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Abstract: Many tasks in hyperspectral imaging, such as spectral unmixing and sub-pixel matching,
require knowing how many substances or materials are present in the scene captured by a hyperspectral
image. In this paper, we present an algorithm that estimates the number of materials in the scene
using agglomerative clustering. The algorithm is based on the assumption that a valid clustering of the
image has one cluster for each different material. After reducing the dimensionality of the hyperspectral
image, the proposed method obtains an initial clustering using K-means. In this stage, cluster densities
are estimated using Independent Component Analysis. Based on the K-means result, a model-based
agglomerative clustering is performed, which provides a hierarchy of clusterings. Finally, a validation
algorithm selects a clustering of the hierarchy; the number of clusters it contains is the estimated number
of materials. Besides estimating the number of endmembers, the proposed method can approximately
obtain the endmember (or spectrum) of each material by computing the centroid of its corresponding
cluster. We have tested the proposed method using several hyperspectral images. The results show that
the proposed method obtains approximately the number of materials that these images contain.

Keywords: agglomerative clustering; principal component analysis; model-based clustering; independent
component analysis

1. Introduction

Some tasks in hyperspectral imaging, such as classification and unmixing, require knowing how
many pure substances or materials are present in a scene [1]. In recent years, some algorithms have been
proposed to estimate the number of materials in a hyperspectral image [2–8]. Although these algorithms
are based on different principles, most of them work by analyzing the eigenvalues of the covariance matrix
of the image. In this paper, we present a novel method that departs from previous works and that uses
agglomerative clustering.

The information captured by a hyperspectral sensor with N cells and L spectral bands can be
represented by an L × N matrix, X = [x1, . . . , xN ], where each column of X is a pixel of the image.
The l-th component of a pixel is the radiance measured by the cell of that pixel at the l-th spectral band
(1 ≤ l ≤ L). Hence, each pixel can be thought of as an L-band spectrum. Since L is usually larger than 100,
the processing of hyperspectral images is computationally complex. The scene captured by a hyperspectral
sensor contains a set of materials. Generally, the number of materials, K, is much smaller than the number
of bands of the hyperspectral sensor (i.e., K � L). Each material in a scene has a representative L-band
spectrum, called endmember.
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Many algorithms infer the number of materials in a scene by determining the number of different
endmembers that are present in a hyperspectral image of that scene. In most of these algorithms,
the estimation of K is based on the eigenvalues of the correlation matrix of X [3–7,9].

In this paper, we present a new approach that estimates the number of endmembers of a hyperspectral
image using clustering techniques. The proposed method first generates a set of partitions of X using
clustering, and then it selects the optimal partition according to a certain validation index. We assume
that each cluster of the optimal partition corresponds to a different endmember, and, consequently,
the proposed method sets the estimated K to the number of clusters of that partition. Our clustering
algorithm is a model-based two-stage agglomerative technique. The use of a model-based clustering allows
us to overcome some problems that arise in conventional clustering approaches. Cluster densities are
modeled using Independent Component Analysis (ICA). The two-stage clustering consists of a partitional
clustering stage and an agglomerative clustering stage. The partitional stage provides a reduced number
of clusters, which facilitates the subsequent and more complex agglomerative stage.

The contributions of this paper can be summarized as follows. First, we propose a new approach
to the estimation of the number of endmembers which is based on clustering principles (in contrast
to most existing algorithms which are based on the eigenvalue spectrum of the correlation matrix).
Second, we propose a specific model-based two-stage agglomerative algorithm to perform the clustering.
The proposed model is Independent Component Analysis, a general model which can pretty fit to
non-Gaussian and correlated scenarios. In contrast to other methods, our algorithm also allows
to approximately obtain the endmembers of the constituent materials and a segmentation of the
hyperspectral image.

1.1. Background and Related Work

Devising an algorithm to estimate the number of endmembers requires assuming a certain model
for the generation of the hyperspectral image. The most commonly used model is the linear mixing model
(LMM) [2]. In this model, each pixel x is a random vector of the form

x = z + n =
K

∑
i=1

ci ei + n

where {e1, . . . , eK} is the set of endmembers; coefficients {c1, . . . , cK}, called abundances, are random
variables that represent the fraction of each endmember in x; and the noise term, n, is a random vector that
accounts for any model or measurement error. In LMM, random vectors z and n are independent.
Moreover, abundances satisfy ci ≥ 0 (i = 1, . . . , K) and c1 + · · · + cK = 1, which are called the
abundance constraints. Under the LMM, a hyperspectral image matrix X can be written as

X = Z + N = EC + N (1)

where Z = [z1, . . . , zN ] is the signal component of X, N = [n1, . . . , nN ] is the noise component of
X, E = [e1, . . . , eK] is a L × K matrix whose columns are the endmembers of X, and C = [c1, . . . , cN ]

is a K× N matrix whose columns contain the abundances of each pixel of X.
Let Rx = E

{
xxT} be the correlation matrix of a random vector x that follows the LMM and let

λ1, . . . , λL be the sequence of eigenvalues of Rx arranged in decreasing order. Suppose that n is white,
that is, E{n} = 0 and Rn = E

{
nnT} = σ2 IL for some σ2 > 0 (IL stands for the L× L identity matrix).

In this case, λl > σ2 for l = 1, . . . , K, and λl = σ2 for l = K + 1, . . . , L. Eigenvalues λ1, . . . , λK are due to
signal (and noise), while eigenvalues λK+1, . . . , λL are only due to noise. Since the sequence of eigenvalues
has a “knee” at index k = K + 1, we can determine K by identifying this knee.
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In practice, identifying the knee in the sequence of eigenvalues is difficult for two reasons. First,
since Rx is not available, we must consider the sequence of eigenvalues of the sample correlation matrix
R̂x = (XXT)/N, which is an estimation of Rx [2]. Second, the white noise assumption is not valid in
hyperspectral images since the components of n usually have very different variances and are correlated.
As a consequence, the sequence of ordered eigenvalues does not show a clear knee [4]. In the following,
we briefly describe several algorithms that try to cope with these problems.

The Harsanyi-Farrand-Chang (HFC) algorithm [3] assumes that the noise is white and Gaussian.
This algorithm performs a binary Neyman-Pearson hypothesis test to decide if each λi is due to signal or
due to noise. After performing the L hypothesis tests, HFC sets the estimated number of materials K̂ to the
number of eigenvalues that has been decided to be due to signal. An issue of HFC is that the user must
provide the value of the false-alarm probability used in the hypothesis tests. Moreover, HFC assumes that
n is white, which is not a proper assumption in hyperspectral images. This last drawback is addressed by
a variation of HFC, called Noise Whitened HFC (NWHFC) [5]. NWHFC first estimates the noise variance
in each band using the residual method proposed in [10]; then uses the estimated noise variances to whiten
the image data, and, finally, applies HFC on the whitened data.

The hyperspectral subspace identification algorithm by minimum error (HySime) tries to identify the
linear subspace where the noise-free image Z lies and sets K̂ to the dimension of the identified subspace.
HySime first estimates the noise matrix N (using an algorithm based on the same principles that the
residual method [10]) and computes its sample correlation matrix R̂n. Then, it estimates the signal matrix
Z and its sample correlation matrix R̂z. Finally, HySime selects that subset of eigenvectors of Rz, V ,
that minimizes the mean squared error between the columns of X and their projections over the space
spanned by V . The number of eigenvectors in V is set to K̂.

The so-called RMT algorithm in [6] identifies the eigenvalues of the covariance matrix of X that are
due to signal using a sequence of hypothesis tests that, unlike HFC and NWHFC, are based on results of
random matrix theory (RMT) [11]. The Noise-whitened Eigengap approach (NWEGA) is also based on
RMT, but the hypothesis tests are based on the gaps between successive eigenvalues, not on the eigenvalues
themselves [7]. As NWHFC and HySime, both RMT and NWGEA need to estimate the noise statistics of
the image. RMT assumes that the noise is spectrally uncorrelated (i.e., R̂n is diagonal) and estimates the
variance of the noise in each band using the algorithm in [12]. NWEGA uses the full covariance matrix
of the noise, which is estimated using the same algorithm as in [4]. Other RMT-based algorithms have
recently been introduced in [9].

The performance of the algorithms that rely on the image noise statistics depends on how accurately
these statistics are estimated [13,14]. The residual method [10] has been widely used since it provides
more accurate estimates than other well-known algorithms [13]. An improvement of the residual method,
called the modified residual method, is introduced in [15]. In [14], the accuracies of five estimators of the
band noise variance are compared, and the results show that the modified residual method is the most
accurate. However, the variance estimates of the modified residual method are not guaranteed to be
positive. This drawback is fixed in the methods proposed in [14,16].

All of the above algorithms are based on the LMM, which assumes that each material of the scene is
represented by a single endmember. In practice, however, the endmember of a material may spatially vary
due to changes in the illumination or variations in the intrinsic features of the material, among other causes.
To address endmember variability, some alternatives to the LMM have been proposed (e.g., see [17–20]).
One of them is the normal compositional model (NCM), which accounts for endmember variability (and other
sources of uncertainty) by using random endmembers [17]. In NCM, each pixel is modeled as the mixture

x =
K

∑
i=1

ci ei (2)
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where the endmembers {e1, . . . , eK} are independent Gaussian random vectors, and the abundances
{c1 . . . , cK} meet the abundance constraints. An algorithm for estimating the number of endmembers
that is based on the NMC is presented in [8]. This algorithm assumes that the components of each ei are
independent, that the mean of each ei belongs to a known spectral library, and that the covariance matrix
of each ei is of the form σ2 IL. The algorithm assumes a Bayesian model whose parameters are the mean
vectors, the variance σ2, the number of endmembers K, and the abundances. The estimation of parameters,
and hence K, is performed using a Reversible-Jump Monte Carlo Markov Chain method.

The rest of the paper is organized as follows. In Section 2, we justify the use of clustering to estimate
the number of endmembers in hyperspectral images. In Section 3, we present a detailed description of the
proposed algorithm. In Section 4, we experimentally assess the performance of the proposed method on
four hyperspectral images. The results obtained are discussed in Section 5. Finally, Section 6 summarizes
the main points of the paper and comments on future work.

2. Estimation Using Model-Based Agglomerative Clustering

We have seen that existing methods for the estimation of the number of endmembers rely on
determining the dimension of the signal subspace. This is mostly made by determining the number
of signal eigenvalues. However this approach might be problematic in a practical setting. Thus, in a
real image, many of the N pixels may have a predominant endmember, i.e., one of the abundances ci
(i = 1, . . . , K) is close to 1 while the rest are negligible. Moreover, in the whole image some endmembers
can be much more numerous than others. Let us make some analysis about the implications of these
two practical conditions. We will resort to LMM, hence let us compute the data autocorrelation matrix.
Assuming that signal and noise vectors are uncorrelated we may write

Rx = Rz + Rn = E
{

zzT
}
+ Rn = EE

{
ccT
}

ET + Rn (3)

where the endmember matrix E was defined in (1) and we have defined the abundance vector c = [c1, . . . , cK]
T .

Notice that in the limiting situation in which every pixel is explained by only one endmember,
every particular realization of the random matrix ccT will be a diagonal matrix, with all the main diagonal
elements, except one, equal to zero. Actually, the i-th element of the main diagonal will be a binary random
variable having a probability of 1 equal to the prior probability of the i-th endmember, Pi. Hence, the mean
value of that binary random variable will be Pi, then we can write from (3)

Rx = E


P1 0 · · · 0
0 P2 · · · 0
...

...
. . .

...
0 0 · · · PK

 ET + Rn, P1 + P2 + · · ·+ PK = 1. (4)

Now, let us call λx
i , λz

i , λn
i (i = 1, . . . , L) to the eigenvalues of matrices Rx, Rz, and Rn, respectively.

Notice in (4) that if a few endmembers are much more abundant than the rest, many inputs in the diagonal
matrix will be close to zero and the actual rank of matrix Rz will be much less than K, i.e., many eigenvalues
of Rz will be zero. We can say that the most numerous endmembers “hide” the less abundant ones. It is
well-known that the eigenvalues of the sum of two Hermitian matrices satisfy the following inequalities

λx
i ≤ λz

i + λn
i (5)

λz
i + λn

L ≤ λx
i ≤ λz

i + λn
1 (6)
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That for λz
i = 0 reduces to

λx
i ≤ λn

i (7)

λn
L ≤ λx

i ≤ λn
1 (8)

Therefore, if many eigenvalues of the signal component are zero, the eigenvalue spectrum of Rx is
mainly dominated by the eigenvalue spectrum of Rn and this may lead to poor estimation of the true
number of endmembers.

We propose in this paper a different approach based on clustering. If every particular endmember is
predominant in a given number of pixels, it should be possible to define a cluster centered on it. Notice that
the finding of a proper cluster of pixels around a given endmember depends on the absolute number
of pixels where that endmember is predominant, but not on the relative number of pixels with respect
to other endmembers. In that way, it should be possible to mitigate the hiding phenomenon of the less
numerous endmembers.

A clustering algorithm partitions a set of objects into subsets or clusters in such a way that objects
that belong to a certain cluster are closer in some sense than objects that belong to different clusters [21].
There are two main types of clustering: partitional clustering and hierarchical clustering. Partitional
clustering provides a single partition of the objects, whereas hierarchical clustering generates a sequence
of nested partitions or partition hierarchy. There are two major hierarchical clustering algorithms:
agglomerative algorithms and divisive algorithms. Agglomerative algorithms start with each object
being its own cluster and successively merge pairs of clusters until there is only one left. In contrast,
divisive algorithms start with a single cluster (that represent all the objects) and successively split a cluster
into two new clusters (until the number of clusters equals the number of objects).

In partitional clustering, the number of clusters, P, is an input parameter which is generally unknown.
To obtain a proper P value, data is clustered with each value of P in a certain range, and the partition with
the highest quality is selected. The task of evaluating the quality of a clustering is called cluster validation,
and a function that measures the quality of a partition is called a validity index. Hierarchical clustering
does not require a value of P as input parameter, but we must decide which is the best partition of the
hierarchy. This is also done using a proper validity index. A large number of validity indexes have been
proposed for each type of clustering but none has shown good performance in all applications [22].

Conventional clustering methods rely on measuring both intra-cluster and inter-cluster distances
(typically the Euclidean distance). This may be considered a nonparametric approach, as not any particular
model is assumed for the data distributions. However, parametric (or model-based) approaches could be
competitive alternatives if some parametric model can be defined. Thus, conventional distance measures
could be replaced by model distance measures. We have seen that LMM is a standard parametric model in
the application considered in this work. Inspired by it, we will consider a different linear model suitable
for the clustering approach. Specifically we propose the use of the ICA model. In ICA every pixel vector
having the i-th predominant endmember is expressed in the form

yi = Aisi + bi (9)

where bi is the centroid of the cluster and Aisi models the contributions from noise and/or other less
predominant endmember. Notice that the elements of vector si are independent random variables
having arbitrary probability densities, and that the matrix Ai incorporates the correlation among the
elements of the random fluctuations around the centroids. It could be said that we have exchanged
the two contributions in LMM. Now only one endmember bi appears instead of the K included in the
matrix-vector product Ec of the LMM. On the contrary, the isolated noise term n has been replaced by
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Aisi thus allowing to incorporate both correlation and non-Gaussianity. Also notice that a different ICA
model is to be estimated for every endmember, in contrast with the global LMM. This allows a more
focused searching of every endmember and, in fact, endmember estimates (the centroids bi, i = 1, . . . , K)
are also obtained.

As in [23], the clustering performed by the proposed method is an agglomerative approach. To reduce
the computation complexity of the agglomerative clustering, two previous steps are performed. First,
dimensionality reduction is applied to the image data using Principal Component Analysis (PCA).
The resulting feature vectors are then clustered using a partitional algorithm. The reduced number
of clusters provided by the partitionl clustering and the small number of variables of their constituent
vectors reduce the computational burden of the subsequent agglomerative clustering.

Based on the above, we propose an model-based agglomerative clustering algorithm for determining
the number of endmembers in a hypersepectral image. After a preprocessing that transforms each pixel
into a feature vector (using PCA), the proposed method generates a hierarchy of partitions for an image X
by performing a two-stage clustering. First, a partitional clustering is applied to X, which provides an
initial partition C. Then, an agglomerative clustering is performed on C, which provides a hierarchy of
partitions. The agglomerative clustering algorithm models the probability density of each cluster in C
using ICA and measures the distance between each pair of clusters using the symmetric Kullback-Leibler
(SKL) divergence of their corresponding densities. In each merging step of the agglomerative clustering,
the two existing clusters with the smallest SKL divergence are merged. Finally, a cluster validation using a
proper index selects the best partition of the hierarchy, and the number of clusters of that partition is set to
the estimated K. Figure 1 shows the main steps performed by the proposed algorithm.

Preprocessing

Matrix of
image data

Input
Two−stage clustering

Output

Estimated
number of

endmembers

clustering

Partitional 
clustering

Agglomerative 

validation
ClusterX

{C(1), . . . , C(P)}

K̂
Y C

Figure 1. Overview of the proposed method for the estimation of the number of endmembers of a
hyperspectral image.

The agglomerative clustering performed by the proposed method is similar to the one in [23]. Thus,
the algorithm in [23] also models the clusters using ICA, and those clusters that have the minimum SKL
divergence are merged. However, the algorithm in [23] assumes that the feature vectors of the image are
drawn from an ICA mixture model [24,25], whose ICA parameters are jointly estimated using a maximum
likelihood approach. In contrast, the method proposed in this paper models each cluster of C using an
independent ICA model, which facilitates the estimation of its parameters. Unlike LMM, the combination
of multiple ICA models allows non-linearity between variables to be considered, and thus, different local
linear relations between variables could be modeled.

3. Materials and Methods

In this section, we describe the proposed method (see Algorithm 1). The algorithm has two inputs:
the image data X (L×N matrix) and the maximum number of endmembers to be estimated P. Its output is
the estimated number of endmembers K̂. Estimation is performed in four steps: preprocessing, partitional
clustering, agglomerative clustering, and cluster validation. In the following, we give a detailed description
of each step, explaining its role in the overall process and justifying the techniques used.
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Algorithm 1: Estimation of the number of endmembers using agglomerative clustering.

Input: X (L× N matrix of image data), P (maximum number of endmembers)

Output: K̂ (estimated number of endmembers)

1. Preprocessing. Perform centering, PCA, and normalization: X→ Y

2. Partitional clustering. Perform K-means with P clusters: Y→ C = {C1, C2, . . . , CP}

3. Agglomerative clustering. Obtain a hierarchy of partitions: C → {C(1), C(2), . . . , C(P)}

3.1 Density estimation. Estimate the density of each cluster in C using ICA:

C1, C2, . . . , CP → p(y|C1), p(y|C2), . . . , p(y|CP)

3.2 Distance computation. Obtain the SKL divergence between each pair of clusters in C:

p(y|C1), p(y|C2), . . . , p(y|CP)→ {DSKL(Cu, Cv) : 1 ≤ u, v ≤ P}

3.3 Cluster Merging. Set C(1) = C. For r = 2, 3, . . . , P:

3.3.1 Select the two closest clusters of C(r−1) and merge them into a new cluster.

Set the remaining clusters to partition C(r).

3.3.2 Compute the distance between the new cluster and the rest of clusters of C(r).

4. Cluster validation. Select a partition of the hierarchy and obtain K̂: {C(1), C(2), . . . , C(P)} → K̂.

3.1. Preprocessing

The preprocessing step transforms the pixels of X into feature vectors in order to facilitate the
subsequent clustering steps. This preprocessing involves performing a sequence of three tasks:
centering, dimensionality reduction, and normalization. Centering provides zero-mean (band) variables.
The centered image is obtained with

X← X−M (10)

where M is an L× N matrix with all its columns equal to 1
N ∑N

n=1 xn.
Dimensionality reduction is performed by applying (PCA) to the centered image. The number of

principal components that are retained, M, is the minimum that explains at least 99% of the total variance
of X. This step is implemented with

Y← UTX (11)

where U is an L×M matrix whose columns are the eigenvectors of the correlation matrix of X that have
the M largest eigenvalues associated to them. Note that the resulting matrix, Y, is M× N.

Finally, Y is normalized so each transformed variable (or row of Y) have unit variance. Let D be the
M×M diagonal matrix whose i-th diagonal entry is the inverse of the standard deviation of the i-th row
of Y. Normalization is performed with

Y← DY. (12)
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3.2. Partitional Clustering

Partitional clustering partitions the N columns of Y into P clusters using the K-means algorithm.
K-means tries to iteratively find the partition C = {C1, . . . , CP} that minimizes the cost function

J =
P

∑
k=1

∑
y∈Ci

d(y, bi)

where bi is the mean of the feature vectors in cluster Ci, and d(·, ·) is a distance function for vectors in RM.
The algorithm inputs are Y, P and an initial set of mean vectors. The resulting partition is represented with
P matrices, {Y1, . . . , YP}, where the columns of Yk are those of Y that have been assigned to Ck. K-means
generally converges to a local minimum of the cost J, which depends on the initial set of mean vectors [22].
To obtain a high quality partition, the proposed method runs K-means several times (each with a random
set of initial means), and selects the partition of the run having the smallest J. The number of times that
K-means is iterated is a trade-off between computational complexity and stability in the resulting partition.

3.3. Agglomerative Clustering

If P ≥ K, the initial partition C will be finer than a correct partition (that is, one in which each of its
K clusters corresponds to a different material). The agglomerative clustering of C generates a hierarchy
of partitions, {C(1), C(2), . . . , C(P)} where C(1) = C and C(P) has a single cluster with all feature vectors.
The hierarchy of partitions is obtained by performing three operations sequentially: density estimation,
distance computation, and merging. Each of these operations is described below.

3.3.1. Density Estimation

The agglomerative clustering starts by evaluating the density of each cluster at each of its
corresponding feature vectors. To do this, we model the vectors of each cluster using ICA [26]. ICA models
a cluster Ck with a random vector yk of the form

yk = Aksk + bk (13)

where the mixing matrix Ak (M×M) and the bias vector bk (M×M) are deterministic, and the source vector
sk = [sk,1, . . . , sk,M] is a zero-mean random vector with independent components. We assume that Ak is
invertible, and, therefore, we can write

sk = A−1
k (yk − bk). (14)

From this, and taking into account that the components of sk are independent, the density of cluster
Ck can be written as

p(y|Ck) = |det A−1
k |

M

∏
i=1

psk,i (sk,i) (15)

where psk,i (·) denotes the density of the i-th component of sk.
The ICA parameters of each cluster Ck (columns of Yk) are obtained in the following way. First,

the proposed method sets bk to the mean of the feature vectors of Ck (i.e., the centroid of Ck), and subtracts
bk from each column of Yk. Then, it obtains the mixing matrix of the centered cluster using an ICA
algorithm. From Ak and bk, the algorithm obtains the source vector sk of each feacture vector using (14).
Finally, the resulting source vectors are arranged in an M × Nk source matrix Sk. As is shown below,
ICA parameters {Bk, bk, Sk : k = 1, . . . , P} allows us to measure distances between clusters.
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As already indicated, the clustering approach assumes that every pixel has a preponderant
endmember. This is modelled in (13) by the centroid bk. Then, the linear model Aksk in (13) accounts for
the possible random contributions of other endmembers as well as noise or model errors. Note that this
random contribution is quite general. Non-gaussianity is incorporated by the densities of the sources
sk, and statistical dependence is obtained by the transformation matrix Ak. This is in contrast with the
other linear models previously mentioned in Section 1.1, which assume Gaussianity and independence or
require explicit estimation of the noise correlation matrix. The degrees of freedom of mixtures of ICAs
for density estimation allow complex geometry of data with many possible levels of dependence to be
modeled [24]. This provides great flexibility to allocate pixel cluster membership during the different
levels of iterative process of hierarchical clustering where several ICA-based clusters are fused [25].

3.3.2. Distance Computation

In this step, the distance between any pair of clusters of C is computed. We define the distance
between two clusters, Cu and Cv, as the SKL divergence between their corresponding cluster densities,
which is defined as [27]:

DSKL(Cu, Cv) =
∫

p(y|Cu) log
p(y|Cu)

p(y|Cv)
dy +

∫
p(y|Cv) log

p(y|Cv)

p(y|Cu)
dy. (16)

The SKL divergence is commonly used to measure the dissimilarity between two distributions [28,29].
Appendix A describes how DSKL(Cu, Cv) is estimated from the mixing matrix, the bias vector and the
source matrix of Cu and Cv.

3.4. Cluster Merging

From the SKL distances between the clusters of C, the hierarchy {C(1), C(2), . . . , C(P)} is generated
using an iterative merging process. In the r-th iteration (r = 1, . . . , P− 1), the two closest clusters (in the
SKL-distance sense) of partition C(r) (with P − r + 1 clusters) are merged into a new cluster, and the
originating clusters are removed, providing partition C(r+1) (with P− r clusters). Before the r-th merging,
the KL distance between each pair of clusters in C(r) must be computed. For r = 2, . . . , P− 1, these KL
distances can be easily computed as is shown below.

Suppose that the r− 1-th recursion has generated cluster Cr
w ∈ C(r) by merging clusters Cr−1

u and Cr−1
v .

The density of Cr
w can be written as

pr(y|Cr
w) =

pr−1(Cr−1
u ) pr−1(y|Cr−1

u ) + pr−1(Cr−1
v )pr−1(y|Cr−1

v )

pr−1(Cr−1
u ) + pr−1(Cr−1

v )
(17)

where pr−1(Cr−1
u ) and pr−1(Cr−1

v ) are the prior probabilities or proportions of Cr−1
u and Cr−1

v , respectively.
The prior probability of the new created cluster is

pr(Cr
w) = pr−1(Cr−1

u ) + pr−1(Cr−1
v ). (18)

Taking into account (17), the KL distance between the new created cluster Cr
w and any other cluster

Cr
z can be expressed as

Dr(pr(y|Cr
w), pr(y|Cr

z)) =
pr−1(Cr−1

u ) Dr−1(pr(y|Cr−1
u ), pr−1(y|Cr−1

z ))

pr−1(Cr−1
u ) + pr−1(Cr−1

v )

+
pr−1(Cr−1

v ) Dr−1(pr(y|Cr−1
v ), pr−1(y|Cr−1

z ))

pr−1(Cr−1
u ) + pr−1(Cr−1

v )

(19)
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where pr(y|Cr
z) = pr−1(y|Cr−1

z ) since Cr
z = Cr−1

z . By using (17)–(19), in each iteration r
(r = 2, . . . , P− 1), the SKL distance between every pair of clusters in C(r) is computed and the two closest
clusters are merged (when r = 1, only merging is necessary since the distances are already available).

3.5. Clustering Validation

Ideally, one of the partitions in {C(1), C(2), . . . , C(P)} will be close to a correct clustering of the image
and the number of clusters in that partition will be the number of endmembers (K). In the final validation
step, the proposed method selects one of the clusterings of the hierarchy and sets K̂ to the number of
clusters that it contains. In agglomerative clustering, validity indexes are often based on the sequence
of minimum distances that are obtained in the merging process. Examples of such indexes are the upper
tail rule [21,30] and the inconsistency coefficient [31]. These indexes provide a simple validation, but they
depend on some input parameters that must be set by the user and whose appropriate values depend on
the type of data that is analyzed [21].

The validation performed by the proposed method is based on a sequence, vk, that is built into the
merging process. Specifically, at each iteration r, the proposed method computes the centroid of each of
the two clusters in C(r) that are merged, say mi and mj; and obtains the value of vk at k = P− r + 1 with

vP−r+1 =
M−1

∑
l=0

(mi,l −mj,l)
2. (20)

Hence, vk is proportional to the euclidean distance between the centroids of the merged clusters
in CP−k+1 (the partition of the hierarchy that has k clusters). After obtaining sequence vk (2 ≤ k ≤ P),
the estimated number of endmembers is set to

K̂ = arg max
k

vk. (21)

Let us justify the use of the above validity index. Assume that P > K and that there is no error in the
merging process, that is, clusters of different endmembers are only merged when r ≥ P−K + 1. If a cluster
essentially contains all pixels of a certain material, then we can expect that the cluster centroid will be
close to the endmember of that material in the normalized feature space. At iteration r = 1, the computed
vP will be generally small since C(1) contains some clusters that belong to a same material and whose
means will be therefore close. As r increases, these artificial clusters will merge, and we can expect the
minimum distance between cluster to increase until iteration r = P− K + 1. At this iteration, two clusters
representing different materials (i.e., with distant centroids) will be merged and, hence, we can expect a
large vK. When r increases above P− K + 1, the number of materials whose clusters have been merged
increases, and we can expect cluster centroids will approach each other (vk will decrease as k approaches 2).
Summarizing the above, we can expect that sequence vk will reach its maximum value at an index k close
to K.

4. Experimental Results

In this section, we present the results provided by the proposed method (implemented in MATLAB)
in the estimation of the number of endmembers of four hyperspectral images (Samson, Jasper Ridge,
Urban, and Wasington DC). We also show some partitions provided by our method and their cluster
centroids. Finally, we compare the results obtained to those obtained using five well-known algorithms.

Figure 2 shows the four hyperspectral images that have been used to test the proposed method
(the result of averaging the image bands is displayed as a grayscale image). All four images are publicly
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available and have been widely used to asses the performance of hyperspectral processing algorithms.
Ground truth classifications of the test images have been published and their constituent materials have
been identified [32]. In all images except Samson, some spectral bands have been removed since they are
very noisy.

(a) (b) (c) (d)

Figure 2. Hyperspectral test images (the result of averaging the band images is displayed as a grayscale
image): (a) Samson, (b) Jasper Ridge, (c) Urban, and (d) Washington DC.

For each test image, Table 1 shows the spatial dimensions, the number of bands considered in the
estimation, and the number of bands of the original image (in parentheses). Samson has three endmembers
(Soil, Tree, and Water), and Jasper Ridge has four endmembers (Road, Soil, Water, and Tree). There are
several ground truths for the endmembers of Urban: one with four endmembers (Asfalt, Grass, Tree,
and Roof) as considered in [33–35], one with five endmembers (the previous four plus Soil) [32], and one
with six endmembers [34]. The ground truth of Washington DC contains six endmembers (Roof, Grass,
Water, Tree, Trail, and Road).

Table 1. Spatial dimensions and number of bands (in parentheses, the number of total bands) of each
hyperspectral test image.

Image Samson Jasper Ridge Urban Washington DC

Spatial dimensions 95× 95 100× 100 307× 307 150× 150

Number of bands 156 (156) 198 (224) 162 (221) 191 (224)

Table 2 shows the values of K̂ obtained for each test image after executing our algorithm 25 times
with P = 10. In each execution, the initial partition is determined by repeating K-means 15 times and then
selecting that partition with the minimum cost. To decrease the sensitivity of K-means to data outliers,
the city-block distance is used instead of the usual squared Euclidean distance. For each image, the number
of times that each K̂ value has been obtained is specified in parentheses (nothing is specified when the
same value is obtained all 25 times). Table 2 also shows the number of endmembers K (according to some
published ground truths) for comparison (three values are shown in Urban since it has three ground truths,
as mentioned above). Note in Table 2 that the estimated K̂ values are highly stable (most runs provide the
same value) and close to K. The accuracy and stability of the estimation decreases when the number of
K-means repetitions is decreased. For instance, in Jasper Ridge, K̂ = 4 in 22 of the 25 runs when K-means
is repeated 10 times and K̂ = 4 in 11 of the 25 runs when K-means is repeated 5 times (in this last case,
K̂ = 3 in 4 runs, K̂ = 5 in 3 runs, and K̂ = 6 in 7 runs).
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Table 2. Estimated number of endmembers (K̂) obtained in each image after executing our algorithm
25 times. The groundtruth value of K is also provided for comparison.

Image Samson Jasper Ridge Urban Washington DC

K̂ : 3 4 (23), 6 (2) 5 5 (24), 4 (1)

K: 3 4 4, 5, 6 6

Table 3 shows the estimated number of endmembers provided by using HFC, NWHFC, HySime, RMT,
and NWEGA for each test image. For HFC and NWHFC, the values of K̂ are shown when the false-alarm
probability (Pfa) is 10−3, 10−4, and 10−5 since these are the values used in most papers [4,7,14]. In RMT,
the regression-based noise-estimation algorithm of [4] was used instead of the spatial-based algorithm
used in [6]. Table 3 also shows the results obtained by using the proposed method (for the images Jasper
Ridge and Washington DC, the most frequent K̂ is shown). Note that HFC, NWHFC, HySime, RMT,
NWEGA overestimate the number of endmembers in these four test images. The estimation error is
especially large in the image Urban. In HFC and NWHFC, K̂ decreases with decreasing Pfa (as expected);
however, even with Pfa = 10−7, both methods overestimates K in all four images.

Table 3. Estimated number of endmembers in each test image using HFC, NWHFC, HySime, RMT,
NWEGA, and the proposed method.

Image Samson Jasper Ridge Urban Washington DC

HFC (Pfa = 10−3) 9 9 50 13

HFC (Pfa = 10−4) 8 9 37 10

HFC (Pfa = 10−5) 8 7 29 9

NWHFC (Pfa = 10−3) 8 12 37 21

NWHFC (Pfa = 10−4) 8 10 35 18

NWHFC (Pfa = 10−5) 6 9 32 18

HySime 43 18 27 21

RMT 90 22 54 41

NWEGA 65 7 37 15

The proposed method 3 4 5 5

Table 4 shows the running times of the six algorithms on a desktop computer with an Intel Core
i7-9700 CPU and 16 GB of RAM (DDR4-2666). HFC is the fastest algorithm since it does not estimate the
noise statistics. HySime, RMT, and NWGEA have similar running times since they use the same noise
estimation method, which is by far the most complex task in the eigenvalue-based algorithms. Certainly,
the proposed method requires a longer running time than other algorithms, but notice that the main
objective of the research is to demonstrate the capability of the new approach to improve the estimation of
the number of endmembers. If computational requirement is an issue in some particular setting, it could
be alleviated for example by parallelization techniques. Actually, ICA algorithms exhibit a large potential
for parallelization (see for example [36]). This will merit further research but it is out of the scope of the
work here presented.
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Table 4. Running times (in seconds) of each algorithm for each test image.

Image Samson Jasper Ridge Urban Washington DC

HFC 0.024 0.037 0.269 0.083

NWHFC 0.031 0.048 0.334 0.105

HySime 0.109 0.234 1.456 0.486

RMT 0.111 0.228 1.462 0.485

NWEGA 0.108 0.228 1.455 0.484

The proposed method 26.83 43.08 396.99 72.46

Ideally, the proposed method partitions the pixels of an image into K̂ clusters, each containing the
pixels of a different material of the image. To see if this is the case in the four test images considered,
in the following, we compare the partitions provided by the proposed method with the abundance images
shown in [33] since the latter have been used as groundtruth in many papers [37,38]. In Jasper Ridge and
Washinton DC, we consider the partitions with 4 and 5 clusters, respectively, since these are the values of
K̂ that have been obtained in most runs (see Table 2).

Figure 3 shows the partitions of Samson (a) and Jasper Ridge (c). In Samson, the three clusters shown
in Figure 3a correspond to materials: Soil (red), Tree (green), and Water (blue). In Jasper Ridge, the four
clusters shown in Figure 3c correspond to materials: Road (black), Soil (red), Water (blue), and Tree (green).
According to the abundances shown in [33], the partitions of these two images are approximately correct.
However, some of their clusters contain a significant number of highly mixed pixels (i.e., pixels in which
more than one endmember has a significant abundance). Thus, in Samson, many of the pixels assigned to
the cluster Tree are mixed pixels of Soil and Tree; and, in Jasper, many pixels assigned to the cluster Road
are mixed pixels of Road and Soil (according to the abundance images shown in [33]).

(a) (b) (c) (d)

Figure 3. Partitions for (a) Samson and (c) Jasper Ridge provided by the proposed algorithm (their average
bands are also shown in (b) and (d) for reference). Materials in Figure 3a: Soil (red), Tree (green), and Water
(blue). Materials in Figure 3c: Road (black), Soil (red), Water (blue), and Tree (green).

Figure 4a shows the partition for Urban. According to the abundances with five endmembers
shown in [33], the clusters in that partition mainly correspond to materials: Asphalt (black), Roof (white),
Grass (magenta), Tree (green), and Soil (red). Some material clusters, however, contain a significant number
of pixels that correspond to other materials. For instance, many pixels with a high abundance of Asphalt
in the ground truth of [33] are assigned to the cluster Soil in the partition.
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(a) (b)

Figure 4. (a) Clustering of Urban and (b) its averaged band. Materials in Figure 4a: Asphalt (black), Roof
(white), Grass (magenta), Tree (green), and Soil (red).

The image Washington DC has six materials, but the proposed method provides K̂ = 5 most times.
The partition of that image with five clusters is shown in Figure 5a. According to the abundances shown
in [33], the clusters of that partition approximately correspond to materials: Roof (white), Grass (magenta),
Trail (red), Tree (green), and Road plus Water (gray). Hence, this partition joins the materials Road and
Water into a single cluster. In the partition with six clusters, shown in Figure 5b, the materials Road (black)
and Water (blue) each has its own cluster.

(a) (b) (c)

Figure 5. Partitions of Washington DC with (a) five clusters and (b) six clusters. The average band of that
image is also shown for reference (c). Materials in Figure 5a: Roof (white), Grass (magenta), Trail (red),
Tree (green), and Road plus Water (gray). Materials in Figure 5b: Roof (white), Grass (magenta), Trail (red),
Tree (green), Road (black) and Water (blue).

If a cluster of an image partition comprises all of the pixels that are mainly made of a certain material,
the cluster centroid should be close to the endmember of that material. Hence, we can approximately
obtain the endmembers of an image by computing the centroids of the K̂ clusters found by the proposed
method. These centroids could serve as initial endmember approximations in unmixing applications.
Figures 6–9 show the cluster centroids of the partitions of Samson, Jasper Ridge, Urban, and Washinton
DC, respectively. In Figure 7, the partition with 4 clusters has been used since K̂ = 4 is obtained most of
the times in Jasper Ridge. Although K̂ = 5 was obtained in 24 out of 25 times, Figure 9 has been obtained
using the partition with six clusters since, as mentioned above, this partition has a cluster for each of the
six materials of the ground truth. In the following, we compare the centroids found in each image with the
corresponding groundtruth endmembers shown in [32].

The cluster centroids of Samson (Figure 6) are very similar in shape to the corresponding endmembers
shown in [32]. The centroid of Tree has a much smaller amplitude than its endmember in [32]. This is
probably due to the fact that many pixels of this cluster are mixed pixels of Tree and Water and of Tree and
Soil (in [32], the endmembers of Water and Soil have a smaller amplitude than that of Tree).
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Figure 6. Cluster centroids of the partition of Samson with K̂ = 3 clusters: (a) centroid of Water; (b) centroid
of Soil; (c) centroid of Tree.

In Jasper Ridge (Figure 7), Road is the only cluster whose centroid significantly departs from its
corresponding endmember in [32]. This centroid has a strong resemblance with that of Soil suggesting
that many pixels assigned to the cluster Road belong to Soil or are mixed pixels of Road and Soil.
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Figure 7. Cluster centroids of the partition of Jasper Ridge with K̂ = 4 clusters: (a) centroid of Soil; (b)
centroid of Road; (c) centroid of Water; (d) centroid of Tree.

In Urban (Figure 8), Asphalt is the only cluster whose shape significantly differs from the endmember
shown in [32]. Moreover, the centroid of Soil has much less amplitude than the endmember in [32] because
many pixels of Asphalt (whose endmember has small and almost constant amplitude) are incorrectly
assigned to Soil (see Figure 4c).

In Washington DC (Figure 8), the centroids of Water, Road and Tree are close to their corresponding
ground truth endmembers of [32]. Larger differences are found between the centroids of Roof, Grass and
Trail and their corresponding ground truth endmembers. This difference is significant in Roof which is
justified by the fact that many of its pixels are mainly composed of the material Trail.
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Figure 8. Cluster centroids of the partition of Urban with K̂ = 5 clusters: (a) centroid of Roof; (b) centroid
of Grass; (c) centroid of Soil; (d) centroid of Asphalt; (e) centroid of Tree.
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Figure 9. Cluster centroids of the partition of Washington DC with 6 endmembers: (a) centroid of Water;
(b) centroid of Roof; (c) centroid of Road; (d) centroid of Grass; (e) centroid of Trail; (f) centroid of Tree.

5. Discussion

Since K-means is initialized at random, we may obtain different values of K̂ when the algorithm is
executed several times on the same image. By repeating K-means a number of times and choosing the
partition with the minimum cost, we improve the quality of the estimate and also reduce its variability.
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The results have shown that when P = 10, repeating K-means 15 times provides good estimates of K̂ and
with small variability.

Apart from the value of K̂, it is also interesting to know whether the partition selected by the proposed
method corresponds to a correct clustering of the image into its constituent materials. Note that since
the partition is a hard classification of the input image, its clusters will generally contain mixed pixels.
Moreover, clusters may contain misclassified pixels, that is, pixels that clearly should have been assigned to
a different cluster. Both mixed and misclassified pixels have been found in the partitions shown in Section 4.
When K̂ = K, we have shown that most clusters of the selected partition are good approximations of the
true clusters of the image. When K̂ 6= K, the error can be due to the clustering or to the validation. Thus,
in Washington DC (K̂ = 5 and K = 6), the paritition with six clusters is approximately correct but the
validation erroneously selects the partition with five clusters.

Unlike other algorithms devised to estimate K, the proposed method also allows us to estimate
the image endmembers by computing the cluster centroids of the selected partition. In the cluster of a
certain material, mixed pixels and misclassified pixels may be very different from the material endmember.
Nevertheless, when the percentage of these troublesome pixels is small, we can expect that the cluster
centroid will be close to the corresponding endmember. This has been verified experimentally in Section 4.

The validation step selects the integer k at which sequence vk is maximum. Figure 10 shows sequence
vk obtained for each test image in one of the runs. For k = 2, . . . , K̂− 1, all four sequences are increasing
(as expected) even though the values are not very different. For k = K̂ − 1, . . . , 10, the sequences do
not decrease monotonically (and in Jasper Ridge there is a large local maxima at k = 8). Note that
in Washington DC (Figure 10d), sequence vk has its minimum value at k = 6 (when, according to the
groundtruth, this image has six endmembers). However, in each of the four test images, the partition with
a number of clusters equal to the number of endmembers is approximately correct.
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Figure 10. Sequence vk for (a) Samson, (b) Jasper Ridge, (c) Urban, and (d) Washington DC.
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Finally, we evaluate the efficiency of the proposed method but using standard partitional clustering
algorithms and validation indexes. We have considered three standard clustering techniques: K-means
(with the squared Euclidean distance), spherical K-means [39], and non-negative matrix factorization
(NMF). In NMF, the largest component of the abundance vector of a pixel determines the cluster
that is assigned to that pixel. As validation indexes, we have used the Davies-Bouldin index,
the Calinski-Harabasz index, the Dunn index, and the average Silhouette index since these indexes
are frequently used with partitional clustering algorithms [21,22]. For each clustering algorithm and
validation index, we first obtained the image partition using the clustering algorithm with K = 2, . . . , 10
clusters, and then we selected the partition with the best validation index (the number of clusters of the
optimal partition was set to K̂). Repeating the experiment (for each clustering algorithm, validation index,
and image) generally provides the same K̂ value except in a few cases (in these cases, the median of the K̂
values is shown in Table 5).

Table 5. Estimated number of endmembers using three clustering algorithms (K-means, Spherical K-means,
and NMF) and four validation indexes (DB: Davies-Bouldin, CH: Calinski-Harabasz; D: Dunn, AS: average
Silhouette) in each test image.

Image
K-Means Spherical K-Means NMF

DB CH D AS DB CH D AS DB CH D AS

Samson 2 9 2 2 2 2 2 2 3 5 3 3

Jarper Ridge 2 3 2 2 2 2 2 2 3 4 4 4

Urban 8 4 2 2 2 2 2 2 2 2 2 2

Washington DC 8 6 3 3 6 3 3 3 3 3 3 3

Note in Table 5 that K is underestimated in many cases and that, in fact, the smallest possible value
(K̂ = 2) is chosen in 50% of the cases. Underestimation is especially frequent when Spherical K-means is
used as the clustering algorithm. No combination of clustering algorithm and validation index provides a
good estimate of K in all four images, although K-means with the Calinski-Harabasz index provide good
results except in the Samson image. The proposed method provides more accurate estimates than any of
the twelve algorithms considered in Table 5.

6. Conclusions

We have presented an algorithm that estimates the number of endmembers of a hyperspectral image
using agglomerative clustering. After building a hierarchy of image partitions, the proposed method
selects the one that maximizes a validation index and sets the number of endmembers to the number
of clusters of the selected partition. Our approach is conceptually different from previous techniques,
most of which analyze the eigenvalues of the image correlation matrix. Moreover, our method also allows
us to approximately obtain the endmembers of the image materials. Experimental results have shown
that, for the set of test images considered, the proposed method provides better estimates than other
well-known algorithms. The performance of our method depends on both the accuracy of the clustering
and the effectiveness of the validation. Future work should focus on the search for a better validation
index. Another line of future work is the use of the posterior probabilities of the clusters for each pixel.
At each step of the hierarchy, these probabilities can be easily computed and constitute soft partitions of
the input image that could improve both the estimation of K and the computation of the endmembers.
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Appendix A. Estimation of Entropy and Cross-Entropy

In this appendix, we describe how to estimate DSKL(Cu, Cv). From (16), we can write

DSKL(Cu, Cv) = −H(yu)− H(yv) + H(yu, yv) + H(yv, yu) (A1)

where the term H(yu), called the entropy of p(y|Cu), is

H(yu) = −
∫

p(y|Cu) log p(y|Cu)dy (A2)

and the term H(yu, yv), called the cross-entropy of p(y|Cu) and p(y|Cv), is

H(yu, yv) = −
∫

p(y|Cu) log p(y|Cv)dy. (A3)

We obtain equivalent expressions for H(yv) and H(yv, yu) by exchanging u and v in (A2) and (A3).
Now, we express the terms of (A1) as a function of the source variables, the mixing matrices, and the

bias vectors of Cu and Cv. Since we model cluster Cu with yu = Au su + bu, where Au is square and
invertible, and the random variables of su are independent, we can write the entropy term H(yu) in the
form [40]

H(yu) = log|det Au|+ H(su) = log|det Au|+
M

∑
i=1

H(su,i) (A4)

where H(su,i) is the entropy of the source variable su,i, that is,

H(su,i) = −
∫

psu,i (s) log psu,i (s)ds. (A5)

We obtain equivalent expressions for the entropy term H(yv) by changing u by v in (A4) and (A5).
Let us now consider the cross-entropy term H(yu, yv) of (A1). Since yu = Ausu + bu

and yv = Av sv + bv, cluster densities p(y|Cu) and p(y|Cv) can be written as

p(y|Cu) =
psu(A

−1
u (y− bu))

|det Au|
and p(y|Cv) =

psv(A
−1
v (y− bv))

|det Av|
. (A6)

where psu(·) and psv(·) are the densities of source vectors su and sv, respectively. Substituting (A6)
into (A3) and making the change of variable s = A−1

u (y− bu), we obtain

H(yu, yv) =− log|det Av| − Iu,v (A7)

where
Iu,v =

∫
psu(s) log psv(A

−1
v (Aus + bu − bv))ds (A8)

An equivalent expression for the term H(yv, yu) can be obtained by exchanging u and v in (A7)
and (A8).
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Substituting the expressions found for H(yu), H(yv), H(yu, yv), and H(yv, yu) into (A1), yields

DSKL(Cu, Cv) = −
M

∑
i=1

H(su,i)−
M

∑
i=1

H(sv,i)− Iu,v − Iv,u. (A9)

Now, we describe how to approximate each term of the above expression. To obtain the terms H(su,i)

(i = 1, . . . , M), the integral in (A5) is approximated using Monte Carlo integration:

Ĥ(su,i) = −
1

Nu

Nu

∑
n=1

log psu,i (su,i(n)) (A10)

where the values of the sequence su,i(n) are the elements of the i-th row of Su. Since this density psu,i (·)
is unknown, we estimate it from su,i(n) using kernel-density estimation [41]. Specifically, we use a
Gaussian kernel:

psu,i (su,i) = a
Nu

∑
n=1

exp
[
−1

2
((su,i − su,i(n))/h)2

]
(A11)

where a is a normalization constant and h = 1.06 σu,i N−1/5
u (σu,i is the standard deviation of su,i(n)).

The approximation of the terms H(sv,i) (i = 1, . . . , M) is done in a similar way.
Finally, we show how Iu,v and Iv,u are approximated. First, consider the term Iu,v defined in (A8) and

assume that su(n) (n = 1, . . . , Q) is a sequence of Q vectors sampled from the density of random vector su.
We can approximate the integral in (A9) using Monte Carlo integration, that is,

Iu,v ≈
1
Q

Q

∑
n=1

log psv(sv(n)) (A12)

where sv(n) is obtained from su(n) with

sv(n) = A−1
v (Ausu(n) + bu − bv), n = 1, . . . , Q. (A13)

Since sv is a vector of independent random variables, we have

Îu,v =
1
Q

M

∑
i=1

Q

∑
n=1

log psv,i (sv,i(n)) (A14)

where, similarly to what was done to evaluate (A10), each densities psv,i (·) is estimated using a Gaussian
kernel and the values of sequence sv,i(n) (i.e., the elements of the i-th row of Sv). In our method, we have
used Q = 10000.

The vectors of sequence su(n) are obtained by sampling from psu(·). Since su is composed of M
independent random variables, each variable can be sampled separately from the rest. Specifically,
each sampled sequence su,i(n) (i = 1, . . . , M) is obtained by using inverse transform sampling [42]
where the inverse cumulative distribution F−1

su,i
is estimated from its Nu available samples using kernel

density estimation [41]. A similar procedure is used to estimate Iv,u.
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