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Abstract: During the past years, unmanned aerial vehicles (UAVs) gained importance as a tool
to quickly collect high-resolution imagery as base data for cadastral mapping. However, the fact
that UAV-derived geospatial information supports decision-making processes involving people’s
land rights ultimately raises questions about data quality and accuracy. In this vein, this paper
investigates different flight configurations to give guidance for efficient and reliable UAV data
acquisition. Imagery from six study areas across Europe and Africa provide the basis for an integrated
quality assessment including three main aspects: (1) the impact of land cover on the number of
tie-points as an indication on how well bundle block adjustment can be performed, (2) the impact
of the number of ground control points (GCPs) on the final geometric accuracy, and (3) the impact
of different flight plans on the extractability of cadastral features. The results suggest that scene
context, flight configuration, and GCP setup significantly impact the final data quality and subsequent
automatic delineation of visual cadastral boundaries. Moreover, even though the root mean square
error of checkpoint residuals as a commonly accepted error measure is within a range of few
centimeters in all datasets, this study reveals large discrepancies of the accuracy and the completeness
of automatically detected cadastral features for orthophotos generated from different flight plans.
With its unique combination of methods and integration of various study sites, the results and
recommendations presented in this paper can help land professionals and bottom-up initiatives alike
to optimize existing and future UAV data collection workflows.

Keywords: UAV; cadastral mapping; data quality; geometric accuracy; impact assessment;
ground control points; feature extraction; flight plan

1. Introduction

Harnessing disruptive technologies is crucial to achieving the Sustainable Development Goals.
Amongst others, unmanned aerial vehicles (UAVs) play a significant role in the so-called Fourth
Industrial Revolution. They are being referred to as mature technologies for remote delivery,
geospatial mapping, and land use detection and management [1]. In the domain of land administration,
UAV technology gained in importance as a promising technique that can bridge the gap between
time-consuming but accurate field surveys and the fast pace of conventional aerial surveys [2,3].
Various publications tested UAV-based workflows for cadastral applications, covering formal cadastral
systems such as in Albania [4] Poland [5], The Netherlands [6], or Switzerland [7] as well as less
formal systems in Namibia [8], Kenya [9], or Rwanda [10]. Findings examine vast opportunities,
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especially with the additional information of textured 3D models and high-resolution orthophotos that
ease public participation in boundary delineation [4,8,11]. Benefitting from the advantages of UAV
data, various authors utilized approaches in artificial intelligence and developed (semi-) automatic
scene understanding procedures to extract cadastral boundaries [12–15].

The fact that UAV-derived geospatial information can support decision-making processes involving
people’s land rights raises questions about the quality of UAV data. In this context, the concept of
quality is closely linked to spatial accuracy, which can be defined as absolute (external) or relative
(internal) accuracy. According to [16], absolute accuracy refers to the closeness of reported coordinate
values to values accepted as or being true. In contrast, relative accuracy describes the similarity of
relative positions of features in the scope to their respective relative positions accepted as or being
true. Both measures are equally crucial in land administration contexts (c.f. [17]), firstly, the correct
representation of image objects such as houses or walls (relative accuracy) as well as the correct
position of corner points (absolute accuracy) [16]. Generally speaking, the spatial accuracy depends
on configurations of the UAV flight mission such as sensor specifications, UAV itself, mode of
georeferencing, flight pattern, flight height, photogrammetric processing, image overlap, but also on
external factors such as weather, illumination, or terrain.

During the past decades, remote sensing, as well as computer vision communities alike,
studied those impacting parameters emphasizing image matching algorithms, different means of
georeferencing, and various flight planning parameters, among others. Finding accurate and reliable
image correspondences is the basis for a successful image-based 3D reconstruction. Numerous authors
investigated this fundamental part of the photogrammetric pipeline while trying to increase the
precision of image correspondences and to optimize computational costs [18–21]. The quantity
of tie-points derived during feature matching mainly depends on the type and the content of the
image signal. Deficient success rates negatively impact the spatial accuracy and overall reliability
of the 3D reconstruction and ultimately worsen the quality of the digital surface model (DSM) and
orthophoto [22].

Next to the aspect of feature matching, georeferencing refers to one of the most practice-relevant yet
most discussed topics when utilizing UAV imagery for surveying and mapping applications. More than
60 studies examined various methods of sensor orientation for terrestrial applications, as outlined
by [23]. The choice for a georeferencing approach typically represents trade-offs between spatial
accuracy and operational efficiency [24]. Even though direct sensor orientation or integrated sensor
orientation brings significant time-savings for the data collection operation, planimetric accuracies
usually range between 0.5 and 1 m due to the low accuracy and reliability of directly measured
attitude and positional parameters by onboard navigational units without a reference station [25–27].
Due to inaccurate scale estimation of those insufficient methods, not only the absolute but also the
relative accuracy might be not suitable for a particular application. In contrast, the use of real-time
kinematic (RTK) or post-processing kinematic (PPK) enabled GNSS devices allows to improve the
spatial accuracy to a range of several centimeters [28–32]. However, issues of sensor synchronization,
as well as insufficient lever-arm and boresight calibration, remain challenging [29,33], particularly for
off-the-shelf UAVs.

In addition to positional or full aerial control, integrated sensor orientation offers the option
to include ground observations, known as ground control points (GCPs). This has proven to be
beneficial to mitigate systematic lateral and vertical deformations in the resulting data products [34].
Various studies addressed the impact of the survey design of GCPs in terms of quantity and distribution.
In their meta-study, [23] did not find a clear relationship between the number of GCPs and the size of
the study area, but investigated a weak negative relationship between statistics of the residuals and the
number of GCPs collected per hectare. Data from several sources confirm that the distribution of GCPs
strongly impacts the spatial accuracy, and an equal distribution is recommended [35–37]. However,
looking at the results of the optimal number of GCPs, different conclusions are evident. Results from
relatively small study sites suggest that the vertical error stabilizes after 5 or 6 GCPs [35,38] and the
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horizontal error after 5 GCPs [35,36]. In contrast, [39] obtained a low spatial quality with 5 GCP and
recommended to use a medium to a high number of GCPs to reconstruct large image blocks accurately.
In [40,41] the authors achieved similar results with a concluding recommendation to integrate 15 or
20 GCPs in the image processing workflow, respectively. Aside from GCPs, higher spatial accuracy can
be achieved by additionally including oblique imagery [42] or perpendicular flight strips [30]. In most
cases, checkpoint residuals were measured in the point cloud or obtained directly after the bundle
block adjustment and, thus, do not necessarily represent the displacement of image points in the final
data product, as potential offsets during the orthophoto generation were not taken into consideration.
However, particularly for the application in cadastral mapping, the correct estimation of the spatial
accuracy is of vital importance.

Even though weak dependencies between several impacting factors on the data quality are
evident, the results of existing studies are very heterogeneous. Furthermore, most studies remain
narrow in focus, dealing mainly with only one study site situated in non-populated areas, and it is
questionable whether recommendations can be transferred to the cadastral context. To the best of the
authors’ knowledge, existing studies on UAV-based cadastral mapping only highlight the usability of
UAVs without assessing different flight configurations or the impact on the final absolute or relative
accuracy. To this end, a comprehensive analysis of varying data quality measures should provide a
factual basis for clear recommendations that ensure data quality for UAV-based cadastral mapping.
Thus, this paper seeks to conclude on best practice guidance for optimal flight configurations by
integrating results of a detailed quality assessment including three main aspects: (1) feature matching,
(2) ground-truthing, and (3) reconstruction of cadastral features. Whereas the first two approaches
target the evaluation of the data quality during and after photogrammetric processing, the latter
method focusses on the implications of different orthophoto qualities for the automated extraction of
cadastral features. Similar to diverse practices of quality assessment, research data are also manifold
and are drawn from six study sites located in Africa and Europe.

In many low- and middle-income countries, conditions for flying, controlling, and referencing
respective data are more complex than in Western-oriented countries, a situation which is often
underestimated. Primarily spatial and radiometric accuracy can be negatively influenced by poor
flight planning and adverse meteorological conditions. Moreover, ground control measurements
can be problematic due to a lack of reference stations, the availability of professional surveying
equipment, or capacity. In the field of land administration in general and cadastral mapping in
particular, incorrect geometries of the orthophoto might cause negative consequences to civil society as
the subject deals with a spatial representation of land parcels and attached rights and responsibilities.
As an example, erroneous localization and estimations of parcel sizes might imply inadequate tax
charges, problems with land compensation funds, or challenges to merge existing databases spatially.
With its unique combination of methods and integration of various study sites, it is hoped that the
results and recommendations presented in this paper help land administration professionals and
bottom-up initiatives alike to optimize existing and future data collection workflows.

The remainder of the paper is structured as follows. Section two provides background information
on data collection, data processing, and quality assessment methods. The results section is divided into
three separate subsections with (1) findings showing the impact of land use on the number of tie-points,
(2) a comprehensive comparison of different ground control setups and its effect on the final absolute
accuracy, and (3) an evaluation of qualitative and quantitative characteristics of extracted cadastral
features. The discussion critically reflects on the results based on existing literature and outlines best
practice guidance for UAV-based data collection workflows in land administration contexts.

2. Materials and Methods

The study setup foresaw three different means of quality assessment targeting at absolute as well as
relative accuracy as outlined in the conceptual framework in Figure 1. Well-known methods as the
statistical evaluation of checkpoint residuals were combined with quantitative measures of image
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matching results as well as characteristics of automatically delineated cadastral features. Different clues
on the spatial accuracy substantiate the results to provide best practice guidance. Detailed workflows
and specifications of the analysis are outlined below.

Figure 1. Conceptual framework.

2.1. UAV and GNSS Data Collection

To test the transferability of the findings and to ultimately claim best-practice recommendations,
methods were applied to different datasets collected with diverse UAVs and sensor equipment.
This includes, in total, six study areas across Europe (Gerleve, Bentelo) and Africa (Kajiado, Kibonde,
Muhoza, Mukingo) ranging from 0.14 to 8.7 km2 (Figure 2). UAV equipment as well as sensor
specifications are outlined in Table 1 and included two fixed-wing UAVs (Ebee Plus, DT18), one hybrid
UAV (FireFly6), and two rotary-wing UAV (DJI Inspire 2, DJI Phantom 4) equipped with an RGB sensor.
Two out of the five UAVs worked with a PPK. Prices for the platforms and sensors range from 1000 to
40,000 €. Flights in Gerleve, Bentelo, Muhoza, Kajiado, and Mukingo were carried out according to
a classical flight pattern without cross-flights and an overlap of 80% forward overlap and 70% side
lap for all datasets. Additionally, the study in Kibonde foresaw several flights that were repeatedly
carried out with varying image overlap (60%, 70%, and 80% side lap) to assess the impact of flight
parameters on the characteristics of extracted cadastral features. Following existing literature that
proves the benefit of cross flight patterns [16], three perpendicular strips in a different flight height
were added to the regular flight and are part of the accuracy evaluation in Kibonde as well.
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Figure 2. Overview of all datasets presented as orthomosaics (a) Bentelo, (b) Gerleve, (c) Mukingo,
(d) Kajiado, (e) Kibonde, and (f) Muhoza (scales vary).

Table 1. Unmanned Aerial Vehicles (UAVs) and technical specifications of the sensor. GSD refers to
ground sampling distance.

Dataset Area (km2) GSD (cm) UAV Camera Sensor Size (mm) Resolution (MP)

Muhoza 0.98 2.1 BirdEyeView
FireFLY6 SONY ILCE-6000 13.50 × 15.60 24.00

Mukingo 0.50 2.2 DJI Inspire 2 DJI FC652 13.00 × 17.30 20.89

Kajiado 8.70 5.8 DJI Phantom 4 DJI FC330 06.20 × 04.65 19.96

Kibonde 0.15 3.0 SenseFly Ebee
Plus SenseFly S.O.D.A. 12.70 × 08.50 19.96

Gerleve 1.10 2.8 DelairTech DT18 DT 3Bands 08.45 × 07.07 5.00

Bentelo 0.14 2.7 DJI Phantom 4 DJI FC330 06.20 × 04.65 11.94

To allow the inclusion of external reference points into the bundle block adjustment (BBA) as well as
for means of independent quality assessment, GCPs were deployed. Due to different contexts and time
delays between marking and the data collection flights [17], different shapes and methods to mark
control points were used. In Musanze, Mukingo, Bentelo, and Kibonde quadratic plastic tiles with two
equally sized black and white squares were fixed with iron pegs. Crosses marked with permanent
white paint were used in Kajiado, as the flight missions took several days. For Gerleve, white sprayed
Compact Disks were deployed and fixed with survey pins. Three-dimensional coordinates of the
central point were determined with survey-grade GNSS devices. As Continuous Operating Reference
Stations (CORS) are only available at a few locations in Africa, different modes were used to achieve a
measurement accuracy of less than 2 cm. Real-time CORS corrections could be harnessed in Europe,
while a base-rover setting over a known survey point and either radio-transmitted real-time corrections
or a classical post-processing approach was the preferred surveying operation for the African missions.
All GCPs were measured twice, before and after the UAV flight. The average of both measurements
was converted from the local geodetic datum to WGS84 or ETRF89. A detailed list of specifications
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about the GNSS device, number of measured control points, as well as original and target geodetic
datums are given in Table 2.

Table 2. Specifications of GCP measurements.

Dataset GNSS Device Measured Points Original Datum Target Datum

Muhoza Leica CS10 17 ITRF 2005 WGS84 UTM35S

Mukingo Leica CS10 19 ITRF 2005 WGS84 UTM35S

Kajiado CHC X900+ 16 Cassini WGS84 UTM37S

Kibonde Sokkia Stratus 11 Arc1960 WGS84 UTM37S

Gerleve Trimble 22 ECEF ETRS89 UTM32N

Bentelo Leica GS14 18 Amersfoort WGS84 UTM32N

2.2. Estimating the Impact of Land Cover on the Number of Automatic Tie Points

The establishment of image correspondences is a crucial component of image orientation. In the
first step, primitives are extracted and defined by a unique description. Secondly, the descriptors of
overlapping pictures are compared, and correspondences determined. With a low number of automatic
tie-points, the image orientation is less reliable and negatively impacts the quality of subsequent image
matching processes. Different land use classes were defined (cf. Table 3) to evaluate the impact of
land cover on the number of automatic tie-points. If a particular land use was present in a dataset,
representative image pairs were manually selected and processed as described below.

Table 3. Land use classes and representation in datasets (Bentelo, Gerleve, Kajiado, Kibonde, Muhoza,
Mukingo). Digits indicate the number of image pairs used for the experiment. Percentage, as outlined
in the definition, refers to pixel representing specific land cover.

Land Use Class Definition Ben Ger Kaj Kib Muh Muk

Forest >70% covered by trees 4 5

Agriculture (cropland) >70% cultivated agricultural fields 5 5

Agriculture (grassland or
uncovered soil) >70% bare soil or sparse grass vegetation 5 5 5 5 5

Rural context <20% structures, a predominance of
agricultural activities 5 5 5

Peri-urban context 20–70% structures 5 5 5 5

Urban context >70% structures, densely populated 5 5

Most commercial photogrammetric software packages do not provide information on their image
matching techniques, and respective code might be subject to frequent changes. Instead of using
such a black-box software, we chose three state-of-the-art feature matching approaches which were
selected, reflecting the variety of blob and corner detectors with binary and string descriptors: SIFT [43],
SURF [44], and AKAZE [45]. The open-source photogrammetric software PhotoMatch [46] was
utilized to carry out the tests. Before the feature matching process, all images were pre-processed
by a contrast-preserving decolorization tool [47], maintaining the full image resolution. The feature
matching was conducted with a brute-force method and supported by RANSAC for filtering wrong
matches. Thus, image correspondences are searched by comparing each key-point with all key-points
in the overlapping image. Settings for feature extraction and description were kept to default values as
this analysis is meant to detect relative changes of feature matching rates according to the type of land
cover instead of performance evaluation of different approaches. Resulting tie-points (i.e., inlier of
key-point matches) were normalized according to the image resolution to reach comparability between
various sensor specifications within one land use class. To enable an evaluation of matching quality
and variation in different land use classes and feature extraction/matching technique, the number
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of matches per image pair was normalized with respect to the number of matches within a specific
matching algorithm, see equation below for the so-called z-score. Here ATP indicates the normalized
number of automatic tie-points per image pair, ATP the mean of all matches of the respective feature
extraction approach, and σ ATP the standard deviation of all matches of the respective matching
approach. The z-score provides insights on how many standard deviations below or above the mean
the quantity of tie-points in comparison to the other algorithms, within a land use class, is.

Z score =

(
ATP −ATP

)
σ ATP

To also visualize absolute quantities, the mean value of ATP for all different datasets in the same
land use class was calculated. Furthermore, the overlap of image pairs was added as an additional
variable. For this analysis, data from Kibonde and Bentelo served as input image pairs as both datasets
offered various overlap configurations.

2.3. Estimating the Impact of the Number of GCPs on the Final Geometric Accuracy

All images were processed using Pix4D, keeping the original image resolution. Point clouds
were created with an optimal point density, and DSMs as well as the orthomosaics were produced
with a resolution of 1 GSD. To allow the comparability of the spatial accuracy of different datasets,
uniformly distributed GCPs were included in the processing pipeline according to a standard pattern
(Figure 3). Ground markers were identified and linked to at least six images. Depending on the specific
number of GCPs (0–10), the remaining points were used as independent checkpoints to estimate the
vertical and horizontal accuracy of the final data products.

Figure 3. Distribution of GCPs for experimental assessment of the spatial accuracy.

The spatial accuracy was calculated at two different stages of the photogrammetric processing.
Firstly, the geometric error was determined after the BBA, as outlined in the quality report of Pix4D.
The horizontal error of a checkpoint was calculated using the Euclidean distance of the residuals in X
and Y directions. The residuals of the Z coordinate represented the vertical offset. Secondly, this study
also foresaw an accuracy assessment of checkpoint residuals in the final data product as the absolute
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accuracy of points in the orthophoto is of vital importance for cadastral surveying. This measure
reveals information about displacement errors introduced during the orthorectification. The center of
checkpoints was visually identified and marked in the orthomosaic using QGIS. Horizontal errors were
derived by X and Y residuals, whereas the vertical error was extracted based on the raster value of the
DSM. To describe the overall planimetric and vertical error of a particular processing scenario, the root
mean square error (RMSE) was calculated following the ISO standard [16]. In this context, the GNSS
measurement of the checkpoint coordinate was treated as true value and the extracted coordinates
from the orthophoto as the predicted value.

2.4. Estimating the Impact of Different Flight Plans on the Characteristics of Extracted Cadastral Features

In contrast to the other two methods, the third quality evaluation utilizes only data from one
regional context. Following basic photogrammetric principles, it is clear that the amount of image
overlap significantly impacts the quality of the reconstructed scene. Thus, different flight pattern
(with and without cross-flight), as well as multiple image overlap (50% and 75% forward overlap
as well as 60%, 70%, and 80% side lap) configurations, were exemplified for the study area Kibonde to
ultimately show the impact of various flight configurations on the reconstruction quality of cadastral
features and subsequent automatic delineation results. Orthophotos were processed. Subsequently,
a quadratic shape of 500 × 500 m was extracted as required by the image segmentation algorithm [48].
To ultimately analyze geometric features and line discontinuities, this paper foresaw a workflow
including image segmentation algorithms as well as raster and vector operations, as shown in
Figures 4 and 5. The first step was the establishment of reference lines and the creation of a mask to
clip all candidate lines subject to this analysis. Reference lines were based on independently captured
UAV images (80% forward overlap and side lap, cross-flight at a different altitude) and a resulting
orthomosaic with 1.5 cm resolution. Two distinct features, namely building rooftops and concrete
walls, were selected as representative visible objects that are important for cadastral applications.
Both feature types were manually digitized and served as reference lines for subsequent analyses.

Figure 4. Workflow to define reference lines and a search mask for lines representing concrete walls
and rooftops.
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Figure 5. Workflow to compute and select MCG lines representing rooftops or walls and analytical tools to describe geometric characteristics of selected MCG lines.
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A uniform vector mask representing the vicinity of concrete walls and rooftops was created to
minimize the number of candidate boundary lines. A slope layer served as the basis to select a 1 m
buffer of all raster cells of the DSM representing >75% of the height gradient. Additionally, a vegetation
mask was created to remove vegetated areas as those would negatively impact the straightness of
selected cadastral features independent of the quality of the orthomosaic and thus would introduce
unintended noise to the analysis of geometric discontinuities. The vegetation mask was based on the
Gree-Red Difference Index (GRDI). Raster cells above a GRDI of 0.02 were classified as vegetation and
polygonized to calculate a buffer of 1 m. Finally, the slope-based mask was clipped with the buffer of
the GRDI to exclude vegetation from the samples.

In the second step, multiscale combinatorial grouping (MCG) [49] was applied to all orthophotos
to ultimately derive closed contour lines of visible objects, as suggested by [50]. The segmentation
threshold was set to k = 0.6 as this has proven to limit over-segmentation while still maintaining
relevant cadastral objects in the context of this study. As shown in Figure 5, resulting lines were
polygonized and simplified according to [48]. Once the lines were clipped with the reference mask,
several geometric and spatial characteristics were queried (c.f. Figure 5). Candidate lines were selected
by overlaying the MCG lines with a 0.5 m buffer of reference lines. From those candidate lines,
actual lines representing rooftops and walls were chosen manually. To calculate the correspondence
as well as the spatial difference to reference lines, the MCG lines representing walls and rooftops
were split to segments of 10 cm and subsequently converted to points. Afterwards the distance
from each point in the MCG line to the closest point of the reference line was calculated to derive
statistical values for the spatial offset. To describe the amount of MCG lines that could automatically
be extracted (i.e., correspondence with reference lines), a neighborhood analysis was carried out to
estimate the percentage of reference lines that could be reproduced by the MCG algorithm. As a last
characteristic, this study calculated the sinuosity as a measure of the straightness of MCG lines to reflect
on inconsistencies of critical features in the orthomosaics. Similar to the spatial offset, the sinuosity
was calculated based on summed length of the MCG lines for one object in relation to the length of a
virtual straight line (Figure 5).

3. Results

3.1. Image Matching: Image Correspondences

The number of pairwise image correspondences was derived from comparing feature matching
success rates representing certain land use classes prevalent in the images. The diagram in Figure 6
depicts standardized z-scores as well as mean values of automatic tie-points for SIFT, SURF, and AKAZE.
At first glance, the results of various matching algorithms demonstrate a similar distribution,
whereas apparent differences between land use classes are evident.
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Figure 6. Standardized values of automatic tie-points using SIFT, AKAZE, and SURF as feature
extraction, detection, and matching algorithm. The mean number of automatic tie-points per algorithm
and land use class is reflected as bars. The x-axis represents land use classes as defined in Table 3.

Image pairs characterized by forest and cultivated agricultural fields show significantly
low numbers of automatic tie-points. In some cases, no matches could be found. Images,
displaying non-cultivated agricultural field plots stick out by a broad range of images correspondences
for all three feature matching approaches. Here, the dataset Bentelo reaches the highest z-scores
and results are multiple standard deviations above the mean. However, also insufficient numbers of
automatic tie-points are evident in this land use class, particularly for Gerleve. This can be ascribed to
poor illumination conditions and little contrast in the images. The remaining datasets are clustered in
a range between −0.5 and 1.5 of the z-score.

For image scenes showing human-made structures, two different trends are visible. The first
trend describes the following correlation: on average Kibonde, Muhoza, and Mukingo indicate more
key-point matches if less vegetation and more structures are prevalent. Thus, for Kibonde and Mukingo,
a higher z-score was achieved with the peri-urban scene context compared to the rural context. The same
applies to Muhoza with the land uses peri-urban and urban, respectively. In contrast, Kajiado does not
follow this trend and represents the dataset with the highest z-scores for all three land use classes (rural,
peri-urban, urban). The same applies for all three image matching algorithms. A possible explanation
for this may be the climate zone. As indicated above, high vegetation presents an adverse condition
for finding tie-points. In contrast to the humid climate in Kibonde, Mukingo, and Muhoza, Kajiado is
located in a semiarid region characterized by a sparse shrub and bush vegetation. Thus, the impact of
vegetation is almost not visible and rural as well as urban scenes achieve similar z-scores. Secondly,
next to the climate zone, also the GSD might have an impact on the above-average z-score of Kajiado
for the rural, peri-urban, and urban land use class.

Looking at the impact of image overlap on the automatic tie-points in Table 4, it becomes clear
that the poor feature matching results of forest can only be overcome with 90% image overlap while
the other land use classes already show sufficient matches with less overlap. Similar to Figure 6,
non-cultivated agricultural areas present the highest rate of image correspondences for all image
overlap scenarios. Two adverse conditions could explain the low rate of automatic tie-points in the
forest. Firstly, although the flight is configured with a high image overlap, the difference in the viewing
angle is larger between image points showing the crown of the tree than for image objects on the
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ground. Thus, we observe that key-points show insufficient similarity to be determined as image
correspondence. This challenge can only be overcome by 80–90% image overlap. However, at the
same time, the descriptors of leaves could also be too similar, leading to ambiguities during the feature
matching process. Both effects are visible and could explain the comparatively low number of automatic
tie-points for all four image overlap configurations. In addition, and more or less independently from
that, high vegetation cannot be regarded “static”, which is, however, an indispensable requirement for
mono-camera bundle adjustment. It should be emphasized that those results were derived with single
image pairs. It is expected that a priori location and alignment information of images in an image
block ease the feature matching process compared to the brute-force approach used in this analysis.

Table 4. Mean of automatic tie-points of image pairs using SURF showing different land use classes
and overlap.

60% Overlap 70% Overlap 80% Overlap 90% Overlap

Agriculture (not cultivated) 289 666 2519 n/a

Rural 83 116 291 n/a

Peri-urban 18 302 326 n/a

Forest 0 5 6 50

3.2. Absolute Accuracy: Checkpoint Residuals in DSM and Orthophotos

The absolute accuracy was determined after the bundle block adjustment as well as after the
orthophoto generation. Figure 7 presents the RMSE of horizontal and vertical checkpoint residuals of
all datasets. Looking at the results, it is evident that, in general, all datasets show a similar pattern.
For photogrammetric processing with less than 5 GCPs, resulting RMSE of the datasets differ widely,
whereas, for results with more than 5 GCPs, the final RMSE seems to stabilize at a certain level.

Looking at the horizontal RMSE, the large variance of the datasets for processing scenarios from 0
to 5 GCPs can be explained by the different quality of positional sensors. If no ground truth is included
(0 GCPs), the BBA solely uses image geotags to estimate the absolute position of the reconstructed
scene. Here, Gerleve was the only dataset with a professional PPK enabled GNSS device and attained
the lowest RMSE (10 GSD) for all datasets processed with 0 GCP. In contrast, Kajiado was flown with
a consumer-grade UAV showing a large horizontal offset of more than 200 GSD. Bentelo, Mukingo,
and Muhoza achieve an RMSE between 50 and 100 GSD without GCPs, which is considered a typical
error range of GNSS positioning without enhancement methods. Except for the dataset Mukingo,
the RMSE drops significantly with including 1 GCP which corrects systematic lateral shifts. For the
scenario with 3 GCP, all datasets achieve a horizontal RMSE between 10 and 20 cm. Gerleve and
Bentelo reach an RMSE of less than 10 cm after 6 GCPs and are followed by Kajiado and Muhoza after
7 GCPs. Subsequently, almost all datasets keep the same level alternating within a range of 1 GSD.
In this aspect, Mukingo achieves the most accurate results with less than 5 cm RMSE after 5 GCPs.
Muhoza is the only dataset which nearly improves its RMSE for each scenario that adds one more GCP.
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Figure 7. RMSE of checkpoint residuals measured in the DSM (vertical) and orthophoto (horizontal).

Looking at the vertical residuals, Figure 7 suggests a higher dynamic compared to horizontal
residuals. In general, residuals are larger than the values of the horizontal RMSE and start to level only
after 7 GCPs. With a height offset of more than 1000 GSD, which corresponds to approximately 30 m,
the dataset Mukingo shows the maximum value without including GCPs. This can be attributed to a
general definition problem of the height model used by DJI and can be corrected by adding at least
1 GCP. Similar to the horizontal residuals, Gerleve achieves the highest accuracy with an RMSE of
only 10 GSD. However, after 2 GCPs, the height residuals abruptly increase before decreasing again
after 4 GCP, indicating that this dataset requires a checkpoint in the center of the scene to correct
severe height deformations. At 5 GCPs, all datasets demonstrate a significant improvement of the
vertical RMSE. Independent from the size of the area, five evenly distributed GCPs can be considered
as the minimum number of GCPs which efficiently fixes cushion and dome deformations during scene
reconstruction. After 7 GCPs the vertical residuals of Bentelo, Kajiado, and Mukingo stabilize within
the range of 1 GSD whereas Muhoza and Gerleve continue to lower its RMSE.

Additional to the absolute accuracy, the difference of the RMSE after BBA to the RMSE after
DSM and orthophoto generation are shown in Table 5. The presented values reveal insights about
the share of the overall error, which accumulates after the BBA during the 3D-reconstruction and
ortho-generation process, independent of horizontal or vertical displacement indicated during the
BBA. Negative values suggest that the RMSE after the BBA is higher than the RMSE of the residuals
taken from the DSM/orthophoto. On average, variations between the error measures remain very
low (below 1 GSD) and do not show a clear trend of an overestimation of one or the other, as well as
no relation to the number of GCPs. However, for Gerleve and Muhoza, horizontal residuals range
up to 3 GSD, and for vertical residuals we observe differences up to 5 GSD in two cases. For both
datasets, significantly higher differences in the RMSE of checkpoint residuals could be explained by the
challenging conditions for the 3D-reconstruction and orthophoto-generation processes. For Muhoza,
difficulties could arise from considerable height (i.e., land surface) dynamics of the densely populated
urbanized center. Gerleve stands out for its poor illumination conditions and subsequent problems to
reliably reconstruct the image scenes.
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Table 5. Differences of RMSE of checkpoint residuals measured after the BBA and in the orthophoto/DSM.
Values are normalized, according to GSD. Horizontal (h) and vertical (v) errors are treated separately.
Differences >1 GSD are indicated bold.

Bentelo h/v
(GSD)

Gerleve h/v
(GSD)

Kajiado h/v
(GSD)

Muhoza h/v
(GSD)

Mukingo h/v
(GSD)

0 GCP 0.39/−1.96 −0.03/−0.84 0.05/−0.45 0.29/0.69 0.38/0.22

1 GCP −0.11/−0.08 0.05/0.73 −0.09/−0.10 −0.01/3.79 −0.31/−0.02

2 GCP 0.37/0.07 −0.02/−0.11 −0.24/−0.18 0.01/2.72 −0.28/−0.22

3 GCP 0.05/−0.28 −0.19/0.20 0.18/−0.57 0.72/1.07 0.24/0.16

4 GCP 0.15/−0.52 2.11/−0.72 0.23/0.94 0.60/−4.12 −0.27/0.49

5 GCP 0.10/0.01 2.17/−1.09 0.44/−0.24 2.81/0.18 0.15/−0.34

6 GCP 0.15/0.05 −0.15/−0.55 0.58/−0.37 1.60/0.18 0.19/0.16

7 GCP −0.13/−0.35 −0.05/0.57 0.24/−0.70 1.42/−0.12 0.23/−0.23

8 GCP −0.08/−0.22 −0.03/1.63 0.35/−0.37 −0.81/0.41 0.27/−0.07

9 GCP −0.22/−0.31 −1.55/−1.02 0.29/0.39 −0.50/−4.89 0.11/−0.66

10 GCP −0.11/−0.31 0.42/0.68 0.17/−0.02 −0.24/−2.60 0.28/−0.05

3.3. Relative Accuracy: Characteristics of Automatically Extracted Cadastral Features

Various line geometry measures present the quality of the scene reconstruction and subsequent
feature extraction. For the chosen quadratic scene in the center of the Kibonde dataset, houses are
predominantly covered by corrugated iron roofs and parcels are usually separated by concrete walls or
bushes. To minimize external noise to our statistical assessment, only walls and rooftops without the
interference of vegetation were delineated as reference (Figure 8). This adds up to a total of 692.3 m of
lines referring to rooftops and 196.4 m of lines representing walls. As presented in Table 6, this relation
is also expressed by candidate lines counted in a 0.5 m buffer of all reference lines. Interestingly,
the impact of the flight pattern (cross-flight or no cross-flight) is more evident for rooftops than for walls,
shown by the difference of line counts for different flight pattern scenarios. Concerning reference walls,
marginally (within 10% range) fewer candidate lines were selected compared to the same scenario
without a cross-flight pattern. In contrast, for rooftops, differences range from 10% to 40%.

Figure 8. Selected reference lines representing rooftops (green) and walls (red) for the area of interest
in Kibonde.



Remote Sens. 2020, 12, 3625 15 of 23

Table 6. Qualitative and quantitative characteristics of line geometries representing rooftops (R) and
walls (W) separated according to flight configuration (forward overlap (f), side lap (s)) and flight
pattern (CF = cross flight pattern, no CF = no cross-flight pattern). Minimum and maximum values are
presented in bold.

Image Overlap (f/s) 50%/60% 50%/70% 50%/80% 75%/60% 75%/70% 75%/80%

no
CF CF no

CF CF no
CF CF no

CF CF no
CF CF no

CF CF

Candidate lines 0.5 m
buffer (count)

W 144 146 121 133 177 157 158 122 165 133 129 134

R 333 273 410 285 505 310 402 271 366 295 444 369

Selected line segments
(count)

W 73 42 76 63 67 50 78 44 75 57 54 40

R 209 177 233 180 256 180 243 161 189 168 220 173

Mean length of line
segments (m)

W 3.22 4.68 3.50 3.39 3.32 4.96 3.31 3.71 3.05 3.86 4.37 5.47

R 3.65 4.37 3.34 4.28 3.01 4.21 3.24 4.87 4.14 4.54 4.40 4.50

Correspondence with
reference (%)

W 71.5 85.8 79.0 90.1 82.5 87.8 88.5 83.6 93.0 87.6 91.9 93.0

R 94.9 95.8 94.8 95.1 96.6 95.6 96.3 95.9 95.1 95.7 97.2 97.8

Sinuosity
W 1.77 1.78 1.76 1.70 1.68 1.65 1.66 1.62 1.74 1.62 1.66 1.58

R 1.58 1.59 1.58 1.60 1.59 1.60 1.60 1.61 1.58 1.59 1.61 1.58

Looking at the count of selected line segments, a more homogenous picture can be drawn. In all
cases, the line count for the cross-flight pattern is lower than for the same image overlap scenario
without a cross-flight. The mean length of line segments shows no significant difference between
walls and rooftops. However, an important observation can be made concerning the image overlap.
On average, line segments are shorter for scenarios with only 50% forward overlap compared to
flight plans with 75% overlap. The combination of a higher count of line segments and a smaller
average line length proves a higher fragmentation of boundary features for orthophotos without a cross
flight pattern, as well as for lower image overlap scenarios. This result becomes even more apparent
concerning the correlation of selected MCG lines with the reference dataset. Here, the improvement
of the correlation with reference lines is more significant for walls than for rooftops. In this aspect,
walls demonstrate a range between 71.5% and 93% and steadily increase with higher image overlap
(both, forward and side lap). This means, the MCG algorithm applied to the orthophoto generated
with a poor flight plan, produces contours for only 71.5% of the walls. In contrast, an orthophoto
based on a favorable flight plan achieves an object detection rate of 93%. Hence, the detection range of
contour lines for rooftops is comparatively small with maximal 2.9% variance between different flight
plan scenarios.

A similar observation is evident for the sinuosity. Here, rooftops do not differ much, and lines of
rooftops are on average 1.5 times longer than a perfectly straight line from the start to the endpoint.
MCG lines representing walls are on average more curved and show a clear trend concerning the flight
parameters reaching a minimal curviness with a cross flight pattern and 75% forward overlap and 80%
side lap. Particularly for lines representing rooftops, it should be noted that the sinuosity values are
relatively high due to the origin of the MCG lines, which were created based on a raster dataset and
consequently still show undulations at the pixel level.

Aside from line feature characteristics, the spatial correlation was also investigated in terms of
distance measurements of MCG lines to reference lines. Figure 9 visualizes the results and exemplifies
the spatial correlation with a small sample of the entire dataset. Rooftops are mainly delineated close
to the reference line, whereas walls show considerable variability. As an example, we included the
orthophoto generated with the poorest image overlap at the bottom of Figure 9. The visual interpretation
reveals a significant deformation and poor orthorectification of the wall, which ultimately leads to the
displacement of MCG lines for the dataset with 50%/60% overlap and without a cross-flight.
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Figure 9. Example showing the differences of automatically extracted rooftops and walls separated
according to flight configuration (forward overlap (%), side lap (%)) and flight pattern (CF = cross flight,
noCF = no cross flight).

This variability is also apparent in the statistics of the point-to-line distances, presented as
box-whisker plots in Figure 10. The interquartile range of rooftops is significantly smaller than the one
of the walls. It should be noted that the distances of reference walls are subject to a systematic offset of
15 cm as the reference line was placed in the center of the wall, whereas the MCG algorithm produced
lines on the right or left edge.

Figure 10. Box-whisker plot of point distances to reference lines separated according to the reference
wall and rooftop. Box represents the interquartile range (IQR) with the median; whisker represent
1.5 IQR, points represent outliers. x-axes label refers to flight parameter, e.g., 5060CF means 50%
forward overlap, 60% side lap and cross-flight (CF) pattern. Distances reflect the length of perpendicular
lines from points to reference lines. Points were created every 10 cm from a line geometry that was
derived by feature extraction with the MCG algorithm.
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For two flight scenarios with low overlap, outliers of point distances of rooftops exceed the outliers
of walls. In general, the share of outliers is higher for rooftops than for walls indicating that almost all
rooftops are delineated in a range of approximately 20 cm with a few extreme variations. For wall
features, the statistical analysis confirms the observations from the line characteristics, showing that
the overall quality of delineated walls differs highly with respect to the image overlap and flight plan
settings. Best results represented by the lowest five-number values of the box-whisker plot were
returned for flight scenarios with 75% forward overlap, 80% side lap, and a cross flight pattern.

As evident in Figure 11, the RMSE of horizontal checkpoint residuals of the orthophoto stays
between 0.8 and 1.5 GSD for all flight configurations, which corresponds to 2.5–4 cm. Similar to
Figure 9, the statistics of the offset of detected line features show a noticeable discrepancy between
rooftops (<10 cm) and walls (20–40 cm).

Figure 11. Scatterplot of error metrics for delineated rooftops and walls of orthophotos captured with
different flight configurations. Absolute accuracy of the orthophoto is given on the y-axis with the
RMSE of horizontal checkpoint residuals. Relative accuracy is shown on the x-axis displayed by the
RMSE of point distances to reference lines. Note that both axes have different scales.

In contrast to checkpoint residuals of the orthophoto, which do not show a correlation with the
error metrics, Figure 12 reveals that the flight pattern has implications on the relative accuracy of
extracted features. Walls directed perpendicular to the flight direction show almost the same statistics
for both scenarios, with a cross-flight or without a cross-flight pattern. However, for walls parallel
to the flight direction, a cross-flight pattern improves the results indicated by a lower median and a
smaller IQR. This result could be attributed to the fact that geometries of features parallel to epipolar
lines imply more challenges to correctly estimate the 3D position and subsequent image matching
and ortho-generation.



Remote Sens. 2020, 12, 3625 18 of 23

Figure 12. Box-whisker plot of distances to reference lines separated according to the direction of walls
(parallel or perpendicular to the flight direction). Box represents the interquartile range (IQR) with the
median; whisker represent 1.5 IQR, points represent outliers.

4. Discussion

Even though UAV can collect images with a resolution of a few centimeters, results in this paper
show that the absolute and relative accuracy can differ from some centimeters up to several meters
depending on the chosen flight configuration. To exploit the full potential of UAV-based workflows for
land administration tasks, careful decisions on efficient mission planning are essential. This holds true
for both sides: collecting as many images and GCPs as needed to meet the expected survey accuracy,
but also for collecting just as many images and GCPs as necessary to minimize computational costs in
favor of time constraints or potential hardware limitations.

Several reports have shown that the quantity of automatic tie-points impacts the quality of
the photogrammetric 3D reconstruction as image correspondences are fundamental for the correct
estimation of image orientation parameters. Even though different sensors, UAV, scenes, and flight
conditions were analyzed in this paper, a homogenous picture can be drawn when looking at generated
tie-points in relation to land use classes. In image scenes showing trees or crops significantly lower rates
of tie-points could be extracted compared to scenes with human-made structures or grassland. In the
former case, only a high image overlap of at least 80–90% is sufficient to achieve an adequate number of
image correspondences. These results match those reported in [51]. In tropical or subtropical regions,
most rural and peri-urban scenes are also characterized by vegetated areas subject to subsistence
farming side-by-side to residential buildings. Thus, an optimal flight mission might need to be
configured with higher image overlap compared to a flight mission in arid or semiarid regions.

Although a clear correlation of generated tie-points and land use can be shown, the results suggest
that the optimal number of GCPs seems to be independent of the climate zone or land cover, as all
datasets in this analysis reveal a similar pattern and indicate no significant changes of the RMSE after
seven equally distributed GCPs. This result reflects those of [36,38,40] who also observed no significant
differences in the final vertical or horizontal RMSE after 5 or 6 GCPs, respectively. In contrast to earlier
findings [39], no evidence of the impact of the GCPs density was detected. In terms of GSD and
despite considerably different extents of the study areas, all datasets in this analysis reach a similar
error level with 10 GCPs, 2–3 GSD for the horizontal accuracy, and 2–4 GSD for the vertical accuracy.
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Thus, the number and distribution of GCPs might play a more critical role than the density of GCPs.
This is particularly interesting for the mission planning and calculation of costs as placing, marking,
and measuring of GCPs is one of the most time-consuming and consequently, most costly aspects of
the entire UAV-based data collection campaign. In the case of Mukingo, we observed a substantial
offset of the vertical error in the scenario without GCPs. This magnitude of height offset was already
reported before [35] and seemed to be specific to DJI UAV.

Contrary to most other studies that investigate checkpoint residuals, this analysis presents
the absolute accuracy with regard to the residuals after the BBA and in the final DSM and
orthophoto. For two out of six datasets, our results show significant discrepancies between the
checkpoint residuals with a magnitude of up to 5 GSD. In both cases, challenging conditions were
present, i.e., poor illumination conditions for Gerleve and a densely populated built-up area in
Muhoza. We observe that particular the height component could be strongly impacted. Consequently,
the consideration of checkpoint residuals measured in the orthophoto is indispensable for the evaluation
of the final accuracy, as additional offsets might be introduced during the 3D reconstruction and
orthophoto-generation process.

As a third central aspect, this study reveals yet another perspective on the orthophoto quality:
success rates of the automatic extraction of cadastral features. Here, our findings point on a clear
difference between the delineation of rooftops and walls. Whereas various flight configurations showed
less impact on the extractability of rooftops, the automatic extraction of walls achieves more accurate
and complete lines with large image overlaps and a cross-flight pattern. Even though the absolute
difference of the correlation seems minor in our example, values of either 70% correlation or 93%
correlation with reference lines are significant for scaled applications. A smaller percentage would
entail a lot more manual work of delineating respective walls that were not represented by MCG lines.
Furthermore, the MCG algorithm applied on an orthophoto of a weak image block—as described
by lower image overlap—produces shorter line segments which also implies more manual effort
to receive a complete delineation finally. Thus, thoughts should also be given to characteristics of
extractable features when designing a UAV flight mission. Our findings suggest that planar cadastral
features are less sensitive to differences in flight configurations than thin image objects such as walls
or fences. Consequently, the latter necessitates a higher percentage of image overlap to be reliably
reconstructed and detectable during subsequent automatic delineation processing. Additionally,
when thin cadastral objects are oriented towards different cardinal directions, a cross-flight pattern is
clearly recommendable.

In combination, the results are significant in at least two aspects. Firstly, although this
study investigated very different study sites, common trends are evident. Thus, some general
recommendations can be drawn. Independent of the sensor or feature matching algorithm,
vegetated spaces, and forests or cultivated agricultural areas, still present challenges to the establishment
of image correspondences. However, findings of checkpoint residuals suggest that the impact on the
overall accuracy is only marginal when looking at scenes with multiple land use classes.

Secondly, the research investigations reveal large discrepancies between the spatial accuracy and
the completeness of automatically detected cadastral features, even though the RMSE of the orthophoto
as commonly accepted error measure is low. According to these data, we can infer that the flight
configurations play a crucial role in achieving high data quality, particularly for cadastral features
characterized by height differences and thin shape as exemplified for concrete walls. Moreover, in most
cases, checkpoints are put out in open and visible spaces which do not necessarily reflect objects
subject to manual or automatic cadastral delineation. Consequently, it should be emphasized that
context-driven error analysis is essential to assess the overall accuracy of UAV-based data products.

Finally, a multifactorial analysis, as presented in this paper includes shortcomings on various
ends. The study design foresaw various UAV and sensor configurations to mimic a variety of different
contexts and real-world applications, focusing on the quality of final data products. Despite various
camera specifications, common trends and characteristics are evident throughout all datasets. However,
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as a limitation of this study, the impact of hardware differences on the final data quality could not
be estimated. Next to this, it cannot be ruled out that the GSD affects the quantity of generated
tie-points. Further investigations are needed to evaluate this nexus. Lastly, it should be emphasized
that all datasets were collected following flight plans as specified in the methods of this paper and the
transferability of our findings to other flight configurations or other contexts cannot be guaranteed.

5. Conclusions

This paper provides recommendations on optimal UAV data collection workflows for cadastral
mapping based on a comprehensive analysis of data quality measures applied to numerous orthophotos
generated from various flight configurations. Methods covered several aspects ranging from statistics
of automatic tie-points and an evaluation of the geometric accuracy to characteristics of automatically
delineated cadastral features. The results highlight that scene context, flight configuration, and GCP
setup significantly impact the final data quality of resulting orthophotos and subsequent automatic
extraction of relevant cadastral features.

In a nutshell, the following recommendations can be drawn:

• Land use has a significant impact on the generation of tie-points. Image scenes characterized by a
high percentage of vegetated areas and especially trees or forest require image overlap settings of
at least 80–90% to establish sufficient image correspondences.

• Independent of the size of the study area, the error level of planimetric and vertical residuals
remains steady after seven equally distributed GCPs (according to the scheme presented in
Figure 3), given at least 70% forward overlap and 70% side lap. As the absolute accuracy does
not increase significantly with adding more GCPs, 7 GCPs can be recommended as optimal
survey design.

• The quality of reconstructed thin cadastral objects, as exemplified for concrete walls, is highly
variable to the flight configuration. A large image overlap, as well as a cross-flight pattern,
has proven to enhance the reliability of the generated orthophoto as quantified by the increased
accuracy and completeness of automatically delineated walls. In contrast, the delineation results
of rooftops showed less sensitivity to the flight configuration.

• Even though checkpoint residuals indicate high absolute accuracy of an orthophoto, the reliability
of reconstructed scene objects could vary, particularly in adverse conditions with large variations
in the height component. We furthermore recommend measuring checkpoint residuals in the
generated orthophoto in addition to after the BBA.

Generally, these findings have important implications for developing UAV-based workflows
for land administration tasks. This fact that the data quality can significantly change depending
on the flight configurations involves risks and opportunities. The risk is that UAVs are used as off

the shelf products with little knowledge of photogrammetric principles and options to customize
flight configurations. Consequently, even though the end-product appears to be of good quality,
spatial offsets, deformations, or poor reconstruction results of relevant features might be present
but remain undetected. However, at the same time, we also realize immense opportunities in the
customization of UAV workflows. The results in this analysis show that different flight configurations
and various ground-truthing measures offer a wide range of options to tailor the data collection task to
financial, personnel, and time capacities and optimally align it to customer needs and requirements in
the land sector. This equips UAV workflows as a viable and sustainable tool to deliver reliable and
cost-efficient information to cope with current and future cadastral challenges.

Future research building upon our results could follow different pathways. Firstly, although our
study foresaw six different contexts, the terrain was mostly flat or slightly undulated and showed
only minor surface variations. It would be interesting to explore if data of hilly and larger study areas
could substantiate our recommendations. Secondly, this study neglects the ground sampling distance
as a variable in our assessment. It is expected that next to the orthophoto quality also variations in
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the resolution might impact the feature matching process as well as completeness and accuracy of
automatically extracted line geometries. Clues on this correlation could expand best-practice examples
by adding recommendations on camera specifications and flight heights.
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