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Abstract: Synthetic Aperture Radar (SAR) target classification is an important branch of SAR image
interpretation. The deep learning based SAR target classification algorithms have made remarkable
achievements. But the acquisition and annotation of SAR target images are time-consuming and
laborious, and it is difficult to obtain sufficient training data in many cases. The insufficient training
data can make deep learning based models suffering from over-fitting, which will severely limit their
wide application in SAR target classification. Motivated by the above problem, this paper employs
transfer-learning to transfer the prior knowledge learned from a simulated SAR dataset to a real SAR
dataset. To overcome the sample restriction problem caused by the poor feature discriminability for
real SAR data. A simple and effective sample spectral regularization method is proposed, which
can regularize the singular values of each SAR image feature to improve the feature discriminability.
Based on the proposed regularization method, we design a transfer-learning pipeline to leverage
the simulated SAR data as well as acquire better feature discriminability. The experimental results
indicate that the proposed method is feasible for the sample restriction problem in SAR target
classification. Furthermore, the proposed method can improve the classification accuracy when
relatively sufficient training data is available, and it can be plugged into any convolutional neural
network (CNN) based SAR classification models.

Keywords: SAR target classification; transfer-learning; spectral regularization

1. Introduction

Synthetic Aperture Radar (SAR) is an important earth observation system with all-day and
all-weather capability, and it has been widely used in both the military and civil fields. However, due
to the complicated characteristics of SAR images, human recognition of SAR targets is difficult and
inefficient. Therefore, automatic target recognition (ATR) of SAR has become a very important research
direction and attracted wide attention. A standard SAR ATR process can be divided into three steps:
detection, discrimination and classification. The first two steps intend to extract potential target areas
and remove false alarms. The third step is to use a classifier to distinguish each SAR target. In this
paper, we mainly focus on the third stage of the SAR target classification.

There are many researches on SAR target classification, which can be mainly divided into three
categories: template-based methods [1–3], model-based methods [4–7] and machine learning based
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methods [8,9]. The template-based method stores a large number of SAR target templates in advance.
During the inference phase, the template matching technology is used to find the most matching
template for the test SAR target, then the test SAR target is classified as the category of the matched
template. However, it is very difficult to obtain sufficient SAR target templates for different imaging
conditions in advance, which limits the performance of the template-based SAR target classification
methods. Therefore, model-based methods are proposed, which avoid the involvement of a large
number of SAR target templates, but rely on the physical model for each category of the SAR target,
and generate the SAR target characteristics corresponding to the model by simulation software.
Besides, the statistical-model-based methods, e.g., conditionally Gaussian model [10], model different
targets by statistical processes. However, the computational burden of model construction and
online feature prediction is huge, which limits the performance of the model-based SAR target
classification methods.

With the development of machine learning technology, machine learning based SAR target
classification methods [8,9], such as AdaBoost and Support Vector Machine (SVM), have been
successively proposed. The work in [11] employs iterative graph thickening to construct a two-stage
SAR target classification framework. The machine learning based methods can further improve
the performance of SAR ATR. However, the handcrafted features adopted in these methods [8–10]
have limited representation capacity. Considering that the extracted features by deep convolutional
neural networks have stronger representation capacity than the handcrafted features, researchers
combine the deep convolutional neural network with SVM for SAT ATR [12]. Furthermore, the deep
neural networks with fully connected layers as a classifier [13,14] are applied to SAR ATR. Benefiting
from better deep features and end-to-end training, the deep learning based SAR ATR methods
implement state-of-the-art performance.

However, the deep learning based SAR ATR methods inevitably face the challenge of sample
restriction. On the one hand, the deep learning based SAR ATR methods are data-hungry.
Generally, the more parameters of the deep neural networks, the more training data they require.
The deep neural networks will suffer from overfitting if training with limited data example, which
leads to degraded performance during the test phase. The application of deep learning based SAR
ATR methods may be limited. On the other hand, the training data for SAR ATR may not be always
sufficient even for the commonly used Moving and Stationary Target Acquisition and Recognition
(MSTAR) dataset [15] there are only two or three hundred training images per class. More seriously,
there may be only several dozens of samples for each class in practice. The reasons for sample
restriction are as follows. Firstly, the valid SAR target images are not easy to collect due to some
noises, e.g., speckle noise. Secondly, the annotation of the SAR target is laborious and time-consuming.
Thirdly, it’s hard to collect sufficient examples for some scarce targets.

In order to solve the sample restriction problem for SAR ATR, many methods are proposed and
can be divided into two categories. As shown in Figure 1a, the first category of methods is enlarging
training sample sets [16–25]. To this goal, these methods resort to simulators or generative models
to produce new SAR target samples. As shown in Figure 1b, the second category of methods is
transfer-learning [26–32]. It can transfer the pre-trained knowledge from source domain to SAR target
images. Specifically, in [32,33], the prior knowledge is transferred from a simulated SAR dataset to a
real SAR dataset where only 10 percent of the training set is available.
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Figure 1. The pipelines of (a) enlarging training sample sets and (b) transfer-learning.

Inspired by the above researches, we use transfer-learning to solve the sample restriction problem
in SAR target classification. A standard pipeline is pre-training the model on a simulated SAR dataset
with sufficient training data, then fine-tuning the pre-trained model with limited real SAR data. But the
low feature discriminability for real SAR data may further challenge the performance, especially
with the limited training data. The relation of the feature transferability and discriminability is
explored in [34]. The eigenvectors of feature representations with large singular values dominate the
feature transferability, while the eigenvectors with small singular values can provide extra feature
discriminability. During training, the classifier relies on the salient features with large singular values as
they dominate the feature representations. The features with large singular values will be strengthened
and the features with small singular values will be suppressed until the model enters the saturation
area of softmax activation, resulting in loss of feature discriminability from the features with small
singular values.

Therefore, we propose the spectral regularization of the feature representations to improve the
feature discriminability by reducing the difference between the large and small singular values and
combine it with the standard transfer-learning pipeline, as shown in Figure 2. Concretely, the first
proposed regularization is named sample spectral regularization (SSR), which suppresses the large
singular values for the feature of each sample. The second proposed regularization named SSR†,
which explicitly encourages more feature discriminability by narrowing the gap between the large and
small singular values. Employing spectral regularization at sample-level, i.e., regularization for the
feature of each training sample, can implement better performance than [34] at batch-level. Except for
the sample restriction problem, the proposed spectral regularization can also improve the classification
accuracy when sufficient training data is available.

Our contributions are three folds:

• We propose SSR and SSR† to improve the feature discriminability by reducing the difference
between the large and small singular values. The proposed SSR is at sample-level and can
implement better feature discriminability than that at batch-level, which makes the classifier
easier to recognize the targets of different classes.

• Based on the proposed regularization method, we propose a transfer-learning pipeline to solve the
sample restriction problem in SAR target classification, which can leverage the prior knowledge
from the simulated SAR data as well as has better feature discriminability.

• We further investigate the difference of various spectral regularizations. The experimental results
indicate that reducing the difference between the large and small singular values at sample-level
is best effective. Besides, we analyze the impact of spectral regularization on singular values.

The remainder of this paper is organized as follows. The details of the proposed method
are described in Section 2. In Section 3, we conduct experiments to prove the effectiveness of the
proposed method in the limited-data and sufficient-data regime and analyze the experimental results.
Section 4 concludes this paper.
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Figure 2. The transfer-learning pipeline with sample spectra regularization.

2. Method

In this section, we formulate the sample restriction problem for SAR target classification and
address it by the proposed sample spectral regularization (SSR).

2.1. Problem Setting

The goal of this paper is to solve the sample restriction problem for SAR target classification.
Let S = {(xs

i , ys
i )} denote a source dataset consisting of Ns labeled SAR target samples from Cs different

classes, and T = {(xt
i , yt

i)} denote a target dataset consisting of Nt labeled SAR target samples from
Ct different classes. Herein, S contains sufficient training samples, e.g., at least several hundreds
of samples per class, T only contains a small number of training samples, e.g., only several dozens
of samples per class. We employ a transfer-learning approach to transfer prior knowledge from a
simulated SAR dataset S to a real SAR data set T .

2.2. Feature Discriminability

As a key criterion to measure the representational capacity, discriminability refers to whether the
model can recognize different SAR target categories successfully. Here, we revisit the relation between
the feature discriminability and the singular values of the feature matrix. According to [34], the feature
discriminability criterion can be formulated as follows:

arg max
D

J(D) =
tr(DTSinterD)

tr(DTSintraD)
(1)

D is a matrix for dimension reduction. D∗ is the optimal solution of Equation (1) and can be
formulated as:

D∗ = arg max
D

J(D) (2)

Sinter and Sintra denote the inter-class variance and intra-class variance, and can be calculated as follows:

Sinter =
c

∑
j=1

nj(µj − µ)(µj − µ)T

Sintra =
c

∑
j=1

∑
f∈Fj

( f − µj)( f − µj)
T

(3)
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For Sinter, there are c target classes and each class has nj examples. For Sintra, there are c target
classes and f is the extracted deep feature. µj denotes the center feature of j-th class. µ denotes the
center feature of all classes. Fj denotes all features in j-th class. The optimal solution D∗ of the feature
discriminability criterion can be calculated by the Singular Value Decomposition (SVD) as follows:

S−1
intraSinter = UΣVT (4)

Thus, D∗ = U.
The larger discriminability criterion indicates higher classification accuracy and vice versa. In the

standard transfer-learning pipeline, the deep learning based classification model is pre-trained on
the source dataset, then is fine-tuned on the target dataset using the pre-trained parameters as an
initialization. During both phases, the model is commonly optimized by the classification loss function,
e.g., the cross entropy loss. While training the model via only minimizing the classification loss cannot
guarantee that the discriminability converges to the optimal solution well [34]. Therefore, we need
to explicitly optimize the feature discriminability to improve the performance of the SAR target
classification model training with insufficient data.

The relation between the feature discriminability and the singular values of the feature matrix
is investigated in [34,35]. The eigenvectors of the feature matrix corresponding to larger singular
values represent the portion of features with better transferability. The information in the eigenvectors
of the feature matrix corresponding to small singular values is beneficial to improving the feature
discriminability. The sharper distribution of singular values can degrade the feature discriminability.
That is, strengthening the large singular values can improve the feature transferability. Strengthening
the small singular values can improve the feature discriminability.

In this paper, we transfer the prior knowledge from the simulated SAR dataset S to real SAR
dataset T . The difference between S and T is small. Hence, the feature transferability can be
guaranteed. While the discriminative information from the features corresponding to small singular
values may be weakened. Consequently, we should suppress the large singular values and strengthen
the small singular values to improve the feature discriminability.

2.3. Sample Spectral Regularization

A SAR target classification model consisting of a feature extractor M and a classifier φ. The feature
extractor M takes a batch of SAR target images as input and outputs the extracted feature matrix
F = [ f1, f2, ..., fb]. b is the size of a batch. Then the extracted features are sent to the classifier φ to
output class probabilities for each sample.

A simple approach to improve the feature discriminability is suppressing the largest singular
values so that the eigenvectors with small singular values can be relatively strengthened, which is
named Batch Spectral Penalization (BSP) and applied in [34]. To implement BSP, the singular values of
the feature matrix F are computed by singular value decomposition (SVD) as follows:

F = UΣVT (5)

And Σ can be formulated as:

Σ =


σ1 0 · · · 0
0 σ2 · · · 0
...

...
. . .

...
0 0 · · · σb

 (6)
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Then BSP can be formulated as:

BSP = η
k

∑
i=1

σ2
i (7)

where η is a trade-off hyperparameter, σi is the i-th singular value in the diagonal of singular value
matrix Σ. [34] only suppresses the largest singular value, i.e., k is set to 1. BSP can be combined with
the classification loss Lcls to train the model as follows:

L = Lcls + BSP (8)

Lcls can be formulated as:

Lcls =
1
b

b

∑
i=1

l(φ(M(xi)), yi) (9)

l is the cross entropy loss.
Although BSP can improve the feature discriminability, it is conducted at batch-level and its

performance can be affected by batch size, especially for the sample restriction problem where large
batch size may not be available. We propose sample spectral regularization (SSR) and regularize
the singular values at sample-level to bypass the above limitation of BSP. For each input SAR target
example, the shape of the extracted feature f is (W, H, C). W and H denote the width and height of f ,
and C is the number of channel. We reshape the feature f to (W × H, C) so that the singular values of
f can be computed by SVD as follows:

f =
∗
U
∗
Σ
∗
V

T
(10)

Here, the singular value matrix
∗
Σ is:

∗
Σ =


∗
σ1 0 · · · 0

0
∗
σ2 · · · 0

...
...

. . .
...

0 0 · · · ∗
στ

 (11)

where τ = min(W × H, C). Let
∗
σi denote the set of singular values in the diagonal of singular value

matrix
∗
Σ for i-th sample within a batch, that is,

∗
σi = {

∗
σ1,
∗
σ2, ...,

∗
στ}. Hence,

∗
σij denotes the j-th singular

value in
∗
σi. The sample-level SSR can be formulated as:

SSR = η
1
b

b

∑
i=1

k

∑
j=1

∗
σ

2
ij (12)

Besides, we further improve SSR and suppress the large singular values and strengthen the
small singular values by directly narrowing the gap between the largest and smallest singular values.
This regularization is named SSR† and can be formulated as:

SSR† = η
1
b

b

∑
i=1

max(max(
∗
σi)−min(

∗
σi), ε) (13)

ε is to control the extent of the regularization constraints.
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2.4. Transfer Learning with Sample Spectral Regularization

We combine the proposed SSR with the standard transfer-learning pipeline to solve the sample
restriction problem of SAR target classification. Considering that generating SAR target examples by
the simulator is easier than collecting real SAR target examples, we use sufficient simulated SAR data
to solve the sample restriction problem, which is feasible in practice. As shown in Figure 2, the whole
pipeline consists of pre-training and fine-tuning phases. During pre-training, the feature extractor M
and the classifier φ are trained on the labeled simulated SAR data. During fine-tuning, M is initialized
with the pre-trained parameters and φ is initialized randomly. Therefore, we can employ the proposed
SSR during the pre-training phase to get better-initialized parameters and employ SSR during the
fine-tuning phase to improve the performance of the model. The model architecture with SSR or SSR†

is shown in Figure 3.

Figure 3. The model architecture with SSR or SSR†.

Pre-train with SSR. We pre-train the model with SSR or SSR† in the simulated SAR dataset S .
The loss function can be formulated as:

L = Lcls + SSR

L† = Lcls + SSR† (14)

The feature extractor M is optimized by Lcls and the proposed regularization together.
The classifier is optimized by Lcls.

The pre-trained feature extractor Mpre can output features with better discriminability by
optimizing with the proposed SSR. This provides a good initialization for the next fine-tuning phase
and makes the model converge better.

Fine-tune with SSR. We fine-tune the pre-trained model with SSR or SSR† in the target SAR
dataset T . The loss function is same as in Equation (14). With a good initialization and the proposed
regularization, the features from fine-tuned feature extractor M f t have better discriminability so that
the model can yield better performance even a few training data is available.

In summary, the model is pre-trained and fine-tuned by the loss function:

L =
1
b

b

∑
i=1

l(φ(M(xi)), yi) + η
1
b

b

∑
i=1

k

∑
j=1

∗
σ

2
ij (15)

or by the following loss function:

L† =
1
b

b

∑
i=1

l(φ(M(xi)), yi) + η
1
b

b

∑
i=1

max(max(
∗
σi)−min(

∗
σi), ε) (16)

For example, the detailed process with SSR is outlined in Algorithms 1 and 2.
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Algorithm 1 Pre-training process

Input: Labeled data of the simulated SAR dataset Cs, feature extractor M, classifier φ, learning rate α

Output: Pre-trained feature extractor M
1: Randomly initialize M, φ

2: while not converged do
3: Sample b samples from Cs

4: Compute loss L = 1
b ∑b

i=1 l(φ(M(xi)), yi) + η 1
b ∑b

i=1 ∑k
j=1
∗
σ

2
ij

5: Update M and φ with gradient descent:
6: (M, φ) = (M, φ)− α∇L
7: end while

Algorithm 2 Fine-tuning process

Input: Labeled data of the real SAR dataset Ct, pre-trained feature extractor M, classifier φ, learning

rate α

Output: Fine-tuned feature extractor M, fine-tuned classifier φ

1: Initialized M with the pre-trained parameters, randomly initialize φ

2: while not converged do
3: Sample b samples from Ct

4: Compute loss L = 1
b ∑b

i=1 l(φ(M(xi)), yi) + η 1
b ∑b

i=1 ∑k
j=1
∗
σ

2
ij

5: Update M and φ with gradient descent:
6: (M, φ) = (M, φ)− α∇L
7: end while

2.5. An Intuitive Understanding

A convolutional neural network (CNN) based SAR target classification model commonly consists
of a feature extractor and a classifier. The feature extractor is responsible for generating features
that have better discriminability. Then the extracted features are used for classification. Without
spectral regularization, the feature extractor M and the classifier φ are updated with gradient descent
as follows:

(M, φ) = (M, φ)− α∇Lcls (17)

∇ is nabla operator.
During training, the classifier relies on the salient features with large singular values as they

dominate the feature representations. As a result, the features with large singular values will be
strengthened continuously and the features with small singular values will be suppressed continuously,
which makes the model very confident for target classification and enter the saturation area of softmax
activation, that is, the gradient magnitude ∇Lcls is small. However, the features with large singular
values may not always provide enough and correct information for target classification, especially
with limited training data. Therefore, we need to make the model capture as much useful information
as possible. The proposed spectral regularization method aims to strengthen the features with small
singular values. With the proposed spectral regularization, the model is updated as follows:

(M, φ) = (M, φ)− α(∇Lcls +∇SSR) (18)

When the model relies on the salient features with large singular values heavily, the gradient
magnitude from the spectral regularization ∇SSR will be large, which can make the model leave the
saturation area of softmax activation and force the classifier to use more features for classification
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instead of only the salient features with large singular values. Obviously, the proposed method can
improve the feature discriminability and implement better SAR target classification results.

2.6. Implementation Details

We employ the same network architecture as in [33] for a fair comparison. The details of network
configurations are shown in Figure 4. The feature extractor M contains four blocks. Each block consists
of a convolutional layer, a batch normalization layer, a rectified linear unit (ReLU) activation function,
and a 2× 2 max-pooling layer. The convolution stride is 1 pixel for all blocks. The output features
from the feature extractor M are flattened into 1024-D vectors as the input of the classifier φ. For BSP,
the extracted features are flattened into 1024-D vectors. For SSR and SSR†, the extracted features are
reshaped into (64, 16) for SVD.

Figure 4. Network structure of the classification model.

3. Experiment

3.1. Datasets

MSTAR. The Moving and Stationary Target Acquisition and Recognition (MSTAR) dataset is
collected and released with the support of the Defense Advanced Research Projects Agency and the
Air Force Research Laboratory. Figure 5 shows some SAR images and optical images for military
targets in the MSTAR dataset. There are 10 military targets: T62, BTR60,ZSU234, BMP2, ZIL131, T72,
BTR70, 2S1, BRDM2 and D7. The SAR data are collected by an HH-polarized X-band SAR sensor and
the resolution is 0.3 m × 0.3 m. The SAR image size is 128× 128 pixels. The azimuth angles of target
images are in the range of 0◦–360◦. The depression angles of target images are 15◦, 17◦, 30◦, and 45◦.
The details of MSTAR are shown in Table 1.

Table 1. The details of the MSTAR dataset.

Target T72 BMP2 BTR70 BTR60 2S1 BRDM2 D7 T62 ZIL131 ZSU234

Target ID 1 2 3 4 5 6 7 8 9 10

Number
Training 232 233 233 256 299 298 299 299 299 29917◦

Number
Test 196 196 196 195 274 274 274 273 274 27415◦
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Figure 5. The SAR images (top) and optical images (bottom) for military targets in MSTAR dataset.
The SAR images are in 17◦ depression angle.

The simulated SAR dataset. The simulated SAR dataset is devised by [36]. The simulated
SAR images are collected using a simulation software according to the CAD models of the targets.
The simulation software parameter values, e.g., material reflection coefficients and background
variation, were set according to the imaging parameters of the MSTAR dataset so that the appearance
of the simulated images is close to the real SAR images. There are fourteen target classes from seven
types of targets due to each target type with two different CAD models. Some SAR images of the
simulated SAR dataset are shown in Figure 6. The details of the simulated SAR dataset are shown
in Table 2.

Figure 6. Examples of the simulated SAR dataset.

Table 2. The details of the simulated SAR dataset.

Target Bulldozer Bus Car Humvee Motorbike Tank Track

Target ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Number 504 504 504 504 504 504 504 504 504 504 504 504 504 504
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3.2. Training Details

During the pre-training stage, the model is trained for 400 epochs with an SGD optimizer.
The learning rate is 0.001, the momentum rate is 0.9 and the weight decay is 0.0005. During the
fine-tuning stage, the model is trained for 200 epochs with an SGD optimizer and the learning rate
is 0.01. The hyperparameter η is tuned through cross validation. η is 0.01 and 0.1 for SSR and SSR†

respectively. η in BSP is set to 0.001. ε in SSR† is set to zero. k in BSP and SSR is set to 1, that is, only
the largest singular value is constrained.

3.3. SSR with Limited Training Data

To solve the sample restriction problem, we propose SSR and combine it with the transfer-learning
pipeline. The proposed SSR suppresses large singular values and strengthens small singular values
to improve the feature discriminability, which can make the deep learning based SAR classification
model converge well with limited training data. In this section, we first evaluate the performance
of different spectral regularization methods, then compare our best spectral regularization solution
with baselines.

The performance of SSR. We evaluate the performance of BSP, SSR and SSR† and the
experimental results are shown in Table 3. The simulated SAR dataset is used for pre-training,
then we fine-tune the model using 10% of the real SAR images at a 17◦ depression angle. All of the real
SAR images at a 15◦ depression angle are used for test. The details of the pre-training, fine-tuning and
testing data are shown in Tables 1 and 2.

Table 3. Test accuracies of different methods with or without spectral regularization. × denotes no any
spectral regularizations. Note that the model is just trained on the limited real SAR data without the
pre-training stage for ID 1, 3, 4, and 5.

ID Pre-Training Stage Finetuning Stage
Test Accuracy (%)

× BSP SSR SSR† × BSP SSR SSR†

1 X 75.5
2 X X 80.2
3 X 76.1
4 X 76.6
5 X 77.8
6 X X 82.2
7 X X 83.4
8 X X 84.5
9 X X 80.7

10 X X 81.6
11 X X 83.2
12 X X 88.8

Firstly, BSP, SSR and SSR† are integrated into a standard training pipeline, where the model
is trained from scratch (ID 3, 4, 5 in Table 3). With the three spectral regularizations, the three
trained models can yield slightly higher classification accuracies than the model (ID 1 in Table 3)
without spectral regularization respectively. Secondly, we initialize the models using the pre-trained
parameters. then fine-tune the models with BSP, SSR and SSR† respectively (ID 6, 7, 8 in Table 3). Based
on the same pre-trained model, fine-tuning the model with the spectral regularizations can achieve
better classification results than without spectral regularization (ID 2 in Table 3), especially SSR†

bringing in a 4.3% relative classification accuracy improvement. And the models with the proposed
SSR and SSR† significantly outperform that with BSP. Thirdly, we pre-train the models with BSP,
SSR and SSR† respectively, then fine-tune the models without spectral regularization to investigate
how much improvements are brought by the three spectral regularizations (ID 9, 10, 11 in Table 3).
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Obviously, BSP, SSR and SSR† can provide better-initialized parameters than pre-training without
spectral regularization.

The above experimental results indicate that applying spectra regularizations to pre-training
and fine-tuning can improve the final classification accuracies in the limited-data regime. SSR† is
the best regularization method for pre-training and fine-tuning, thus we combine SSR† with the
transfer-learning as our solution for the sample restriction problem (ID 12 in Table 3), which can yield
the best classification accuracy of 88.8%.

Classification results Under SOC. In the limited-data regime, the model is evaluated under the
standard operating condition (SOC). After pre-training with the simulated SAR images, the feature
extractor M is initialized with the pre-trained parameters and the model is fine-tuned using 10% of the
real SAR images at a 17◦ depression angle. All of the real SAR images at a 15◦ depression angle are
used for test. The baseline methods are the original CNN (CNN_ORG), CNN with transfer-learning
(CNN_TF) [26], CNN with parameter prediction (CNN_PP) [37], the cross-domain and cross-task
method (CDCT) [32] and the probabilistic meta-learning method (PML) [33].

The experimental results are shown in Table 4. CNN_ORG yields the lowest classification
accuracy of 75.5%. From this we can see that training the model using limited SAR data is a challenge.
The standard transfer-learning can significantly improve the classification accuracy by using the prior
knowledge learned from the sufficient simulated SAR images. CNN_PP, CDCT and PML achieve
better classification results based on the carefully designed pipeline and model framework. In contrast,
our method is very simple and effective, which achieves a comparable accuracy of 88.8% to CNN_PP,
CDCT and PML.

Besides, Figure 7 illustrates the detailed classification accuracies with different proportions of
training data. When increasing the proportion of training data used, the classification accuracies of all
methods will become higher. Our method can achieve comparable or better performances for different
proportions of training data used.

Figure 7. The experimental results with different proportion of training data.

Table 4. Test accuracies with 10% of training data under SOC.

Method CNN_ORG CNN_TF [26] CNN_PP [37] CDCT [32] PML [33] Ours

Accuracy(%) 75.5 80.2 87.4 88.9 89.0 88.8
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Classification results Under Depression Variations. In the limited-data regime, the model is
evaluated at different depression angles. During the pre-training stage, we train the model on the
simulated SAR dataset. Then, the pre-trained parameters are used to initialize the feature extractor M.
We select 3 target classes from the real SAR dataset to fine-tune and test the model. Table 5 shows the
details of the training and test data on the real SAR dataset. The model is fine-tuned on 10% of the real
SAR images at a 17◦ depression angle. During test time, the model is evaluated with images at 30◦ and
45◦ depression angles.

The experimental results are shown in Table 6. For the 30◦ depression angle, our model achieves
the best classification accuracy of 91.0%. When the testing depression angle increases from 30◦ to 45◦,
our model still yields a competitive classification result.

In summary, the above experiments prove that the proposed spectral regularization SSR† is a
feasible way to solve the sample restriction problem for SAR target classification. Although SSR† is
simple, it performs well with limited training data under SOC and depression variations.

Table 5. The details of training and testing data under depression variations.

Split Depression Angles ZSU234 BRDM2 2S1

Training 17◦ 299 298 299
Test 30◦ 288 287 288
Test 45◦ 303 303 303

Table 6. Test accuracies with 10% of training data under depression variations.

Depression Angles
Method

CNN_ORG CNN_TF [26] CDCT [32] Ours

30◦ 85.6 89.2 90.3 91.0

45◦ 52.3 65.3 65.6 64.2

3.4. SSR with Sufficient Training Data

In this section, we investigate how much improvement is brought by the proposed spectral
regularization when fine-tuning the model with sufficient data.

Classification results Under SOC. The comparison experiments is conducted under the standard
operating condition (SOC). The whole pipeline is the same as above. We pre-train the model with
the simulated SAR images and initialize the feature extractor M using the pre-trained parameters.
Then the model is fine-tuned using all of the real SAR images at a 17◦ depression angle. We perform
evaluation on the real SAR images at a 15◦ depression angle. The baseline methods are CNN_ORG,
CNN_TF CDCT, PML, KSR [38] and TJSR [39], CDSPP [40], KRLDP [41], MCNN [42] and MFCNN [43].
CNN_ORG and CNN_TF are selected as the simplest baselines. KSR and TJSR are two sparse
representation methods, CDSPP and KRLDP are two discriminant projection methods. MCNN
and MFCNN are based on convolutional neural networks (CNN).

The experimental results are shown in Table 7. Our method can achieve a comparable classification
result to CDCT, MCNN and PML. With the proposed spectral regularization, the deep learning
based feature extractor can acquire better feature discriminability, providing a 1.5 point boost in
classification accuracy.
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Table 7. Test accuracies with full training data under SOC.

Method Accuracy (%)

CNN_ORG 95.7
CNN_TF [26] 95.9
CNN_PP [37] 96.2

CDCT [32] 98.5
PML [33] 97.6
KSR [38] 93.6
TJSR [39] 93.4

CDSPP [40] 91.0
KRLDP [41] 95.1
MCNN [42] 98.2

MFCNN [43] 95.5
Ours 97.4

Classification results Under Depression Variations. In the sufficient-data regime, the model is
evaluated at different depression angles. We pre-train the model on the simulated SAR dataset and
use the pre-trained parameters as an initialization for the feature extractor M.

Three target classes from the real SAR dataset are selected to fine-tune and test the model.
The details of the training and test data on the real SAR dataset are shown in Table 5. All of the real
SAR images at a 17◦ depression angle are used to fine-tune the model. The real SAR images at 30◦ and
45◦ depression angles are used for evaluation.

The experimental results are shown in Table 8. Our model achieves the best classification accuracy
of 98.9% at a 30◦ depression angle, which brings in a 4.9 point boost in classification accuracy for
CNN_TF. For 45◦ depression angle, the classification accuracies of all methods degrade dramatically.
It should be noted that the classification accuracy of CNN_TF decreases when the number of training
data changes from 10% to 100%. That’s likely because the standard transfer learning cannot work
well when the training images are very different from the test images [32]. While our model yields
a comparable classification result to TJSR and provides a 6.7 point boost in classification accuracy
for CNN_TF.

In summary, the above experiments prove that the proposed spectral regularization SSR† can
also promote the learning of the classification model with sufficient data. In the sufficient-data regime,
cooperating with SSR†, the performance of CNN_TF can be significantly improved under SOC and
depression variations.

Table 8. Test accuracies with full training data under depression variations.

Method
Depression Angles

30◦ 45◦

CNN_ORG 91.6 60.1
CNN_TF [26] 94.0 62.5

CDCT [32] 95.8 72.5
PML [33] 96.0 79.3
KSR [38] 93.8 72.8
TJSR [39] 95.2 70.7

CDSPP [40] 92.3 77.2
KRLDP [41] 98.1 –
MCNN [42] 95.7 –

Ours 98.9 69.2
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3.5. SVD Analysis

In this section, we analyze the effectiveness of the proposed SSR and SSR†. With the pre-trained
parameters as initialization, the model is fine-tuned on the real SAR images at 17◦ depression angle.
And the max-normalized singular values in different epochs are visualized.

Firstly, we visualize the batch-level singular values of the feature matrix F = [ f1, f2, ..., fb], which
is produced from a batch of SAR image features. As shown in Figure 8, the difference between the
large and small singular values is very big in the first epoch. As training progresses, the difference
between the large and small singular values is decreased gradually. It is obvious that BSP makes the
small singular values have more dominance than CNN_TF without spectra regularization. That is,
the model with BSP has better feature discriminability. As a consequence, BSP can provide a 2.3 point
boost in classification accuracy for CNN_TF.

(a) epoch 1 (b) epoch 50 (c) epoch 100

(d) epoch 150 (e) epoch 200

Figure 8. The max-normalized batch-level singular values in different epochs.

Secondly, we visualize the singular values of the sample-level feature matrix f , which is generated
by reshaping the extracted SAR image feature from (W, H, C) to (W × H, C). Figure 9 shows the
max-normalized sample-level singular values in different epochs. Both SSR and SSR† can strengthen
the small singular values to improve the feature discriminability. Obviously, SSR† implements a
significantly smaller difference between the large and small singular values than SSR. This is because
SSR† is designed to reduce the difference between the large and small singular values directly. As a
consequence, SSR† can provide a 4.3 point boost in classification accuracy for CNN_TF.
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(a) epoch 1 (b) epoch 50 (c) epoch 100

(d) epoch 150 (e) epoch 200

Figure 9. The max-normalized sample-level singular values in different epochs.

Although both BSP and SSR improve the feature discriminability by suppressing the largest
singular values, the sample-level spectral regularization SSR performs better than the batch-level
spectral regularization BSP. We think this difference comes from the level of spectral regularization.
The sample-level regularization can improve the feature discriminability for each SAR image feature
precisely. While the batch-level spectral regularization works for a batch of SAR image features and
every image feature can affect each other. Therefore, using spectral regularization at the sample-level
is more effective than batch-level (3.2% boost of SSR vs. 2.3 % of BSP).

For the original transfer-learning method, the difference between large and small singular values
is always very large along with the training, and the large singular values are dominant. In contrast,
for the proposed methods SSR and SSR†, the difference of large and small singular values is reduced
along with the training, and the dominant position of large singular values is weakened, or small
singular values are strengthened. Strengthening small singular values can make the model use more
diverse discriminative information for classification and generalize well with limited training samples.

In summary, our best spectral regularization SSR† directly reduces the difference of the large and
small singular values at the sample-level. The effectiveness of SSR† is proved by the above experiments.
Applying SSR† into the pre-training and fine-tuning stages can achieve better results. Besides, SSR†

can be plugged into any CNN based SAR target classification models to achieve performance gains no
matter the training data is sufficient or not.
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3.6. Noise Robustness

The small singular values strengthened by our method may contain some noise, which can
degrade classification accuracy. In this paper, we combine classification loss with SSR or SSR+ and
use a trade-off hyperparameter η to balance these two terms and the classification loss is dominant.
This setting can guarantee that the noise affecting discrimination will be suppressed. Therefore, the
proposed method is noise-robust. This is proved by the above experiments, where our method can
implement competitive classification results.

4. Conclusions

It’s difficult to train CNN based models with limited data in SAR target classification. To solve this
sample restriction problem, we propose the sample spectral regularization, which can regularize the
singular values of each SAR image feature to improve the feature discriminability. The proposed SSR
method has been integrated into a transfer learning framework to maximize its potential performance.
The experimental results indicate that the proposed regularization is a feasible approach for the
sample restriction problem in SAR target classification, and conducting spectral regularization at the
sample-level is better than batch-level. Besides, the proposed method can improve the classification
accuracy as well when the training data is sufficient. It should be noted that our simple and effective
spectral regularization can be plugged into any CNN based SAR classification models besides the
implemented transfer learning framework, which is expected to benefit numerous researchers in
this area.
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