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Abstract: Object detection and recognition in aerial and remote sensing images has become a hot
topic in the field of computer vision in recent years. As these images are usually taken from a
bird’s-eye view, the targets often have different shapes and are densely arranged. Therefore, using an
oriented bounding box to mark the target is a mainstream choice. However, this general method is
designed based on horizontal box annotation, while the improved method for detecting an oriented
bounding box has a high computational complexity. In this paper, we propose a method called ellipse
field network (EFN) to organically integrate semantic segmentation and object detection. It predicts
the probability distribution of the target and obtains accurate oriented bounding boxes through a
post-processing step. We tested our method on the HRSC2016 and DOTA data sets, achieving mAP
values of 0.863 and 0.701, respectively. At the same time, we also tested the performance of EFN on
natural images and obtained a mAP of 84.7 in the VOC2012 data set. These extensive experiments
demonstrate that EFN can achieve state-of-the-art results in aerial image tests and can obtain a good
score when considering natural images.

Keywords: high resolution remote sensing image; object detection; instance semantic segmentation;
field-based network; oriented bounding box

1. Introduction

Remote sensing imaging techniques have opened doors for people to understand the earth
better. In recent years, as the resolution of remote sensing images has increased, remote sensing
target detection (e.g., the detection of aeroplanes, ships, oil-pots, and so on) has become a research
hotspot [1–5]. Remote sensing target detection has a broad range of applications, such as military
investigation, disaster rescue, and urban traffic management. Differing from natural images taken
from low-altitude perspectives, aerial images are taken from a bird’s-eye view, which implies that the
objects in aerial images are arbitrarily oriented. Moreover, in many circumstances, the background is
complex and the targets are densely arranged, often varying in shape and orientation. These problems
make target detection using aerial images very challenging. Most advanced object detection methods
rely on rectangular-shaped horizontal/vertical bounding boxes drawn on the object to accurately
locate its position. In the most common cases, this approach works; however, when it comes to
aerial images, its use is limited, as shown in Figure 1a. Such orthogonal bounding boxes ignore
the object pose and shape, resulting in reduced object localization and limiting downstream tasks
(e.g., object understanding and tracking). In this case, an oriented bounding box is needed to mark the
image area more accurately, as shown in Figure 1b.
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(a) (b)

Figure 1. A group of large vehicles with different annotation methods: (a) shows a failure case of
horizontal rectangle annotation, which leads to high overlap, compared to (b).

Benefitting from R-CNN frameworks [2,4,6–11], many recent works on object detection in aerial
images have reported promising detection performances. They have used the region proposal network
(RPN) to generate regions of interest (RoIs) from horizontal bounding boxes, followed by identifying
their category through region-based features. However, [5,12] showed that these horizontal RoIs
(HRoIs) typically lead to misalignments between the bounding boxes and objects. As a result, it is
usually difficult to train a detector to extract object features and identify the object’s localization
accurately. Instead of using horizontal bounding boxes, many methods regress the oriented bounding
boxes by using rotated RoIs (RRoIs). In [5,12–15], rotated anchors are added on the basis of the original.
In order to achieve a higher recall rate in the regional proposal stage, they use anchors with different
angles, scales, and aspect ratios. The rapid increase in the number of anchors makes the algorithm very
time-consuming, however. [16,17] designed a converter to transform HRoIs into RRoIs. Although this
method reduces the time consumption due to anchors, it also has a more complex network structure.

FCN [18] brought semantic segmentation into the deep learning era, being the first pixels-to-pixels
semantic segmentation method which was end-to-end trained. Compared with patch-wise classification
for object detection, semantic segmentation can better carry out spatial context modeling and avoid
redundant computation on overlapping areas between patches. Many applications using semantic
segmentation techniques have been proposed in the remote sensing literature, such as building
extraction [19–22], road extraction [23–27], vehicle detection [28], land-use and land-cover (LULC)
classification [29–31], and so on. The main methodologies in these works follow general semantic
segmentation but, for some special application scenarios (e.g., vehicles or buildings), many improved
techniques [20,25,27] have been proposed for the application scenario. However, semantic
segmentation requires pixel-wise annotation, which greatly increases the cost of data annotation.
At the same time, due to its inability to distinguish intra-class instances, it is not suitable for scenes
with densely arranged targets.

We start with the structure of the network. Features encoded in the deeper layers of a CNN are
beneficial for category recognition, but not conducive to localizing objects. The pooling layers in a CNN
preserve strength information and broaden the receptive field, while losing location information to a
great extent. Relative works [9,32–34] have shown that the descriptors have a feeble ability to locate the
objects, relative to the center of the filter. On the other hand, many related works [35–37] have shown
that learning with segmentation can lead to great results. Edges and boundaries are the essential
elements that constitute human visual cognition [38,39]. As the feature of semantic segmentation
tasks captures the boundary of an object well, segmentation may be helpful for category recognition.
Secondly, the ground-truth bounding box of an object is determined by its (well-defined) boundary.
For some objects with non-rectangular shapes (e.g., a slender ship), it is challenging to predict high IoU
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locations. As object boundaries can be well-encoded in semantic segmentation features, learning with
segmentation can be helpful in achieving accurate object localization.

To this end, we propose the ellipse field network (EFN), a detector with a more efficient
network structure and a training method that preserves location information. EFN can be regarded
as the supplement and upgrade of general semantic segmentation, which has a strong ability for
pixel-by-pixel classification and can achieve fine-grained region division. The main problem is that
pixels of the same kind are connected, while the sort of each pixel is isolated, such that we cannot
obtain the comprehensive information of an object, nor the number of objects, which is difficult to
carry out without adequate semantic understanding. EFN proposes the concept of an object field (OF),
which is defined as a probability density function describing the distribution of objects in image space;
it is composed of a center field (CF) and an edge field (EF). Luo et al. [40] showed that an effective
receptive field follows a Gaussian distribution. In combination with practical results, we consider that
the 2D Gaussian distribution is an appropriate choice for the object field [41]. The intensity distribution
of the Gaussian distribution is related to the elliptic equation (as shown in Figure 2b), which is why we
call this method the ellipse field network. Besides, we designed a special post-processing step for the
object field—ellipse region fitting (ERF)—which combines the center field and the edge field, in order
to finally obtain the ellipse region set of objects. In summary, our work provides several advantages:

• The unique field-based framework design, combined with the feature map concatenation
operation, enables the network to learn features and location information better.

• It combines the advantages of object detection and semantic segmentation and, so, can finely
locate and classify each instance.

• Ellipse region fitting: the corresponding post-processing process makes the results more robust
and reliable.

• An effective image mosaic method called spray painting is proposed, in order to process
high-resolution images.

The rest of the paper is organized as follows: After the introductory Section 1, detailing
object detection in aerial images, we enter Section 2, which is dedicated to the details of the
proposed EFN. Section 3 then introduces the spray painting and post-processing step we designed
for EFN, while Section 4 provides data set information, implementation details, experimental results,
and discussion. Finally, Section 5 concludes the paper.

Figure 2. Overall pipeline: (a) input; (b) Center Field (top) and Edge Field (bottom); (c) post-processing
by ellipse region fitting (ERF); and (d) the detection result.

2. Ellipse Field Network

Figure 3 illustrates our network architecture. EFN is orthogonal to special network design and,
so, any FCN backbone architecture can adapt to it. Here, we use U-net [42] as an example. EFN takes
images with proper resolution as input and processes them through several convolutional, max pool,
and concatenate layers. Then, the output is branched into two sibling output layers: one is the object
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field, while the other is the edge field. Each output layer has several channels corresponding to the
number of categories. After that, the ERF algorithm processes the output to obtain the center and edge
points of each object and finally outputs an ellipse. As shown in Equation (1), we use five parameters:
x0, y0, a, b, and θ to define an ellipse, where x0, y0 are the co-ordinates of the center point of the
ellipse, a, b are the semi-major axis and the semi-minor axis, respectively, and θ is the angle of rotation.
The function F(x, y; x0, y0, a, b, θ) describes the relationship between a point and an ellipse.

F(x, y; x0, y0, a, b, θ) =
[cos θ · (x− x0) + sin θ · (y− y0)]

2

a2 +
[− sin θ · (x− x0) + cos θ · (y− y0)]

2

b2 − 1. (1)

Figure 3. Visualization of the network architecture. In the input image, the target to be detected is two
airplanes. The output of the network is two fields describing the distribution probability of the center
and edge of the target. The input passes through some convolutional and pooling layers to extract
features. Then, through several concatenations, convolutions, and bilinear interpolations, the output
results are obtained.

2.1. Center Field

The center field represents the distribution of intensity, which describes the distance between
the pixels and center point of objects. According to Equation (1), if a pixel is inside an object or on
its edge, F ≤ 0. Based on this, we define Gc,p, the center field intensity of a pixel, in Equation (2).
In the equation, α is a coefficient which we call the center field decay index (with default value of 2.5),
which determines the decay rate. When objects are densely packed, some points may belong to more
than one ellipse; in this case, we choose the ellipse which has minimum distance to the point. One pixel
corresponds to one target, which solves the problem that semantic segmentation can not distinguish
intra-class instances. The intensity decays from 1 at the center of an object to e−α at the edge, with a
specific rate. In areas containing no objects, the intensity is 0. Figure 4a shows an intensity distribution.

Gc,p =

{
e−αF, if F ≤ 0

0, else
. (2)

2.2. Edge Field

Similarly, the edge field represents the distribution of edge intensity, which describes the distance
between pixels and the edges of objects. According to Equation (1), the sufficient and necessary
condition of a pixel being on an edge is F = 0. Based on this, we define the center field intensity Ge,p

of a pixel (x, y) in Equation (3). Theoretically, the edge of an object is an elliptic boundary formed
by a sequence of connected pixels. In other words, the edge is very slim, which makes it difficult to
recognize. To reduce the impact of this, we define a parameter, ω, called the edge width, in order to
adjust the width of the edges. We set the default value as 0.1. Visualization of an edge field is shown
in Figure 4b.
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Ge,p =

{
1, if |F| < ω

0, else
. (3)

(a) (b)

Figure 4. (a) Visualization of center intensity in image space; and (b) visualization of edge intensity in
image space.

2.3. Training Process

When calculating the loss function, the influence of targets with different sizes should be similar.
As there are more pixels in a large object and less in a small one, the calculation of loss by pixel
accumulation should give a higher weight to the small target. We obtain the area Aobj(p) of the
rectangle to which the pixel belongs and, then, set the weight according to the reciprocal of the area
size, as in Equation (4), where ε is a bias and the default setting is 0.1:

λc,p = λe,p =
1

ε + Aobj(p)
. (4)

Finally, the output layer scans the whole output array to determine the distance between each
pixel and each ellipse. Then, we obtain the loss, as given in Equation (5), where p represents the
pixel of the images, vc,p and ve,p are the center intensity and edge intensity predicted by the network,
respectively, and Gc,p and Ge,p are the respective ground truths. In this way, the impact of object size
can be reduced, to some extent.

LossCF = ∑
p

λc,p(vc,p − Gc,p)
2

LossEF = ∑
p

λe,p(ve,p − Ge,p)
2

Loss = Lossso f tmax + LossCF + LossEF

. (5)

3. Post-Processing

3.1. Spray Painting

Limited by the storage capacity, the input images should not be too large. Thus, high-resolution
aerial photos must be cropped into pieces. There may be a large number of objects split at the
intersection, which can lead to the errors in the image mosaic. To this end, we propose a novel
method which takes advantage of the fields detailed above. The process of common large size
image detection methods can be described as NMS[∪i(NMS(Network(cropi)))], which divides the
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large image into small images, detects the targets in the small images, uses NMS [43] to remove the
redundant bounding box, splices the small image into the large image, and uses NMS again to remove
the redundant bounding box caused by splicing. This process has high computational complexity and
incomplete objects may be missing or repeat in the margin of patches. The process of our method
can be described as ERF[∪i(EFN(cropi))], which we call spray painting. Figure 5 demonstrates this
process. Concretely, we first generate blocks with overlapped edges, set to 0.2 times the width of
the large image by default. Each junction may be composed of 2–4 cropped images; we use a linear
weighted algorithm, given in Equation (6), to fuse them. This can lead to a near-seamless large image.
In this way, the overhead of image cropping and mosaicking can be greatly reduced. Even on some
devices with insufficient computing power (e.g., embedded NPU devices), EFN can process large size
images conveniently.

f (x, y) = ∑i fi(x, y)ei(x, y)
∑i ei(x, y)

, (6)

where fi(x, y) is the field intensity value and ei(x, y) is the shortest distance from the edge of the point
mapped to the ith cropped image at (x, y) of the large image.

Figure 5. Spray painting can splice small field images into large ones and, then, obtain a bounding box
through ERF.

3.2. Ellipse Region Fitting

The ERF algorithm attempts to figure out the parameters of all ellipses according to the center
field and edge field, describing the output information of the network in a mathematical manner to
obtain oriented bounding boxes (see Figure 2d; it is the minimum enclosing rectangle of the ellipse).
There are three main steps in this algorithm: acquiring the initial center points, acquiring points on the
edges, and figuring out reliable parameters.

The first step is to acquire the initial co-ordinates of the center points, according to the center field
(which represents the object intensity distribution). For each channel, we scan the elements sequentially.
As shown in Figure 6a, if the intensity is vc,p ≤ e−α, we search for the maximum intensity in the eight
pixels around the current one. If the maximum intensity is greater than vc,p, we keep searching from
the new pixel until there is no pixel greater and record its co-ordinates (xc, yc). After processing a
channel, we obtain a group of local maximum co-ordinates of pixels, which are the initial co-ordinates
of the center points of a category object.

The second step is to acquire the points on the edges. The edge field represents the edge intensity
distribution. We start from the initial center points acquired from the first step, producing a beam every
three degrees from 0° to 360°. As shown in Figure 6b, along with the beam, ve,p jumps somewhere
and vc,p decays away from the center point. If the vc,p of a pixel is less than e−α or if ve,p is more than
0.4 greater than that of the former pixel, we consider it to be one of the points on the edge. After the
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processing of each ray, we get 120 points on the edge and use parametric equations to record these
points, as shown in Equation (7).

xk = xc + tk cos βk

yk = yc + tk cos βk
, (7)

where tk is the length from the center point to the edge point, βk = k(π/60), k = 0, 1, 2, . . . , 119.

(a) (b)

Figure 6. Solution procedure: (a) Approximately demonstrate the way to find the center point of fields;
(b) two points found by our method, which the rest can be deduced from.

The final step is to figure out the parameters. The elliptic equation is non-linear and contains
five parameters, as shown in Equation (1); thus, it requires at least five points to solve. In the former
steps, we get 120 edge points for each object. Accordingly, we pick five points and employ the
Levenberg–Marquardt (LM) method [44] to figure out the parameters. As the initial value of the
central point is selected by the local maximum of the central field, the deviation will not be large and,
so, we set a center constraint condition: λ(x2

0 + y2
0) = 0 (λ is a coefficient, with a default value of

2000. Considering the constraint condition and the elliptic function, we find the partial derivative
for each variable and, then, we can obtain the Jacobian matrix. Generally, the equation established
by the edge point with higher strength is more reliable and should be given greater weight; so, we
use the ve,p (the value of edge field) of each edge point to compose a diagonal weight matrix, as in
Equation (8). Based on the above, we can obtain the formula, as in Equation (9). This formula can
calculate the correction of the five parameters. We can obtain reliable results by iterative correction,
within a certain threshold.

Λ =


ve,p1

. . .
ve,pn

1
n ∑n

i=1 ve,pi

 , (8)

Λ ·


∂F1
∂a

∂F1
∂b

∂F1
∂x0

∂F1
∂y0

∂F1
∂θ

...
...

...
...

...
∂Fn
∂a

∂Fn
∂b

∂Fn
∂x0

∂Fn
∂y0

∂Fn
∂θ

0 0 2λx0 2λy0 0

 ·


∆a
∆b
∆x0

∆y0

∆θ

 = Λ ·


−F1

...
−Fn

−λ(x2
0 + y2

0)

 . (9)

To improve the fault tolerance, we use the Algorithm 1 for optimization. The values a and b are
within a certain range in a specific data set; for example, in DOTA, it is (0.001, 0.7). Beyond this range,
it is considered a false positive and should be eliminated.
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Algorithm 1: The optimization process.
Input: N Points
Output: (a, b, x0, y0, θ)

1 Set the parameters: count = 0, max_inlier = 0, ξ = 0.05;
2 repeat
3 Randomly choose five from N points;
4 solve (a, b, x0, y0, θ) with the five points;
5 figure out the errors Ei = ‖Fi − 1‖2 for N points with Equation;
6 n = The number of errors Ei less than ξ;
7 if max_inlier < n then max_inlier = n;
8 p = [1− (max_inlier/N)5]t;
9 count = count + 1;

10 until p < 0.0001;
11 for all inliers, solve (a, b, x0, y0, θ);

4. Experiments

We mainly tested our method using aerial images from the DOTA [5] and HRSC2016 [12] data
sets as a supplement. To verify the generality of EFN, we also tested it on natural images from the
VOC2012 [45] data set. Note that the experiments on the VOC2012 data set were regressed with
horizontal boxes and no image cropping, due to the small size and common perspective. The EFN
is orthogonal to a specific network backbone; we used U-Net [42] and FCN [18] as backbones in
this section.

4.1. Data Sets

DOTA [5] is the largest data set for object detection in aerial images with oriented bounding box
annotations. It contains 2806 images of different sizes. There are objects in 15 categories (including
Plane, Bridge, Ship, Harbor, Baseball diamond, Ground track field, Small vehicle, Large vehicle, Tennis
court, Basketball court, Storage tank, Soccer-ball field, Roundabout, Swimming pool, and Helicopter)
containing 188,282 annotated instances. The data set provides the evaluation server. DOTA provides
annotation labels in the manner of pixel co-ordinates of oriented bounding boxes. In order to make it fit
with our method, we converted the original labels to elliptic equation parameters. DOTA has divided all
images into a training set (1411 images), a validation set (485 images), and a testing set (937 images). We
cropped a series of 448 × 448 patches from the training set and carried out limited data augmentation
for categories with a small number of samples. Specifically, we used stochastic translation and
rotation. Besides, we resized objects according to their sizes: Large objects were randomly scaled down,
while small objects were randomly scaled up. With all these processes, we obtained 81,917 patches
for training, which was much less than in the official baseline implementation (150,342 patches).
For validation, we also cropped the original images into 448 × 448 patches.

High-resolution ship collections 2016 (HRSC2016) [12] is a data set used for scientific research;
all of the images in HRSC2016 were collected from Google Earth. The ships were annotated with
rotated bounding box on three levels, including object class, class category, and class type. It contains
1061 images and more than 20 categories of ships with various appearances. The image size ranges
from 300 × 300 to 1500 × 900. The training, validation, and test sets include 436 images, 181 images,
and 444 images, respectively.

4.2. Implementation Details

Tests were implemented using Darknet [46] on a PC with an Nvidia GeForce RTX 2080Ti
GPU and 16 GB of memory. Visualization of the detection results on DOTA and HRSC2016 are
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shown in Figures 7 and 8, respectively. Apart from detecting patches, our detector could also obtain
accurate detection results for whole images using the spray painting method, as is shown in Figure 9.
This indicates that our detector can precisely locate and identify instances in scenes with ellipses and
oriented bounding boxes.

Figure 7. Visualization of detection results in patches of the DOTA testing set. From top to bottom are
two groups of detection results, center fields, and edge fields. For the images with multiple categories
which correspond to several object fields, we only demonstrate one of them. The green line in the figure
represents the elliptic field calculated by ERF. It is surrounded by a circumscribed rectangular box;
namely, the oriented bounding box. Rectangular boxes of different colors represent different categories
of targets.

Figure 8. Visualization of detection results from EFN in HRSC2016. The green line in the figure
represents the elliptic field calculated by ERF. The red line denotes the circumscribed rectangle of the
elliptical field.

Figure 9. Detection results in whole images of DOTA testing set. All of them have high resolution and
cover a large area.
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4.3. Comparison with the State-of-the-Art Methods

Table 1 shows a comparison of accuracy in DOTA. EFN outperformed the official baseline,
FR-O [5], by 21.14 points and surpassed all of the state-of-the-art methods, demonstrating that our
approach performs well in oriented object detection in aerial images. We argue that there are two
reasons for this: (1) traditional frameworks first generate proposal boxes, then analyze boxes one
by one, in order to discriminate whether a box is correct. It is easy to wrongly discriminate in this
step. Meanwhile, EFN predicts fields, where the intensity of object regions is high while that of
no-object regions is low, which is more similar to how the human visual system works. (2) Traditional
frameworks regress bounding boxes. However, objects usually only occupy small parts of images,
which makes these models more non-uniform. In comparison, EFN can better model the distributions
of objects in aerial images by regressing fields. Although our method was originally designed for aerial
image object detection, our experiments demonstrate that it also works well for conventional images
and can be used in a variety of scenes with great potential. We also carried out a comparison in terms of
memory, shown in Table 2. Traditional frameworks use deep backbones, such as ResNet [47], to extract
features and rely on pre-trained models. As a consequence, such models are memory-consuming.
EFN used U-Net as a backbone, which does not rely on a pre-trained model and is a relatively shallow
backbone. Therefore, the model was much more memory efficient.

Table 3 shows the comparison of accuracy in HRSC2016. HRSC2016 contains many thin and
long ship instances with arbitrary orientation. Based on our proposed method, the mAP reached 86.6,
which was in line with the current state-of-the-art methods. As the visualization of the detection results
shows, there were many ships arranged closely, which were long and narrow, making the horizontal
rectangles hard to distinguish. In comparison, the proposed EFN method could effectively deal with
this situation, thus proving the robust stability of our method.

Table 1. Comparison with the state-of-the-art methods on DOTA1.0. The short names for categories
are defined as: PL, Plane; BD, Baseball diamond; BR, Bridge; GTF, Ground field track; SV, Small vehicle;
LV, Large vehicle; SH, Ship; TC, Tennis court; BC, Basketball court; ST, Storage tank; SBF, Soccer-ball
field; RA, Roundabout; HB, Harbor; SP, Swimming pool; and HC, Helicopter.

Method mAP PL BD BR GTF SV LV SH TC BC ST SBF RA HB SP HC

FR-O [5] 54.13 79.42 77.13 17.70 64.05 35.30 38.02 37.16 89.41 69.64 59.28 50.30 52.91 47.89 47.40 46.30
RRPN [48] 61.01 80.94 65.75 35.34 67.44 59.92 50.91 55.81 90.67 66.92 72.39 55.06 52.23 55.14 53.35 48.22

R2CNN [49] 60.67 88.52 71.20 31.66 59.30 51.85 56.19 57.25 90.81 72.84 67.38 56.69 52.84 53.08 51.94 53.58
R-DFPN [14] 57.94 80.92 65.82 33.77 58.94 55.77 50.94 54.78 90.33 66.34 68.66 48.73 51.76 55.10 51.32 35.88

DFPN [50] 62.29 81.25 71.41 36.53 67.44 61.16 50.91 56.60 90.67 68.09 72.39 55.06 55.60 62.44 53.35 51.47
LR-O [16] 58.31 81.06 76.81 27.22 69.75 38.99 39.07 38.30 89.97 75.53 65.74 63.48 59.37 48.11 56.86 44.46

LROFPN [16] 66.90 88.02 76.99 36.70 72.54 70.15 61.79 75.77 90.14 73.81 85.04 56.57 62.63 53.30 59.54 41.91
DPSRP [16] 63.89 81.18 77.42 35.48 70.41 56.74 50.42 53.56 89.97 79.68 76.48 61.99 59.94 53.34 64.04 47.76

RT [16] 67.74 88.53 77.91 37.63 74.08 66.53 62.97 66.57 90.5 79.46 76.75 59.04 56.73 62.54 61.29 55.56
RT-FPN [16] 69.56 88.64 78.52 43.44 75.92 68.81 73.68 83.59 90.74 77.27 81.46 58.39 53.54 62.83 58.93 47.67
SCRDet [17] 72.61 89.98 80.65 52.09 68.36 68.36 60.32 72.41 90.85 87.94 86.86 65.02 66.68 66.25 68.24 65.21

EFN 75.27 93.44 76.38 37.05 78.47 88.75 89.96 90.58 90.91 94.89 78.02 63.87 57.41 40.73 95.49 53.13

Table 2. Comparison of memory use.

Method Backbone mAP Param

LR-O [16] ResNet101 58.3 273 MB
DPSRP [16] ResNet101 63.89 273.2 MB

RT [16] ResNet101 67.74 273 MB

EFN U-Net 75.27 73 MB

Table 3. Comparisons with the state-of-the-art methods on HRSC2016.

Method CP [12] BL2 [12] RC1 [12] RC2 [12] R2PN [15] RRD [51] LRT [16] EFN

mAP 55.7 69.6 75.7 75.7 79.6 84.3 86.2 86.6
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4.4. Ablation Study

In our research, we found that many factors had an impact on the performance of EFN. Therefore,
we carried out an ablation study, considering various aspects, on DOTA. Specifically, we examined the
cases of: (1) training the models with different input sizes; (2) using different backbones to construct
EFN, whether to add batch normalization (BN) [52] after convolutional layers, and setting different
batch sizes; and (3) training the models with different center field decay index α and edge width ω.

Table 4 shows the accuracy and average testing speed comparison between different input sizes of
EFN. Compared to EFN-112 and EFN-224, EFN-448 outperformed them, in terms of accuracy, to a great
extent. EFN-576 achieved a higher mAP value, but the increase was modest and the test speed was
much lower. Therefore, we considered that setting the input size to 448 * 448 was the most appropriate.

We chose two backbones: FCN [18] and U-Net. Based on the U-Net, we trained eight models
using different batch sizes: four with BN and four without BN. The comparison is displayed in Table 5.
From the table, it can be seen that U-Net achieved higher mAP. FCN is a sequential architecture,
while there is a connection between the encoder and decoder in the U-Net; such a connection
ensures that the gradient information can be passed directly to the upper layers, which helps gradient
propagation and improves the network performance. Though the performance of the FCN backbone
was inferior to that of U-Net, it still outperformed many prior works. This indicates that the EFN is
compatible with different backbones and improves the detection performance.

Table 4. Accuracy and average testing speed comparison between different input sizes of EFN.

Input Size mAP EFN ERF Testing Speed

EFN-112 71.63 2 ms 32 ms 34 ms
EFN-224 75.18 9 ms 83 ms 92 ms
EFN-448 75.27 39 ms 204 ms 243 ms
EFN-576 75.30 68 ms 374 ms 442 ms

Table 5. Comparison of models trained with different configurations. All models were trained using
an input size of 224 × 224. “

√
” means adding batch normalization after convolutional layers.

Backbone W/BN Batch Size mAP

FCN
√

64 74.74

U-Net

√
64 75.18√
16 75.05√
8 75.12√
4 74.97

64 74.48
16 74.56
8 74.76
4 74.52

U-Net with BN performed better than that without, as BN can reduce overfitting, avoid the
gradient vanishing problem, and accelerate training. To a certain extent, a larger batch size results in
better performance but consumes more memory. Further experiments found that training with small
batch size in the preliminary phase, then with larger batch size was an effective strategy. The small
batch size makes for faster convergence, while the larger batch size makes for finer optimization.

There are two critical parameters in the training phase: the center field decay index α and the
edge width ω. These two parameters both have significant impact on the performance. To find the
best values, we trained models using a range of values. Table 6 shows a comparison of models trained
with different α and ω. Both of them should be set to appropriate values. If the value of α is too low,
the CF decays suddenly from the center to edge, which may cause the wrong object center to be found
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in the ERF. A too-high value of α causes the CF to decay rapidly, leading to difficulties in detecting the
object center. A low value of ω will make the EF inconspicuous. In this case, the detection of points on
the edge will be inaccurate and some points may be left out. A high value of ω may cause the edge
overlap of adjacent objects, which will bring about disturbances for the edge distinction of different
objects. In our experiments, we found that setting α to 2.5 and ω to 0.1 achieved high performance,
which thus served as the default values.

Table 6. Comparison of models trained with different α and ω values. All models were trained with an
input size of 224 × 224. The batch size was set to 64.

Backbone α ω mAP

FCN 2.5 0.1 74.74

U-Net

2.5 0.1 75.18
1 0.1 72.02
5 0.1 72.23

2.5 0.3 75.16
2.5 0.05 74.85

4.5. Experiments on Natural Images

To verify the universality of our model, we further tested the proposed techniques on generic data
sets: the PASCAL VOC 2012 challenge [45]. We used the VOC2007 train+val+test sets (9963 images)
and VOC2012 train+val sets (11,540 images) to train the network and then used the VOC2012 test sets
for testing. Unlike the aerial images, the VOC images are in the low altitude perspective and are of low
resolution. Thus, we no longer cropped the images or predicted the angle of the object. In other words,
we only predicted four parameters and simply pre-defined θ = 0, as shown in Equation (10). Table 7
shows the results. We achieved 84.7% mAP. A visualization of detection results is shown in Figure 10.
Compared to the state-of-the-art methods, EFN (which specializes in different application scenarios)
still obtained good scores.

F(x, y; x0, y0, a, b) =
(x− x0)

2

a2 +
(y− y0)

2

b2 − 1. (10)

Table 7. Comparison with prior works on VOC 2012. All methods were trained on VOC 2007 and
VOC 2012 trainval sets plus the VOC 2007 test set, and were tested on the VOC 2012 test set.

Method Backbone VOC 2012 Test mAP(%)

Faster R-CNN [9] VGG-16 75.9
OHEM++[53] VGG-16 80.1

R-FCN [54] ResNet-101 82.0
SSD300 [55] VGG-16 79.3
SSD512 [55] VGG-16 82.2

RefineDet320 [56] VGG-16 82.7
RefineDet512 [56] VGG-16 85.0

PSPNet [57] ResNet50 85.4

EFN FCN 83.4
EFN U-Net 84.7
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Figure 10. Visualization of detection results in patches of the PASCAL VOC testing set. From top to
bottom are two groups of detection results, center fields, and edge fields. For the images with multiple
categories corresponding to several object fields, we only demonstrate one of them.

5. Conclusions

In this paper, we proposed a novel method for detecting objects in aerial images with oriented
bounding boxes. Unlike typical region proposal and semantic segmentation methods, we introduced
the field concept into our work, using a remoulded FCN network to calculate the center field and edge
field. Then, we used the robust ellipse region fitting algorithm to precisely identify objects. This is
a pixel-wise framework using patch-wise annotation, which dramatically reduces the difficulty of
network training. Experiments on the DOTA and HRSC2016 data sets showed that EFN can outperform
many prior methods, in terms of both speed and accuracy. In the DOTA test set, the mAP of our
method reached 75.72; 2.66 higher than the second place. In the HRSC2016 test set, our method also
achieved 86.6, the best mAP. Although our test on VOC2012 was not the best, it was only 0.7 less than
the first place, verifying the generality of our techniques. Furthermore, we carried out an ablation
study, discussed how different factors influence the performance of EFN, and found an appropriate
way to train it. In the future, we intend to carry out more research on EFN and to continuously improve
our method.
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