock offsets. If neglecting the orbital accuracy difference of the
three types of BeiDou satellites, the MSM will obtain biased estimates of the timescale difference and
finally affect the clock product evaluation. In this study, an improved multi-satellite method (IMSM)
is proposed for evaluating the real-time BDS clock products by removing the assimilated orbital
errors of the three types of BDS satellites when estimating the timescale difference. Three real-time
BDS clock products disseminated by three different International GNSS Service (IGS) analysis centers,
namely CLK16, CLK20, and CLK93, over a period of two months are used to validate this method.
The results indicate that the assimilated orbital errors have a significant impact on the estimation of
the timescale difference. Subsequently, the IMSM is compared with the SSM in which the referenced
satellite is rigorously chosen, and their RMS difference is only 0.08 ns, which suggests that the
evaluation results obtained by the IMSM are accurate. Compared with the traditional MSM, the IMSM
improves the RMS by 0.16, 0.11, and 0.07 ns for CLK16, CLK20, and CLK93, respectively. Finally,
three real-time BDS clock products are evaluated using the proposed method, and results reveal a
significant precision difference among them.

Keywords: BDS; real-time; satellite clock offset product; evaluation approach; orbital error

1. Introduction

On April 1, 2013, the International GNSS Service (IGS) Real-Time Pilot Project was officially
launched to provide real-time service (RTS). The RTS products consist of GNSS satellite orbit and
clock corrections to the broadcast ephemeris. Such corrections are formatted according to the Radio
Technical Commission for Maritime Services (RTCM) state-space representation (SSR) standard and
disseminated using the networked transport of RTCM via internet protocol (NTRIP). Based on the RTS
products, the precise point positioning (PPP) technology can be processed in real-time mode [1–3],
which has been applied to various real-time fields such as vehicle navigation [4], aerial triangulation [5],
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time transfer [6], and architecture deflection detection [7]. On December 27, 2018, the BeiDou Navigation
Satellite System (BDS) started to provide global services. Currently, a few IGS analysis centers (ACs)
and institutes provide free-accessed real-time precise BDS orbit and clock products, including Wuhan
University (WHU), Centre National D ‘etudes Spatiales (CNES), Deutsches Zentrum für Luft- und
Raumfahrt (DLR), and Deutsches GeoForschungsZentrum (GFZ). Besides, some commercial PPP
services, such as Trimble RTX, Fugro Starfix, and UniStrong Atlas/ChinaCM, also provide BDS real-time
precise products. The availability of real-time BDS products enables users to perform real-time
BDS PPP. For RTS providers, assessing the precision of real-time products is a routine job. For the
users, the real-time BDS PPP performance relies on the quality of the precise products. The product
precision is also a key indicator of satellite health status and an essential component of service integrity
information. Therefore, it is vital to evaluate real-time BDS clock products.

In the precise clock estimation, the satellite and receiver clock offsets are linearly dependent.
To make the clock offsets estimable, a referenced clock offset or the so-called timescale is usually
introduced, which means that the estimated clock offsets are relative values [8]. Therefore, precision is a
key quality indicator for the clock products. In the precision evaluation of clock products, it is necessary
to eliminate the timescale difference, which is a time-varying system bias with respect to the referenced
clock product [8,9]. Conventionally, there are two commonly used methods to evaluate the precision of
GPS clock products, i.e., the single-satellite method (SSM) and multi-satellite method (MSM). The SSM
selects a reference satellite to form satellite-differenced (SD) and product-differenced (PD) clock offsets
in which the timescale difference can be eliminated by the differencing operation [10,11]. However,
in this method, the selection of the referenced satellite is vital since the gross errors in the clock offsets
of the referenced satellite can be propagated into the SD and PD clock offsets. Unlike the SSM, the MSM
estimates the timescale difference using the PD clock offsets of all satellites, and subsequently removes
the timescale difference at every epoch [8,12]. Therefore, the evaluation results obtained by the MSM
can be less affected by the clock gross errors included in the selected reference satellite [8].

Although many efforts have been made to assess the precision of IGS legacy or multi-GNSS
experiment (MGEX) products [13–19], including real-time BDS clock products [11,12,20,21], few studies
paid attention to the impact of orbital errors on the evaluation results. In the precise clock estimation,
the orbital errors are partially assimilated in the clock offsets [22–24]. Due to the smaller precision
difference between different GPS satellites, the effect of assimilated orbital errors on the precision
evaluation of clock products is usually negligible. Dissimilar to the GPS, the BDS constellation consists
of three types of orbits, namely geosynchronous earth orbit (GEO), inclined geosynchronous orbit
(IGSO), and medium earth orbit (MEO). As the accuracy of GEO orbit products is much lower than
that of IGSO and MEO satellites [25], the assimilated orbital errors for the GEO satellites are also
much larger, which will bias the timescale difference estimates in the MSM since it is a common
parameter for all three types of BDS satellites. In the process of the real-time clock offset estimation,
the satellite coordinates are usually fixed using the predicted ultra-rapid orbit products [26–28].
When the ultra-rapid orbit updates, some discontinuities in the generated real-time orbit and clock
products will occur, which means the clock discontinuity is essentially caused by the assimilated
orbital errors. Similar to the assimilated orbital errors, the caused clock discontinuities also affect
the estimation of the timescale difference. Based on the above analysis, an improved multi-satellite
method (IMSM) is proposed to evaluate the real-time BDS clock products by removing the assimilated
orbital errors of the three types of BDS satellites when estimating the timescale difference. The idea of
removing the assimilated orbital errors for the three types of BDS satellites in the IMSM is analogical to
assign different weights for different types of BDS satellites in the estimation of the timescale difference.

The paper is outlined as follows. First, an extended model of real-time BDS clock products is
depicted, and then the improved multi-satellite method is presented. Next, three kinds of available
real-time precise BDS clock products, i.e., WHU CLK16, DLR CLK20, and CNES CLK93, are used
to validate the IMSM. Afterward, three BDS clock products are evaluated using the IMSM. Finally,
some conclusions are summarized.
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2. Method

In the precision evaluation of real-time clock products, a more precise clock product is usually
selected as a reference. Then, the timescale difference needs to be eliminated. In this section, an improved
multi-satellite method is presented for evaluating the real-time BDS clock products by removing the
assimilated orbital errors in the estimation of the timescale difference.

2.1. Model of Real-Time BDS Clock Product

The generation methods of the real-time clock offset product can be classified into two categories,
i.e., the un-differenced methods [29] and mixed-differenced methods [30]. For both types of methods,
a timescale must be introduced to separate the satellite and receiver clock offsets due to their linear
dependency. The introduced timescale may differ among different ACs due to their different data
processing schemes, which will cause a timescale difference between different clock products. Besides,
an initial clock is introduced to convert the epoch-differenced clock offsets into the un-differenced ones
in the mixed-differenced method. Overall, the traditional model of the clock product can be described
as [8,31]

Cs
a = Oa + Os

a + Ts
a, (1)

where superscript s and subscript a denote the satellite and AC, respectively, Cs
a is the clock product

in seconds, Oa is the timescale in seconds, Os
a is the initial clock bias in seconds, and Ts

a is the phase
estimation clock correction in seconds, which can be expressed as

Ts
a = Ts + εs

a, (2)

where Ts is the true value of the clock correction, and εs
a is the noise. The timescale Oa is a time-varying

offset for all satellites, and thus it can be absorbed by the receiver clock offset. The initial clock bias Os
a

is a constant offset on a continuous arc, which only affects the PPP convergence time [31]. The final
PPP accuracy is dependent on the clock correction Ts

a [8]. In summary, the PPP performance is only
affected by Os

a and Ts
a.

The accuracy of BDS GEO orbit products is over five times worse than that of IGSO and MEO orbit
products [21,25]. In the real-time clock estimation, the ultra-rapid orbit products are usually used to fix
the satellite coordinates, and the orbital errors can be partially assimilated by the clock offsets [22–24].
Besides, the discontinuities of the orbital errors will also cause clock discontinuities due to the high
correlation between the radial orbit and clock offset [20,21]. In other words, the clock discontinuity can
be regarded as another effect caused by the assimilated orbital errors. Thus, the derived clock products
for different BDS satellite types contain different magnitudes of orbital errors. The time-varying part
of the assimilated orbital errors can be absorbed into the estimated timescale difference, resulting in
deviated evaluation results for all satellites. Therefore, the traditional model described by Equation (1)
is not suitable for BDS clock products. An extended model of real-time BDS clock products can be
expressed as

Cs
a = Oa + Os

a + Ts + Rs
a + εs

a, (3)
where Rs

a is the effect caused by the assimilated orbital error in the unit of second.
In the precision evaluation, a post-processed clock product is usually employed as the referenced

product. Due to its higher precision, the initial clock bias, assimilated orbital error, and noise in the
referenced clock product can be neglected. Thus, the reference product Cs

b provided at the analysis
center b can be expressed as

Cs
b = Ob + Os

b + Ts + Rs
b + εs

b
≈ Ob + Ts . (4)

By subtracting Equation (4) from Equation (3), the derived PD clock offset can be formulated
as follows: ∆Cs

ab = Cs
a −Cs

b = (Oa + Os
a + Ts + Rs

a + εs
a) − (Ob + Ts)

= (Oa −Ob) + Os
a + Rs

a + εs
a

= ∆Oab + Os
a + Rs

a + εs
a

, (5)
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where ∆(·)ab is the between-product differencing operator for the products provided by the analysis
center a and b, ∆Cs

ab is the PD clock offset, and ∆Oab is the timescale difference.

2.2. Effect of the Assimilated Orbital Errors

As stated in the previous section, the effect of the assimilated orbital errors includes not only the
effect directly caused by the orbital errors but also the influence caused by the clock discontinuity.
Therefore, the effect of the assimilated orbital errors Rs

a in Equation (3) can be further expressed as

Rs
a = ROs

a + RDs
a,t, (6)

where ROs
a is the effect directly caused by the orbital errors in the unit of second, and RDs

a,t is the effect
of the clock discontinuity at epoch t in the unit of second.

Due to the correlation of the orbit and clock offset, about 96% of radial orbital errors can be
absorbed by the clock offset in the estimation of satellite clock offsets [23]. The orbital error along the
line-of-sight direction can be computed and corrected from the observations [23,24]. A practical and
straightforward formula can be expressed as

δρs
A = eT

· ∆Xs
ab, (7)

where δρs
A is the orbital error on the line-of-sight direction in meters, eT =

(
ex, ey, ez

)
is the unit

line-of-sight vector from receiver A to satellite s, and ∆Xs
ab

T =
(
∆xs

ab, ∆ys
ab, ∆zs

ab

)
is the PD coordinate

vector for satellite s in the Earth-Centered Earth-Fixed system in meters. Since post-processed orbit
products can provide satellite coordinates with negligible errors, real-time orbit products can be
compared with the post-processed orbit products to obtain the PD coordinate vector. Thus, Equation (7)
can be used to estimate the radial orbital errors. As the satellite clock offsets are estimated in a GNSS
reference network, the orbital error ROs

a can be approximately described as

ROs
a =

∑M
A=1 pA · δρ

s
A∑M

A=1 pA · c
, (8)

where pA is the elevation angle-dependent weight, M is the number of stations in the reference network,
and c is the speed of light in vacuum in meters per second.

The orbit update can easily result in clock discontinuity, which is another effect caused
by the assimilated orbital errors, and also should be considered in the precision evaluation.
After correcting the orbital errors ROs

a and timescale difference ∆Oab, the corrected product-differenced
and epoch-differenced (PDED) clock offset can be used to detect and correct the clock discontinuities in
an iterative manner. The initial value of the timescale difference can be calculated based on the PD
clock offsets of MEO satellites using the MSM method. The criteria for identifying the discontinuities
are provided as follows: 

∣∣∣∣∇∆Cs
a,t,t−1 − µ∇∆C

∣∣∣∣ > 3σ∇∆C∣∣∣∣∇∆Cs
a,t+1,t − µ∇∆C

∣∣∣∣ ≤ σ∇∆C
, (9)

where∇(·)t,t−1 is the between-epoch differencing operator for epoch t and t− 1,∇∆Cs
a,t,t−1 and∇∆Cs

a,t+1,t
are the corrected PDED clock offsets, and µ∇∆C and σ∇∆C are the mean and standard deviation (STD)
of the corrected PDED clock offsets, respectively. If the conditions in the inequations (9) are satisfied,
a discontinuity is considered to occur at epoch t as

RDs
a,t = ∇∆Cs

a,t,t−1. (10)

Once the discontinuity is determined, it can be removed from the clock offset series since epoch t.
After correcting the effect of the assimilated orbital errors, the corrected PD clock offset ∆C

s
ab can

be expressed as Equation (11) following Equation (5).
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∆C
s
ab = ∆Cs

ab −Rs
a

= ∆Cs
ab −ROs

a −RDs
a,t

= ∆Oab + Os
a + εs

∆

. (11)

where εs
∆ is the noise of the corrected PD clock offset ∆C

s
ab, which includes the noise of Cs

a, i.e., εs
a,

and the noise introduced by Rs
a.

In the proposed method, the corrected PD clock offset series obtained from Equation (11) are used
to estimate the timescale difference. In contrast, if the effect of the assimilated orbital errors is not
considered, as done in the multi-satellite method, the timescale difference is estimated as [8]

∆Ôab,MSM =
1
m

m∑
s=1

∆Cs
ab, (12)

where ∆Ôab,MSM is the timescale difference estimate obtained by the multi-satellite method, and m is
the number of satellites. After placing Equation (5) into Equation (12) under the zero-mean assumption
1
m

∑m
s=1 Os

a = 0, we can obtain

∆Ôab,MSM = ∆Oab +
1
m

∑m
s=1 Rs

a +
1
m

∑m
s=1 ε

s
a

= ∆Oab + B + ε
, (13)

where ε = 1
m

∑m
s=1 ε

s
a is the noise, and B = 1

m
∑m

s=1 Rs
a is the bias caused by the assimilated orbital errors.

Unfortunately, the bias B is not a constant, meaning that it will affect the calculation of the STD for the
clock offsets. Therefore, the effect of the assimilated orbital errors must be carefully considered when
assessing the precision of BDS real-time clock products.

2.3. Precision Evaluation of BDS Real-time Clock Products

Before evaluating the clock products, the timescale difference needs to be estimated and removed.
In the IMSM, the assimilated orbital errors are corrected from the clock offsets when estimating the
timescale difference. Since the assimilated orbital errors for the BDS GEO satellites are larger than
the IGSO and MEO satellites, the corrections for the GEO satellites are also larger. This strategy is
similar to assigning different weights for different types of BDS satellites in the estimation of the
timescale difference.

To estimate the timescale difference, a robust least-squares method is employed. The error equation
is expressed as 

v =


I E1
...

...
I En


[

Ôs
a

∆Ôab

]
−


∆

¯
C

s

ab,1
...

∆
¯
C

s

ab,n


P = diag(p1, . . . , pn)

, (14)

where satellite s = 1, 2, . . . , m and epoch t=1,2, . . . ,n, ∆
¯
C

s

ab,t =
(
∆C

1
ab,t, . . . , ∆C

m
ab,t

)T
is the m-by-1 vector

of the PD clock offsets after correcting the effect of assimilated orbital errors, v is the residual vector,
I is the m-by-m identity matrix, Et is the m-by-n matrix whose elements at the tth column are one while

the others are zero, Ôs
a =

(
Ô1

a , . . . , Ôm
a

)T
is the m-by-1 vector of the estimated initial clock bias for the

m satellites, ∆Ôab =
(
∆Ôab,1, . . . , ∆Ôab,n

)T
is the n-by-1 vector of the estimated timescale difference

for the n epochs, and P is the (m*n)-by-(m*n) weight matrix, which can be determined according to
a robust weighting function [32] with an assumption of no correlation between satellites or epochs.
Since Equation (14) is under-determined, a zero-mean constraint is added to Ôs

a.
Once the timescale difference ∆Ôab,t is determined by Equation (14), the estimated timescale

difference can be removed from the PD clock offsets in Equation (5) as follows.
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∆C̃s
ab,t = ∆Cs

ab,t − ∆Ôab,t

= Os
a,t + Rs

a,t + εs
a,t

, (15)

where ∆C̃s
ab,t is the PD clock offset after subtracting the timescale difference, and it is also called the

double-differenced (DD) clock offset for simplicity. The items on the right side of Equation (15) are
the errors to affect PPP performance [8,24,31]. Therefore, the precision of the clock products can be
evaluated using the STD of the DD clock offset as σ =

√
1

Nt−1
∑Nt

t=1

(
∆C̃s

ab,t − µ
)2

µ = 1
Nt

∑Nt
t=1 ∆C̃s

ab,t

, (16)

where σ and µ are STD and mean values of the DD clock offset series, respectively, and Nt is the element
number in the clock offset series. For instance, for a 24-h dataset at a sampling interval of 30 seconds,
the value of Nt is 2880. The entire process for implementing the IMSM is depicted in Figure 1.

Figure 1. Flow chart of the improved multi-satellite method (IMSM) for evaluating real-time BeiDou
Navigation Satellite System (BDS) clock products.

3. Results

To verify the IMSM method, experiments were conducted based on real-time BDS clock products
provided by the IGS RTS. Currently, these products are generated based on the RTS global network
consisting of 256 stations (http://www.igs.org/network). After registering online, the users can access
these real-time products from the RTS NTRIP casters. For the caster located in the GNSS Research
Center of WHU, available BDS products include WHU CLK15/16, DLR CLK20/21, and CNES CLK92/93.
Among them, the orbit products of CLK16, CLK20, and CLK93 refer to the satellite antenna phase
center (APC) and the others refer to the center of mass (CoM), which is the only difference for these
product couples.

Table 1 presents the data details and processing strategies used in this study. The products CLK16,
CLK20, and CLK93 were collected using the software BNC (BKG NTRIP caster) in real-time on the day
of year (DOY) 213–243 and 255–284, 2019. The GFZ MGEX post-processed clock products provide

http://www.igs.org/network
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clock offsets for BDS GEO, IGSO, and MEO satellites at a sample interval of 30 seconds. Therefore,
the GFZ MGEX clock products were used as the reference products in the following experiments.
The sample intervals of the real-time clock products are 5 seconds. In order to facilitate comparison
and avoid interpolation errors, the real-time clock products were resampled to 30 seconds.

Table 1. Data details and processing strategies.

Items Details/Strategies

Data period Day of year 213–243 and 255–284, 2019

Real-time products

Broadcast ephemeris + SSR corrections (WHU CLK16, DLR CLK20,
CNES CLK93)
Sample interval: 5 seconds
Reference center: antenna phase center (APC)
Software for data collecting: BKG Ntrip Caster (version 2.12.6)

Reference product
GFZ MGEX post-processed products
Sample interval: 30 seconds
Reference center: center of mass (CoM)

Clock product comparison

Resample interval: 30 seconds
Reference center: APC. Satellite phase center offsets (PCO) are corrected
using igs14_wwww.atx files that are specified in the GFZ SP3 file headers
(wwww: week number).

3.1. Effect Analysis of Assimilated Orbital Errors

This section analyzes the effect of the assimilated orbital errors on the precision evaluation of
the clock products. The assimilated orbital errors can be computed according to Equations (6)–(10),
in which the direct effect of the orbital errors is weighted average values over a global reference
network. The coordinates of 38 global distributed stations from the IGS weekly SINEX solutions are
used for the computation based on Equation (8), as shown in Figure 2.

Figure 2. Distribution of stations used to compute the assimilated orbital errors.

The computed assimilated orbital errors are presented in Figure 3 with a representative case
of CLK16 on DOY 256, 2019. As shown in Figure 3a, the effect directly caused by the assimilated
orbital errors is significantly different for the GEO, IGSO, and MEO satellites with an averaged RMS of
2.265, 0.407, and 0.139 m, respectively. The assimilated orbital errors are significantly larger for the
GEO satellites. This is reasonable because the GEO satellites have the poorest orbit accuracy due to
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their geostationary characteristics. In addition, the clock discontinuity is another effect caused by the
assimilated orbital errors, and the detected discontinuities are shown in Figure 3b. As seen in this
subfigure, some discontinuities occur approximately every three hours when the orbits are updated.
Figure 3b also shows that the discontinuities have comparable magnitudes for GEO, IGSO, and MEO
satellites with a mean value of 0.18 ns.

Figure 3. Assimilated orbital errors (a) and discontinuities (b) for CLK16 on day of year 256, 2019.



Remote Sens. 2020, 12, 3638 9 of 18

To analyze the effect of the assimilated orbital errors on the estimation of the timescale difference,
the timescale differences are estimated using the MSM and IMSM. Then, they are compared. Figure 4
presents the timescale differences estimated by both methods and their discrepancies for CLK16 on
DOY 256, 2019. In Figure 4a, the timescale difference series derived from both methods show similar
trends. After examining the discrepancies of the two series, a varying trend can be found, and some
discontinuities occur at about 6 and 12 h, as shown in the blue circles of Figure 4b. The former reflects
a systematic effect of the assimilated orbital errors on the timescale difference estimates, and the latter
is caused by the discontinuities.

Figure 4. Timescale differences (a) obtained by the multi-satellite method (MSM) and the improved
multi-satellite method (IMSM), and their discrepancies (b) on day of year 256, 2019. Real-time clock
product CLK16 is used to compute the timescale difference with respect to the referenced Deutsches
GeoForschungsZentrum (GFZ) multi-GNSS experiment (MGEX) post-processed clock products.

Furthermore, we analyzed the impact of the assimilated orbital errors on the precision evaluation
of BDS clock products. Figure 5 presents the PD radial orbits and DD clock offsets derived from the
MSM and the IMSM for a few typical satellites. For the MSM, the DD GEO clock offsets are highly
correlated with the PD radial orbits, as shown in the left panel. However, the MEO and IGSO clock
offsets do not exhibit a strong correlation with their orbit errors but show an opposite variation to the
GEO clock offset errors. This is because part of the assimilated orbital errors in the GEO clock offsets
has been propagated into the timescale difference parameter. Consequently, these errors are further
propagated into the DD clock offsets of the IGSO and MEO satellites because their DD clock offsets
are derived by subtracting the common timescale difference from the PD clock offsets. For the IMSM,
the correlation of the clock offsets between the GEO and IGSO/MEO satellites is largely reduced. This is
because the effect of the assimilated orbital errors, especially from the GEO satellites, is removed when
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estimating the timescale difference. As a result, the evaluation of the BDS IGSO and MEO clock offsets
will not be subject to the substantial effect of the assimilated orbital errors from the GEO satellites.

Figure 5. Product-differenced (PD) radial orbits and double-differenced (DD) clock offsets derived
from the multi-satellite method (MSM) and improved multi-satellite method (IMSM) for the real-time
clock product CLK16 on day of year 256, 2019.

3.2. Comparison of Evaluation Results

In order to validate the IMSM method, its evaluation results are compared with those derived from
the SSM and MSM. Since the SSM eliminates the timescale difference by between-satellite differencing
operation, the timescale difference does not need to be estimated. Nevertheless, this method depends on
the data quality of the selected reference satellite clock. In addition, the real-time clock offsets are often
influenced by gross errors and data stream interruptions, which make the SSM performance unstable
and unreliable [8]. Therefore, the referenced satellite clock is carefully selected to ensure the correctness
of the SSM evaluation results by abiding by the following two conditions. First, the data availability
rate is higher than the threshold. Second, daily STD is within the threshold limit. The thresholds for
the data availability rate and daily STD are empirically set to 85%–95% and 0.2–0.3 ns, respectively.
It is noted that the MEO orbits and clock products generally have the highest accuracy among the three
kinds of BDS satellites. Therefore, the MEO satellites are chosen as referenced satellites since they are
better at satisfying the above conditions. After selecting the referenced satellite cautiously, the SSM is
used to validate the IMSM method.

The DD clock offsets are computed using the SSM, MSM, and the IMSM. Figure 6 shows the DD
clock offsets of a few typical satellites for CLK16 on DOY 256, 2019. In the implementation of the SSM,
MEO C14 is selected as the referenced satellite following the above two principles. In the MSM, a few
discontinuities are found in the blue circles, which agree with the discontinuities in the estimated
timescale differences shown in Figure 4. By contrast, the DD clock offsets obtained by the IMSM do
not show noticeable discontinuities since they have been removed when estimating the timescale
difference. Moreover, the DD clock offsets derived from the IMSM are similar to those obtained from
the SSM. In this figure, although the improvement for the DD clock offsets of the GEO satellites is not
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obvious due to a larger axis range, the IMSM-derived DD clock offset series are more consistent with
those derived from the SSM, as seen in Table 2. The STDs of the DD clock offsets are computed for all
satellites and listed in Table 2. It appears that the STDs derived from the IMSM show good agreement
with those of the SSM. However, the STDs between the MSM and the IMSM have significant differences
for all three types of satellites, indicating a significant effect of the assimilated orbital errors.

Figure 6. Double-differenced (DD) clock offsets derived from the single-satellite method (SSM),
the multi-satellite method (MSM), and the improved multi-satellite method (IMSM) for CLK16 on day
of year 256, 2019.

Table 2. Standard deviation (STD) of double-differenced clock offset obtained by the single-satellite
method (SSM), the multi-satellite method (MSM), and the improved multi-satellite method (IMSM) for
CLK16 on day of year 256, 2019 (units: ns).

Orbit PRN SSM MSM IMSM

GEO C01 2.52 1.82 2.57
C02 2.69 2.41 2.84
C03 0.94 0.45 1.04
C04 2.95 2.69 2.99
C05 0.86 0.79 0.95

mean 1.99 1.63 2.08
IGSO C06 0.50 0.53 0.53

C07 1.68 1.50 1.81
C08 0.34 0.53 0.38
C09 0.41 0.55 0.39
C10 0.35 0.42 0.43
C13 0.39 0.49 0.43

mean 0.61 0.67 0.66
MEO C11 0.26 0.94 0.25

C12 0.55 0.59 0.64
C14 \ 0.75 0.17

mean 0.41 0.76 0.35

We further evaluate the IMSM by comparing the results with the SSM and MSM using the data
from DOY 213 to 243 and from 255 to 284, 2019. In the SSM, the referenced satellites are selected
carefully following the aforementioned principles. The data are excluded for the days on which no
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referenced satellite satisfies the required principles. In order to have sufficient samples and obtain
accurate evaluation results in the SSM simultaneously, the threshold for the data availability rate and
STD limit is empirically set to 90% and 0.2 ns, respectively. Due to the relatively lower precision
of CLK16 and CLK20, the STD threshold is set to 0.3 ns to ensure adequate samples. As a result,
the number of days used for the comparison is 9, 11, and 31 for CLK16, CLK20, and CLK93, respectively.
In the SSM, the selected reference clock offsets have an averaged STD of 0.18, 0.26, and 0.10 ns for
CLK16, CLK20, and CLK93, respectively.

By differencing the evaluation results of all satellites derived from the IMSM and an existing
method, i.e., the SSM or MSM, Figure 7 shows the result differences of the IMSM with respect to
the MSM and SSM as well as their RMS statistical values. The differences are displayed in a form of
boxplots to comprehensively describe the error distribution of all satellites by minimum/maximum
values, lower/upper quartiles, and median. As seen in Figure 7a, the result differences between the
IMSM and the MSM exceed 0.4 ns on some days for CLK16, CLK20, and CLK93, and their RMS
differences are between 0.13 and 0.23 ns. In contrast, Figure 7b shows that the evaluation results
derived from the SSM and the IMSM are more consistent, with RMS differences smaller than 0.08 ns
for the three products. Compared with the traditional MSM, the IMSM improves the RMS by 0.16, 0.11,
and 0.07 ns for CLK16, CLK20, and CLK93, respectively. These results indicate that the evaluation
results obtained by the IMSM are accurate and that the IMSM is feasible to assess real-time BDS clock
products. Moreover, the IMSM can avoid the selection of the reference satellites.

Figure 7. Result differences of the improved multi-satellite method (IMSM) with respect to the
multi-satellite method (MSM) (a) and the single-satellite method (SSM) (b). The boxplot provides the
statistical values of the result differences, including minimum/maximum values, lower/upper quartiles,
and median.
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Furthermore, the result differences are classified according to their satellite types, and the averaged
result differences are shown in Figure 8 for the GEO, IGSO, and MEO satellites. The right panel illustrates
that the result differences between the SSM and the IMSM are small and within 0.06 ns for the three
types of satellites. As the left panel indicates, the evaluation results of the IMSM tend to be larger and
smaller for the GEO and MEO satellites, respectively, compared with the MSM. This can be attributed to
the fact that the assimilated orbital errors of the GEO satellites have been removed before the timescale
difference estimation in the IMSM. Besides, as seen in the left figure, the result differences exceed
0.16 ns for the GEO and MEO satellites. Since the nominal precision of the real-time precise BDS clock
product is about 0.3 ns [20], such a difference is considered to be significant. The larger differences
indicate that the MSM is subject to an effect from the assimilated orbital errors.

Figure 8. Averaged result differences of the improved multi-satellite method (IMSM) with respect to
the multi-satellite method (MSM) and the single-satellite method (SSM). Note that the geosynchronous
earth orbit (GEO) clock products are not provided in CLK20, so they are not shown in the figure.

3.3. Evaluation of Three Real-Time BDS Satellite Clock Products

In this section, the IMSM method is used to evaluate the real-time BDS clock products of WHU
CLK16, DLR CLK20, and CNES CLK93. Figure 9 presents the daily averaged STDs of the GEO, IGSO,
and MEO DD clock offsets for the two periods, namely DOY 213–243 and 255–284, 2019. Statistics of
CLK16 are not calculated on some days due to its low data availability rate. In addition, the DD GEO
clock offsets of CLK20 are not shown due to the data absence. As seen from these figures, the MEO
and GEO clock products exhibit the best and worst precision, respectively. In terms of daily stability,
the IGSO and MEO satellites also mostly outperform the GEO satellites. The precision stability can
be affected by various factors such as data stream interruptions, quality control in real-time clock
estimation, and an unhealthy state of satellites. Besides, the degraded precision for the CLK20 IGSO
clock products in the second session could be caused by the data stream instability. Table 3 lists the
precision of the three real-time BDS clock products for each satellite, which can be reflected by the
averaged STDs of the DD clock offsets. It is seen that the precision difference among different products
can reach 1.0 ns, while the precision difference for different satellite types is smaller than 1.0 ns.
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Figure 9. Daily averaged STDs of double-differenced (DD) clock offsets for CLK16 (a), CLK20 (b),
and CLK93 (c) from day of year 213–243 and 255–284, 2019. CLK20 does not provide GEO clock products.
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Table 3. Precision of the real-time BDS clock products for each satellite (units: ns). CLK20 does not
provide GEO clock products.

Orbit PRN CLK16 CLK20 CLK93

GEO C01 1.40 \ 0.72
C02 1.22 \ 0.93
C03 1.15 \ 0.93
C04 1.49 \ 0.95
C05 1.24 \ 0.91

mean 1.30 \ 0.89
IGSO C06 0.54 1.21 0.27

C07 0.63 1.11 0.28
C08 0.45 1.31 0.17
C09 0.47 1.86 0.41
C10 0.49 1.17 0.24
C13 0.50 1.19 0.22
C16 0.62 1.56 \

mean 0.53 1.34 0.27
MEO C11 0.48 0.56 0.15

C12 0.62 0.60 0.15
C14 0.71 0.58 0.28

mean 0.60 0.58 0.19

4. Discussion

Based on the IMSM, we can objectively evaluate the precision of BDS real-time clock products.
In the precision assessment, an important issue is how to eliminate the timescale difference. The existing
single-satellite method removes the timescale difference by between-satellite differencing, while the
existing multi-satellite method and the proposed IMSM method firstly estimate the timescale difference
and then correct it. However, the single-satellite method needs to select a referenced satellite,
which makes it inconvenient for automatic processing and may pose a risk that the evaluation results
can be easily affected by the gross errors in the referenced clock offset. To overcome these problems,
the multi-satellite method puts forward to use the multi-satellite reference. The main distinction
between the proposed IMSM and the multi-satellite method is that when estimating the timescale
difference, the effect of the assimilated orbital errors is corrected. The idea is similar to assigning
different weights for three types of BDS satellites in the estimation of the timescale difference. As a
result, the estimated timescale difference is more accurate.

The principles of the IMSM are mainly based on the fact that the orbital error can be absorbed by
the clock offset to some extent [22–24], and the effect of the assimilated orbital errors cannot be ignored
for BDS GEO and IGSO satellites, as shown in Figure 3. In this study, only BDS-2 real-time clock
products are used to validate the proposed IMSM method. On 31 July 2020, the BDS-3 was announced
formally commissioned. The BDS-3 constellation is also composed of GEO, IGSO, and MEO satellites.
Therefore, the models and principles proposed in this study are also applicable to the BDS-3. As more
ground stations begin to support BDS-3 signals, more BDS-3 real-time precise products from different
ACs will become available and their quality will be further refined, which will facilitate the subsequent
investigation and application of the IMSM method for evaluating BDS-3 real-time clock products.

5. Conclusions

An improved multi-satellite (IMSM) approach is proposed for evaluating real-time BDS clock
products. In this approach, the effect of assimilated orbital errors is corrected when estimating the
timescale difference. To validate this IMSM method, the real-time BDS clock products WHU CLK16,
DLR CLK20, and CNES CLK93 were collected in real-time using the software BNC at two periods, i.e.,
DOY 213–243 and 255–284, 2019. We first analyzed the effect of the assimilated orbital errors on the
precision evaluation of clock products. The effect directly caused by the assimilated orbital errors is
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significantly different for the GEO, IGSO, and MEO satellites with an averaged RMS of 2.265, 0.407,
and 0.139 m, respectively. Besides, the assimilated orbital errors can cause some discontinuities in
the clock products as the orbit updates. The effect of the discontinuities is comparable for the three
types of satellites, with a mean value of 0.18 ns. The evaluation results using the IMSM method are
compared with those of the existing methods, i.e., the multi-satellite method and the single-satellite
method. For the latter, the referenced satellite is carefully selected to ensure the correctness of the results
obtained by the single-satellite method. The results show that the RMS differences between the IMSM
method and the multi-satellite method exceed 0.13 ns, indicating an obvious effect of the assimilated
orbital errors on the multi-satellite method. In contrast, the results derived from the single-satellite
method and the IMSM method are more consistent, with an RMS difference of smaller than 0.08 ns
for CLK16, CLK20, and CLK93. Compared with the traditional MSM, the IMSM improves the RMS
by 0.16, 0.11, and 0.07 ns for CLK16, CLK20, and CLK93, respectively. These results suggest that
the evaluation results obtained by the IMSM are accurate and confirm the correctness of the IMSM
method. Moreover, the IMSM method can overcome the problem of the single-satellite method that is
susceptible to the gross errors in the referenced satellite clock offsets.

Based on the two-month dataset, the real-time BDS clock products CLK16, CLK20, and CLK93
are evaluated using the IMSM method. The results show that the MEO clock products exhibit the
best precision among the three kinds of BDS satellites. By contrast, the GEO clock products have
the poorest precision. The precision difference among different products can reach 1.0 ns, while the
precision differs from different types of satellites with a few sub-nanoseconds.
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