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Abstract: The ability to precisely map urban land use types can significantly aid urban planning and
urban system understanding. In recent years, remote sensing images and social sensing data have
been frequently used for urban land use mapping. However, there still remains a problem: what is
the best basic unit for fusing remote sensing images with social sensing data? The aim of this study is
to explore the impact of spatial units on urban land use mapping, with remote sensing images and
social sensing data of Shenzhen City, China. Three different basic units were first applied to delineate
urban land use types, and for each unit, a word dictionary was built by fusing natural–physical
features from high spatial resolution (HSR) remote sensing images and the socioeconomic semantic
features from point of interest (POI) data. The latent Dirichlet allocation (LDA) algorithm and random
forest methods were then applied to map the land use of the Futian district—the core region of
Shenzhen. The experiment demonstrates that: (1) No matter what kind of spatial unit, it is beneficial
to fuse multisource data to improve the performance. However, when using different spatial units,
the importances of features are different. (2) Using block-based spatial units results in the final map
looking the best. However, a great challenge of this approach is that the scale is too coarse to handle
mixed functional areas. (3) Using grid- and object-based units, the problem of mixed functional
areas can be better solved. Additionally, the object-based land use map looks better from our visual
interpretation. Accordingly, the results of this study could give other researchers references and
advice for future studies.
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1. Introduction

Urban land use mapping is of great importance for urban structure optimization, resource
allocation, and development planning [1]. The rapid economic and urban developments in China have
generated diverse and sophisticated urban functional zones, which are reflected in urban land use
patterns [2]. Therefore, the effective detection and mapping of urban land use patterns are significant
for formulating effective urban planning policies, and need to be resolved immediately.

Numerous approaches have been developed to monitor urban land use over long time periods.
Traditional field investigations and interview questionnaires can produce land-use maps, but they are
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costly and time consuming [3]. Moreover, the rapid development of cities makes the field investigation
out of date of the actual land use types. In recent years, many studies have proved the advantage of
high spatial resolution (HSR) remote sensing images in land use/cover classification and analysis [4–6],
and spectral, textural, geometric and spatial features are frequently extracted from remote sensing
HSR images to improve classification accuracies. Li et al. [7] computed geometrical, morphological,
and contextual attributes of different buildings using HSR images, and used these features to distinguish
different building functions. Moreover, urban land use types were classified around the coastal zone
by extracting landscape pattern indicators from HSR images [8].

Remote sensing techniques perform excellently in extracting physical characteristics, such as the
reflectance of land surface and the texture of urban space. However, it is difficult to identify functional
interaction patterns or to understand socioeconomic environments. Rich social sensing techniques can
help bridge the semantic gap between land cover type and urban functions [9]. Hence, multisource
social media data have been introduced to monitor residential activities and urban land use dynamics.
Many studies suggest that point of interests (POIs) have great potential to reveal urban land use
patterns [2,10]. Bus smart card data were introduced for mapping functional areas for the first time [11].
Yu et al. [12] attempted to examine the reversed linkage by revealing urban land use variations from taxi
trajectory data. Mobile phone positioning data was used to understand urban functions and diurnal
patterns with remarkable results [13]. Weibo records can represent the daily activities of residents,
due to their spatiotemporal characters, and have been demonstrated to be effective in describing urban
function types [14]. As the largest social media platform in China, real-time Tencent user density
(RTUD) contains the hourly numbers of smartphone users who use Tencent applications and provides
location-based services. RTUD holds great potential in the classification of urban land use types,
especially in the regions with typical spatial-temporal features such as commercial and residential
areas. RTUD data have been widely applied in functional zoning [2].

Many studies have demonstrated the effectiveness of fusing remote sensing data with multisource
data in functional mapping [14–16]. The threshold method was used to combine Landsat Images and
open social data to generate land-use types [16]. Hierarchical clustering was utilized to analyze mobile
data and HSR images [17]. The random forest (RF) model was applied to fuse POI and Gaofen-2
(Chinese satellite, GF2) image features in order to obtain functional results [14]. The Bayesian model
was introduced to link hierarchical semantic cognition (HSC) images with road networks to obtain
functional results [18]. Although the above-mentioned classification methods are broadly available
for data fusion and classification, it is still a challenge to accurately represent the characteristics of
different data sources because of the gap between visions and cognitions [19]. To solve this problem,
Zhang et al. [18,20] built a hierarchical semantic cognition (HSC) model to bridge this semantic gap
and used this for functional area mapping. Then, the latent Dirichlet allocation (LDA) model was
introduced in land use mapping [2,21]. This model is skilled at classifying land-use with HSC images
and multi-source data and has been proven as the best semantic model at present [22].

Previous studies mainly focus on the selection of model and the introduction of new data,
but ignore the choice of basic unit. The basic unit is an essential precursor to the data fusion and is
fundamental to the entire classification. How to partition a city into small units concurrently using both
social media data and remote sensing images is still a challenge, and the most appropriate segmentation
still needs to be discussed in the case of combining remote sensing and social sensing data.

The meaningful spatial unit in the overall urban analysis is a building community [23], which
indicates that all the analyzed urban characteristics must be reflected in the building community scale.
Here, a building community refers to a housing community surrounded by roads which is represented a
traffic analysis zone (TAZ). Because of its clear functional significance in urban analysis [24], the building
community is currently commonly used in many studies [10,22,25]. However, this fine-grained unit is
not sufficient for Chinese cities because most scenes are mixed and composed of many categories [26]
and scene classification methods cannot satisfy the demands of practical applications. As can be seen
in Figure 1, many TAZs of Shenzhen have more than one land use type. For convenience and detailed
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analysis of mixed functional areas, an accurate, easier to divide scale is required. Therefore, grid
scale units are used in some studies [12,17], because they can obtain higher classification accuracy
and are easy to be generated. Building level units are also used for accurate urban functional area
mapping [27,28]. However, it is difficult to obtain an accurate and up to date building footprint.
In some studies, multi-scale segmentation methods are used to obtain basic units [18,29], in particular,
remote sensing images are used as primary data. These above-mentioned patches coincide with the
patterns of reality, which make objects meaningful [30]. When only social media data are used, the road
network is used to partition urban regions into basic units, while the multi-scale segmentation method
is only used for remote sensing images [29]. At present, some studies have explored the effect of
different scale partitions on urban land use mapping. Tu et al. evaluated the scale effect regarding
land-use inference by weighting remote sensing and human sensing [31], Zhang et al. illustrated
that classical segmentation could not divide functional scenes well [29] and Yuan et al. discussed the
influence of mixed functional parcels when using TAZs [14]. However, there is not enough discussion
on the comparison of different partitions and the impact on different scenes.
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Figure 1. Illustration of traffic analysis zone (TAZs) with mixed land use types.

In summary, from the perspective of data sources, there is a general trend of using multisource
data, including remote sensing images, POI and other social media data, and from the perspective of
machine learning algorithms, urban functional mapping has moved from traditional statistical models
to high-level semantically models in order to bridge the gap between low-level features and high-level
semantic meanings. Thus, the effectiveness and advantages of using multisource data and high-level
models have been widely studied and validated. However, how to properly partition an urban region
into small basic functional units is rarely explored. Generally, there are four methods to partition an
urban region into small functional units, including the traffic analysis zone, square grid, building
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footprint and segmented object methods. In previous studies, the researchers have usually chosen only
one method; however, the pros and cons of using different methods have still not been fully discussed.

To obtain an accurate urban functional map and analyze the effect of different scales on the results,
this study aims to combine remote sensing images and POI data to extract features, extract a final map
using the LDA model and determine the comparative analysis of different partitions. Three different
methods were compared to partition the study area into small units, and their impacts and advantages
on different methods are observed for the first time. Additionally, the different combinations and the
importance of different features are fully discussed, respectively, in Sections 4.2 and 4.3.

2. Study Area and Dataset

2.1. Study Area

The study area is located in the Futian District (Figure 2a) of Shenzhen City, Guangdong Province,
China. Due to its special geographical location adjacent to Hong Kong, Futian District has been
developing rapidly with advanced political, economic and cultural functions, and it is considered
as the center of Shenzhen. According to the Annals of Statistics, Futian District has a total area of
78.66 km2 and a permanent population of 1,501,700.
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Figure 2. Location of Futian District and remote sensing image. (a) Remote sensing image. (b) Road
network data and point of interests (POIs).

2.2. Dataset and Preprocessing

Multisource data, including road network data, remote sensing images and POIs, were used in
this study. Road network data were used to partition the urban region into TAZs, HSR remote sensing
images were used to describe the spectral, textural and landscape metrics of each parcel, and POI data
were used to describe semantical features.

The road network data from OpenStreetMap (OSM, http://www.openstreetmap.org) was used in
this study to partition the urban region into TAZs. The downloaded vector data were processed using
FME editor software v.2018.0. According to a previous study [14], the road buffers with widths of 40, 20
and 10 m for level one, level two and level three roads were created to obtain road space, respectively.
The urban region was partitioned into TAZs by the modified road network. The segmented TAZs with
an area below 500 m2 were removed in order to keep meaningful ones as far as possible.

Two GaoFen2 images covering the study area were used in this study. These images were
obtained on 27 December 2017 and 29 October 2017. To obtain high resolution multispectral images,
the panchromatic and multispectral images were first fused using pan-sharpening fusion method in
PIE-Ortho 5.0. The fused images were then mosaicked and orthodox-rectified. Finally, an image with
11187 × 9732 pixels was obtained, with a spatial resolution of 1 m/pixel and four spectral channels
(blue, green, red and near-infrared).

http://www.openstreetmap.org
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The Gaode POI data from 2018 were acquired via the application programming interface (API)
provided by Gaode Maps (https://lbs.amap.com/), which have been widely used in urban functional
area mapping. A total number of 84,150 records of Gaode POIs were obtained within the study area,
including residence, business, education, entertainment, government, healthcare, parks, arts, retail,
services, and transportation. The POIs were classified into three levels of primary data from the degree
of classification refinement.

The reference land use data were downloaded from the Shenzhen city planning and land resources
committee (http://pnr.sz.gov.cn/ywzy/fdtz/cggbcx/ftq/index.html).

3. Methods

A general framework was proposed to map land use by fusing the POI and remote sensing
image, and it includes four parts (Figure 3): (1) Spatial unit partition: the study area is partitioned into
small spatial units, which is the smallest unit to fuse features from HSR images and POI data, and is
also the smallest unit for land cover mapping. (2) Semantic feature construction: Low-level image
features including spectral, textural and scale invariant feature transform (SIFT) features and POI
features of each spatial unit were calculated, and were further promoted to high-level semantic features
using the LDA model. Playgrounds were also extracted and used as a semantic feature. Besides,
landscape metrics were calculated using a land cover map, which was obtained using object-based
image classification of the HSR image. (3) A set of training data were selected, and an RF classifier was
used for a feature importance analysis and land use classification of the whole study area. (4) Finally,
by using three different partition methods, and repeating steps (1) to (4), three different land use maps
were obtained, and then a comparative analysis was carried out to explore the impact of spatial unit on
land use mapping with multisource data.
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3.1. Spatial Unit Partitioning

Functional zones are not only spatially larger than objects, but also semantically different from
objects [29], and they cannot be classified with traditional methods such as pixel-based methods or
fishnet methods directly, which makes fine-grained functional-zone maps rare. In order to solve
this problem and analyze the impact of using different spatial units, we combined road networks
(as fundamental units) with three types of units (block-, grid- and object-based) in this study.

https://lbs.amap.com/
http://pnr.sz.gov.cn/ywzy/fdtz/cggbcx/ftq/index.html
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1. Block-based urban unit partitioning

Block-based partitioning is extensively used in the field of architecture and urban analysis because
of its clear functional meanings. Many researchers used road network blocks or traffic analysis zones
(TAZ) to act as the basic units. However, the road network boundary is incomplete, and thus, a high
accuracy depends on a large number of contrived modifications. Besides, the scale of a block is very
coarse, which results in mixed function areas not being separated well. Therefore, a block is used for
the initial partition of other segmentations.

2. Grid-based urban unit partitioning

Fishing net zoning is a convenient method to partition urban functional units. The size of the grid
has an important impact on accuracy. Some studies adopted this method in order to get land use map
with suitable scales [17,32]. In our study, the target area was firstly divided into grids of 150 × 150 m,
and then the grids were overlapped with TAZs to exclude traffic areas.

3. Segmented object-based urban unit partitioning

Multiscale image segmentation divides an image into homogeneous regions, which meets the
needs of land cover classification. However, an object is significantly smaller than a functional unit and
cannot be directly used for functional area mapping, due to missing semantic information. However,
these segmented objects could be used as a basic functional area mapping unit, especially when the
segmentation scale is coarse [29]. There were two steps in adopting this method in this study: (1) a
multiscale image segmentation algorithm was applied on remote sensing images to obtain object level
boundaries, and the segmentation scale of 250 was used, and (2) these objects were overlapped with
TAZs to exclude traffic areas.

3.2. Semantic Feature Constructing

Feature constructing plays an important role in object recognition and classification [15]. Due to
the abundant information in multi-band images, spectral and textural information have been widely
used for land cover classification [33]. In this study, GF-2 images were used to distinguish common
land cover types [14]. The SIFT feature descriptor was introduced because of its ability in pattern
recognition for ground components, which has been extensively applied in image analyses [34,35].
In order to reduce computational complexity during the extraction of physical features from HSR
images, the sliding window was adopted to calculate some statistical characteristics namely mean
and variance. The characteristics of POI were considered as an important social-economic data source
for urban functional mapping. The k-means clustering method was employed to cluster and convert
each feature into a virtual word. Moreover, semantic objects were extracted to enrich the features,
and landscape metrics derived from land cover maps were also calculated [27]. The main method of
feature extraction is similar to that of Liu [2].

3.2.1. Image Features

Some studies considered that the minimum unit to identify city should be set as nearly
50 × 50 m [36], and thus, the HSR images were segmented into a set of overlapping image patches of
45 × 45 pixels to determine spectral, textural and scale invariant feature transform (SIFT) features in
this study. Each pair of adjacent patches was set to overlap by 15 pixels to preserve a sufficient amount
of spatial information and each patch was represented as i.

• Spectral features: The mean and standard deviation (STD) of each band of GF-2 images were
calculated in each patch. The spectral feature of each patch can be represented as: Speci = (mean1,
std1, . . . meanB, stdB).
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• Textural features: The grey-level co-occurrence matrix (GLCM) effectively describes the patterns
of images and textures [37], and Haralick’s statistics provide 14 textural features for classification.
Ulaby et al. [38] found that only four (correlation, angular second moment, energy and contrast)
of those 14 GLCM-derived features were irrelevant, while they were easy to be calculated and
could provide high accuracy. Therefore, we adopted these four commonly used features to extract
the textural features of images. We compressed the image gray level to 16 bins, and the slide step
length was set to 1. For each patch, the textural vector could be represented as Texi = (cor1; asm1;
ene1; con).

• SIFT: SIFT was introduced to describe image responsive features. A previous study indicated that
SIFT could achieve the best optimized registration performance when a 128-dimensional vector
was adopted to represent the SIFT feature [39]. The dense SIFT algorithm is roughly equivalent to
running SIFT on a dense gird of locations at a fixed scale and orientation, and it has been widely
used in image classification and the “bag of words” model [39,40]. Thus, dense SIFT was chosen
to represent remote sensing images in this study.

Followed Liu’s work [2], the k-means clustering method was applied to classify the spectral,
textural and SIFT features into several classes, respectively. The labels obtained by k-mean clustering
methods were then used as mid-level features, instead of original low-level spectral, textual and
SIFT features.

3.2.2. POI Feature

POI refers to a geographical point with a property label and position. The POI data used in
this study were obtained from Gaode map, and they have detail types but many categories are
repetitive and meaningless. Thus, POI was manually divided into seven categories by experiences
including residential communities, commercial sites, industrial facilities, entertainment facilities,
medical facilities, landscape sites, and education facilities. This dataset was introduced as one feature
reflecting socioeconomic properties.

3.2.3. Feature Representation Using LDA

Because of the good performance of the semantic model in land use classification, probabilistic
topic models, especially LDA, have been applied in related studies [22]. LDA is a document topic
model that constrains latent Dirichlet allocation by defining a one-to-one correspondence [41]. It is an
unsupervised model including three-layer: words, topics and documents. This hierarchical model
represents each item of a collection as a random mixture of latent topics, in which each topic is
characterized by a distribution over words [42].

In this study, we segmented the study area into non-overlapping spatial units, and these units
were considered as “documents” of the LDA model. The land use type of a spatial unit was considered
as a “topic”. The mid-level spectral, textural, SIFT and POI features of a spatial unit were used as
“visual words” in the LDA model. The number of topics, K, was chosen by experience, and features
were transformed into high-level semantic features: {Lspec, Ltex, Lpoi, Lsift} by the LDA model.

3.2.4. Semantic Objects

Semantic objects, including urban villages and playgrounds, are widely applied in land use
recognition [43,44]. The goal of semantic object extraction is to classify some special areas which were
hard to distinguish using POI and remote sensing characteristics. In our study area, playgrounds
always appear in primary and middle schools, and thus they could be regarded as a semantic signal
for educational areas. Using HSR remote sensing images, playgrounds can be easily obtained using an
object detection technique, which has been widely used in image recognition and the remote sensing
field [43]. In this study, the ENVI deep learning Toolkit v.1.0 was used to extract playgrounds from
GF-2 images, and 51 playgrounds were detected and used.



Remote Sens. 2020, 12, 3597 8 of 19

3.2.5. Landscape Metrics

Landscape metrics is widely used in urban land use classification [32,45], due to its good
performance. In this study, an object-based land cover classification process was carried out [46], and it
classified images into built-up areas, green land, water, developing areas and shadow areas. The land
cover map is presented in (Figure 4).
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The good performance of several landscape metrics has been confirmed in terms of urban function
mapping [17,32,45], including total area (TA), patch density (PD) and percentage of landscape (PLAND)
at a class-level, as well as landscape division index (LDI) and Shannon’s diversity index (SHDI) at a
landscape-level [47]. SHDI and LDI are calculated by Equations (1) and (2) separately. The descriptions
of these indicators are shown in Table 1.

SHDI = −
m∑

i=1

Piln(Pi) (1)

where Pi is the proportion of landscape occupied by patch types i, and m is the number of types.

LDI =

1− m∑
i=1

n∑
j=1

(ai j

A

)2
 (2)

where aij is the area of patch ij and A is the total landscape area (m2).
Each basic unit was described using several features, including LDA features, playground labels

(PGs) and landscape metrics (LM), and thus the urban land use type of each unit could be obtained by
a machine learning classifier. The feature of each unit was represented as: Unit = (Lspec, Ltex, Lpoi, Lsift,
Playground, LM).



Remote Sens. 2020, 12, 3597 9 of 19

Table 1. Landscape metrics selected in this study.

Abbreviation Description

Total Class Area (CA) Total area of one class landscape.
Patch Density (PD) Patch count per square km of one class landscape

Number of Patches (NP) Total number of patches.
Percentage of Landscape (PLAND) Percentage of parcel area.

Landscape Division Index (LDI)
Division is based on the cumulative patch area distribution

and is interpreted as the probability that two randomly chosen
pixels in the landscape are not situated in the same patch.

Shannon’s diversity index (SHDI)
Shannon’s diversity index is a popular measure of diversity in

community ecology, applied here to landscapes. Shannon’s
index is sensitive to rare patch types.

3.3. Land Use Mapping Using Random Forest

In this study, 195 points were labeled first, including residential land, commercial land, public
management and service land, urban village and natural land. The labeled points were then overlaid
on three partitions separately to get three training data sets. This step unified the position of training
samples in different partitions. The ground truth land use types of label-points were identified based
on HSR remote sensing images, street views, building profile data and official land use data. The RF
algorithm was used due to its outstanding performance, which has been proven to be well-established
in land cover/use classification [14,27]. The Kappa coefficient and the confusion matrix were chosen
to validate classification accuracy. In addition, two sensitive parameters ntree and ntry were tuned by
a gird-search method in order to maximize the Kappa. 10-fold cross validation was used for tuning
model parameters. Moreover, RF has the advantage of evaluating the importances of features [14],
which is used to rank the features in this study.

3.4. Comparative Analysis

By adopting the above-mentioned process, three different land use maps could be obtained, block-,
grid- and object-based maps. Then, comparative analysis was conducted to explore the impact of
using different spatial units. Firstly, we analyzed the performances of combining different features
when using three different units, and secondly, the importances of different features were analyzed;
the visual comparison and quantitative assessment of the block-, grid- and object-based land use maps
were carried out.

4. Results

4.1. Impact on the Selection of Different Feature Combinations

To examine the influence of different features, we designed six different cases to classify land use.
The details of these six examples are shown in Table 2. The selection of parameters refers to Section 4.3.

Table 2. Different combinations of attribute categories with different segmentation (OA:
overall accuracy).

Exp.
Selected Features Block Grid Object

Spectral Textural SIFT POI LM PGs OA Kappa OA Kappa OA Kappa

A
√ √ √

62.37 48.91 63.02 55.62 58.91 50.70
B

√
66.48 59.68 65.76 58.92 74.05 68.87

C
√ √ √ √

83.79 80.52 75.52 70.02 77.84 73.40
D

√ √ √
82.12 78.50 80.20 76.24 77.29 72.76

E
√ √ √ √ √

84.35 81.18 83.33 79.99 79.45 75.34
F

√ √ √ √ √ √
86.59 83.87 83.85 80.62 81.62 77.93
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In the first three cases (A, B and C), the LDA semantic features from the HSR images were utilized
to carry out functional land use classification tasks. In the next case (D), LM, POI and PGs were
combined and used to test the performances. Then, features without landscape metrics were used in
case E. All the features were integrated in case F.

Significant improvements of OA and Kappa could be found in case C, where POI was used.
The OAs of the three different partition methods were all significantly improved, which indicates that
the POI feature contributed to effective land use mapping. Besides, the results of C and E showed
that the accuracies of using all three different spatial units were further improved by using PGs object
information, especially for the grid method. Landscape and special object data can distinguish urban
functional areas better than using image features according to the result of A and D.

According to the result of case F, the block-based method obtained the highest OA and Kappa
coefficient values (OA = 86.59%, Kappa = 83.87%) among these three methods. The results of the grid
method showed a good testing accuracy of 80.62% and an overall classification accuracy of 83.85%.
The object-based method obtained the lowest performance (OA = 81.62%, Kappa = 77.93%).

The accuracies of different land use types using different spatial units are shown in Table 3.
All urban zones were classified into six categories using a combination of all features. The common
point of these three methods is that they all demonstrated good performances in the green areas and
urban villages because of the huge difference in green land and urban village areas against other
ground components. Traditional block-based and object-based methods had poor performances in the
public service areas, but the grid methods performed well, because the physical image features are not
enough to distinguish public service areas from other buildings and public service is mixed in with
residential and commercial types in the POI dataset. The object-based method performed slightly less
well in all classes of urban land-use classification compared with the other methods, but performed
well in terms of accuracy in distinguishing the residential type.

Table 3. Produce’s accuracy (PA) and user’s accuracy (UA) of urban functional classification using
different segmentations.

Land Use Type Avg. Accuracy
Different Spatial Units

Blocks Grid Object

Residential
PA 0.839 0.711 0.938
UA 0.839 0.871 0.968

Commercial
PA 0.816 0.879 0.743
UA 0.969 0.906 0.813

Public Service
PA 0.727 0.862 0.653
UA 0.533 0.806 0.500

Education
PA 0.861 0.815 0.800
UA 0.939 0.667 0.848

Urban village PA 1.000 0.833 0.857
UA 0.960 0.882 0.828

Natural land
PA 0.964 0.966 0.875
UA 0.964 0.903 0.933

Generally, by comparing the different feature combinations, we can observe that no matter what
kind of spatial unit is used, the best choice is always to fuse all the features in order for the best
classification accuracy to be obtained.

Figure 5 shows the confusion matrixes for the classification results (Table 3) of each method that
are closest to the average accuracy. The spatial unit had a great impact on classification accuracy.
According to Figure 5a, the public service area obtained an inadequate accuracy with block level urban
parcels, because OSM is a volunteer based upload platform in which many roads are not accurate, or
the networks are incomplete. Therefore, many blocks could not be properly partitioned, and lots of
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manual operations were needed. Moreover, due to the limited number of blocks in the Futian district,
the number of public service samples is inadequate, which results in a large number of deficiencies
when training the model. Figure 5b illustrates that the educational type had a poor performance in the
grid method and Figure 5c shows that the public service parcels were often confused with other parcels.
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4.2. Impact on Feature Importance

A total number of 114 features were used for urban land use classification in this study (Figure 3),
including 22 landscape metrics, 73 spectral/textural/SIFT features, 18 Gaode POI features, and 1 special
object feature. Figure 6 shows the rankings of feature importance (Top 30) using three different
partitions. The importances of features are quite different among the different partition methods.
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For block level parcels, POI features occupied 3/10 of the top ten features and the first three were
all POI features. This means that POIs are far more important than other features when using the block
partition method. The textural features also enter the top 10 and occupied two positions. Pland_4,
Pland_2 and Pland_0 are the ninth, twelfth and thirteenth most important features, which represent
the percentage of shadow, natural land and built-up areas in a block, respectively. The SIFT feature has
four positions in the top 30. Only two feature vectors of the spectral features ranked in the top 30 most
important features, which were ranked as four and 30, respectively.

Using grid level parcels, the gap of importances between different features is not particularly
large. The landscape metrics has 13 positions in the list (Figure 6b). The special object PGs ranked first.
The texture takes only one position, which ranked second. None of the SIFT features ranked in the
top 30.

Using object level parcels, POI is the most important feature which occupied 7/10 of the top ten
and almost all of the POI features are on the list. Landscape metrics occupied seven of the top 30.
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Spectral features are the least important compared with the other features because they only occupy
two of the top 30 positions.

Comparing the ranks of feature importances using the three different methods, it can be observed
that the spectral features are less important for identifying parcels than the other features in the
block and object methods. SIFT features are insignificant features in the grid method. As expected,
the semantic feature of the playground was identified as an important feature no matter what kind of
partition was chosen. This demonstrates the importances of the use of specific features in functional
area mapping.

As suggested by Figure 6, POI is the most important feature. Specifically, from the ranking we can
deduce that the new extracted feature is a critical attribute for all of the conditions. Landscape metrics,
especially at the class-level PLAND, became an important attribute in each partition, because they
represented the proportion of land cover types in a single parcel. Spectral and textural attributes are
more important for block and object level parcels, but were seldom found to rank in the top 30 features
for grid level mapping.

4.3. Impact on Qualitative Performance

Figure 7 presents the detailed results using three partitions in the study area. As shown in the
ground-truth map (Figure 7a) and the land-use classification maps (Figure 7b–d), the geographical
distribution of land use in Futian is complicated. Many residential and commercial parcels were
interweaved in the grid level (Figure 7c) and object level maps (Figure 7d). The mixed-use parcels,
which were located in the southernmost areas, have been separated in the grid and object level maps
when they were compared to the ground-truth map. Because of the complex land use types of the
central area, mixed functional areas cannot be well represented by mapping. Grid level and object
level maps show the complexity present within a block.

By observing these maps, it is clear that urban villages were intensively distributed in the
mid-south areas. Natural land was seldom misclassified in all three methods. On the contrary,
the number of misclassified public service parcels was largest for all three partitions. This conclusion
indicates that natural land can be distinguished well by the extracted features, but public-service areas
still need more appropriate features to improve the accuracy.

Figure 7e–h shows some details regarding the CBD area, which is one of the most prosperous
areas of Shenzhen. The actual land use property is complicated when compared with the remote
sensing images ((Figure 7e). The misclassified parcels were generally few in number compared with the
ground-truth (Figure 7a) and the predicted results (Figure 7b), which demonstrated the effectiveness of
the results obtained using the block-level parcel method. However, the disadvantage of this partition
method is also obvious. Comparison of the remote sensing images (Figure 7e) and the block-level
results (Figure 7f) demonstrated that the scale of road network is too coarse for function mapping,
which caused the appearance of the mixed areas. Moreover, the educational type cannot be easily
separated from the other categories, which leads to the poor accuracy of educational land-use types.
One of the improvement measures is to use a higher level of road network. This requires a large
amount of manual work to correct the original data, which makes reliable mapping impossible if the
study area is large. It can be concluded that this method is only available for the test of classification
methods and small-scale mapping.

The shortcoming is obvious when comparing Figure 7c,g with the ground-truth map (Figure 7e).
Although the phenomenon of the mixed functional area has been partially solved, compared with
the ground-truth, the land use types at the edge of the grid cannot be distinguished well. Moreover,
the accuracy of the gird-method deeply relies on the selection of grid size and the unsightly rough
edges cannot be ignored. It is convenient and time-saving to analyze the data using this method if only
complete some statistical analyses with the point data, for instance, mobile data [13] and GPS tracking
data [12]. It is effective in improving model accuracy according to the testing result, but it is still not
suitable for the accurate mapping of functional areas.
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We can find that the parcels were classified perfectly in Figure 7d,h, which used object-level parcels
as the basic unit. It can be seen from Figure 7d that mapping quality increased substantially and the
phenomenon of the mixed functional area was solved well. Additionally, the disadvantages are obvious
because of the complex segmentation process before classification: time consuming. Secondly, it also
has a strong dependence on the selection of scale parameters for image segmentation. Comparing
the results with the ground-truth map, there is still a level of confusion between public service areas
and the business district. This means more representative features or data need to be identified and
incorporated to distinguish between these two types in the future. In summary, this method is more
suitable for subsequent statistics and fine-grained mapping of functional districts.

4.4. Impact on Quantitative Performance

In this part, 487 sample points were randomly selected to assess the mapping accuracies.
The ground-truth labels of these points were determined based on remote sensing images, street views,
building profile data and official land use data. Then, these points were used to evaluate block-level,
grid-level and object-level maps, and three confusion matrices (Tables 4–6) were obtained.
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Table 4. Confusion matrix of block level land use mapping.

Classified
Reference

R 1 C 2 P 3 E 4 U 5 N 6 Total User’s (%)

R 67 6 1 1 4 1 80 83.75
C 27 34 5 4 6 1 77 44.15
P 24 4 55 1 2 2 88 62.50
E 49 3 4 18 5 1 80 22.50
U 18 1 1 0 62 0 82 75.61
N 2 1 0 0 0 77 80 96.25

Total 187 49 66 24 79 82 487
Producer’s (%) 35.83 69.39 83.33 75.00 78.48 93.90

Overall accuracy (%) 64.27
1 R—Residential, 2 C—Commercial, 3 P—Public, 4 E—Educational, 5 U—Urban village, 6 N—Natural.

Table 5. Confusion matrix of gird level land use mapping.

Classified
Reference

R C P E U N Total User’s (%)

R 44 8 18 7 1 2 80 55.00
C 8 23 34 3 9 0 77 29.87
P 6 4 69 3 5 1 88 78.41
E 14 8 13 40 5 0 80 50.00
U 5 7 4 1 65 0 82 79.27
N 0 0 4 0 1 75 80 93.75

Total 77 50 142 54 86 78 487
Producer’s (%) 57.14 46.00 48.59 74.07 75.58 96.15

Overall accuracy (%) 64.88

Table 6. Confusion matrix of object level land use mapping.

Classified
Reference

R C P E U N Total User’s (%)

R 54 10 9 3 2 2 80 67.50
C 14 42 13 2 4 2 77 54.54
P 9 3 68 4 3 1 88 77.27
E 18 5 16 39 1 1 80 48.75
U 6 12 0 2 62 0 82 75.61
N 0 0 0 0 0 80 80 1.00

Total 101 72 106 50 72 86 487
Producer’s (%) 53.47 58.33 64.15 78.00 86.11 93.02

Overall accuracy (%) 70.84

As we can see from Tables 4–6, the overall accuracies differ a lot compared with model accuracy.
As shown in Table 4, the producer’s accuracy (PA) of the residential area is 35.83%. This result
shows that residential areas are always misclassified with commercial areas, public service areas and
educational areas. In particular, residential and educational areas are often close to each other, and the
lack of road network separating them resulted in residential and educational areas having to be classed
as the same block, which caused unavoidable misclassification errors. The grid-level method showed
poor performance in distinguishing commercial and public service areas, because they have similar
image patterns and POI features. The object-level map achieved the highest overall accuracy because
of the fine-grained scale. Generally, natural areas and urban villages still have higher accuracies than
other areas, because they have distinct characteristics from other areas in remote sensing images. It is
difficult to distinguish residential and educational areas for all these three methods.
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4.5. Parameters Sensitivity Analysis

Several parameters of this model may influence the discrimination accuracy, such as the numbers
of spectral, textural and SIFT visual words and the numbers of LDA topics for the four used features.
Previous studies have confirmed that the number of visual words and the size of the topics have an
impact on the accuracies of land-use classification [48]. We utilized the K-means method with the
Euclidean distance measurement to cluster the spectral, GLCM and SIFT features. V denotes the
number of visual words, and K is the number of topics for the LDA model. The visual word number
(V) and topic number (K) are two free parameters in our approach. The suitable topic numbers were
chosen by comparing the accuracies of classification results, and the training and validation datasets
are the same as those discussed in Section 3.3.

We used Dirichlet priors in the LDA estimation with α = 50/K and β = 0.01, which are common
settings in the literature [49]. We have attempted to get the best value with different combinations of K
and V parameters. The range of the parameters was set according to the article [50]. Figure 8 shows
that the retrieval results are very sensitive to the values of these parameters.Remote Sens. 2020, 12, x FOR PEER REVIEW 15 of 19 
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Figure 8a–c shows the relationship between V with the corresponding accuracy, and Figure 8d–f
shows the variation of accuracy when the topic number K is changed. As Figure 8a and b show, the
number of words was set as 200 and 400 making the accuracy reach the peak for spectral and textural
features, and 200 is the best set for the SIFT feature. After selecting the number of visual words,
we found that the numbers of topics to ensure the highest accuracy for the spectral, textural and SIFT
features are 23, 23 and 15, respectively. Table 7 shows the best parameters finally selected for the
LDA model.

Table 7. Best parameter.

Spectral Textural SIFT

V 200 400 200
K 23 23 15

5. Discussion

The selection of a basic unit to fuse remote sensing and social sensing data is an important issue
in functional urban land-use mapping. Previous studies have discussed the pros and cons to depict the
urban function using road networks [14], but have seldom mentioned other partitions. Based on scene
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classification, this study proposed a semantic method to classify the urban land-use and discussed the
influence of land-use mapping using different partition methods. However, some issues still need to
be discussed.

Firstly, the selection of geospatial data which were chosen to classify the functional area, needs to be
discussed. This study utilized POIs and remote sensing images to obtain a favorable accuracy for urban
land-use classification. High spatial resolution remote sensing images provide rich spectral, textural
and spatial information for accurate mapping, which materially aids classification. However, remote
sensing data also have many shortcomings in this study. The actual land types under the shadow in
the remote sensing image are difficult to distinguish by the features extracted in Section 3.2. Moreover,
there is no obvious distinction between commercial and residential buildings in remote sensing images.
Due to the crowded land and excessive population density, a building is usually mixed with commercial
and residential activities, which also highlights a weakness of POIs in distinguishing those two kinds of
buildings. POI data can represent the different space characteristics of human activity to a good degree,
but it still cannot separate some categories with distinct temporal characteristics, such as residential
and commercial areas. In future studies, some diurnal data should be added to the research—such as
Tencent user density, mobile data or luminous remote sensing data. By adding the semantic objects of
playgrounds, the education area has been well distinguished from other types. However, playgrounds
represent not only the semantic ground objects of educational areas but also public service areas, such
as stadiums, which can lead to inaccurate classification. In future studies, more attention should be
paid to find representative ground objects to distinguish different functional areas.

Secondly, the machine learning model also has some issues. The LDA model elevates the low-level
features to the high-level semantics, which solves the problem of low-level features not being able
to distinguish between urban functions. However, the LDA model is still sensitive to parameters.
In Section 4.3, the selection of word number V and semantic topic number K has affected the classification
performance. It is time-consuming work to find the optimal parameter combination. A more automated
way to select the best parameters of the LDA needs to be proposed in following studies.

Thirdly, the issue of mixed parcels also needs to be discussed. Previous studies have designed a
metric to quantify the mixture degree [14]. However, the problem of mapping mixed-function zones is
still unresolved. The best way to distinguish between mixed functional areas is to discuss them from
the standpoint of segmentation scale, however, no appropriate scale and partitioning method existed
to solve this problem at present. In this study, a rough judgment has been made on the mixing degree
of each block by three different subdividing blocks. The point is that each segmentation type has its
suitable occasion, and correctly choosing it would greatly benefit a certain recognition task. Moreover,
the scale chosen by different segmentation methods on functional zoning has not discussed in this
paper. Therefore, those questions should be considered in future research.

Finally, we draw some conclusions using the table (Table 8) based on the above analysis. Critical data,
advantages and disadvantages, application Scenarios of different partitions are summarized as follows.

Table 8. Summary of different segmentation methods.

Case
Basic Unit

Block Grid Object

Critical data GF2 images, POI Land-cover data POI
Mix-used parcels Many Many Few

Applicable types Urban villages, Natural land Urban villages, Natural land Urban villages, Natural land,
Residential land

Mapping Quality Moderate Coarse Fine
Overall accuracy Medium Medium High

Application Scenarios The foundation of the
subsequent analysis.

Suitable for point data feature
sets (GPS, trajectory data, etc.)

Accurate mapping of large-scale
urban functional zones

6. Conclusions

The urban functional zone is the fundamental unit of city analyses and is considered an important
component in urban planning and resource management [45]. The requirement of precise urban
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functional mapping is an inevitable trend for urban studies. Although many studies have focused on
functional classification and data fusion, seldom has research discussed how the basic units influence
the mapping result. To investigate the problem, this study integrated remote sensing data and POI
to delineate the complex pattern of urban functional areas using three types of spatial unit. Features
derived from remote sensing images and POI data were represented by the LDA model and random
forest was used for classification. The impact of using different spatial units was analyzed and further
discussed. The results indicated that the spatial unit has a great influence on the functional classification
and mapping, especially for mixed functional areas. This study enables urban planners to be aware of
the selection of basic units. The main conclusions are as follows: the accuracy of blocks is enough to
map the urban functions but it cannot distinguish the mixed area well; the grid method has satisfactory
accuracy, but it cannot make accurate maps according to the shape of ground objects. The object-based
method is fine for functional mapping; however, the selection of a proper segmentation method and
the corresponding parameters should be further investigated. In addition, semantic objects (such as
playgrounds) are significant for the classification of functional areas.

In general, this study discussed the pros and cons of three different partition methods, which can
offer advice for future analyses. Due to the particularity of the central area of Shenzhen, there is no
industrial zone occupying a large area, therefore, this functional type was excluded from the study. In
future work, the industrial zone and other categories should be considered and more experiments are
planned in other regions to verify the feasibility of using different spatial units.
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