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Abstract: Groundwater resources have been exploited and utilized on a large scale in the North
China Plain (NCP) since the 1970s. As a result of extensive groundwater depletion, the NCP has
experienced significant land subsidence, which threatens geological stability and infrastructure health
and exacerbates the risks of other geohazards. In this study, we employed multi-track Synthetic
Aperture Radar (SAR) datasets acquired by the Sentinel-1A (S1A) satellite to detect spatial and
temporal distributions of surface deformation in the NCP from 2016 to 2018 based on multi-temporal
interferometric synthetic aperture radar (MT-InSAR). The results show that the overall ground
displacement ranged from −165.4 mm/yr (subsidence) to 9.9 mm/yr (uplift) with a standard variance
of 28.8 mm/yr. During the InSAR monitoring period, the temporal pattern of land subsidence was
dominated by a decreasing tendency and the spatial pattern of land subsidence in the coastal plain
exhibited an expansion trend. Validation results show that the S1A datasets agree well with levelling
data, indicating the reliability of the InSAR results. With groundwater level data, we found that the
distribution of subsidence in the NCP is spatially consistent with that of deep groundwater depression
cones. A comparison with land use data shows that the agricultural usage of groundwater is the
dominant mechanism responsible for land subsidence in the whole study area. Through an integrated
analysis of land subsidence distribution characteristics, geological data, and previous research results,
we found that other triggering factors, such as active faults, precipitation recharge, urbanization,
and oil/gas extraction, have also impacted land subsidence in the NCP to different degrees.
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1. Introduction

Groundwater constitutes the main water supply and meets more than 70% of the water needs in
the North China Plain (NCP), a major agricultural base and industrial base in China [1]. Similar to
several areas around the world [2–11], the NCP has experienced rapid land subsidence in association
with extensive groundwater withdrawal. Moreover, rapid urbanization, increased dynamic and
static loads, and the development of underground spaces have also impacted the occurrence of land
subsidence to various degrees [12–15], and these factors also contribute to land subsidence in the
NCP [16–20]. Land subsidence threatens the safety of urban infrastructure, increases the risk of urban
waterlogging, exacerbates the impacts of sea-level rise on coastal areas, and even affects regional water
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security. Hence, subsidence monitoring and analysis are vital for detecting potential hazards and for
maintaining sustainable regional development.

Subsidence in the NCP has previously been monitored using extensometers, levelling measurements,
and global positioning system (GPS) measurements with high precision and space-time
restrictions [19,21,22]. Compared with these point-based geodetic methods, interferometric synthetic
aperture radar (InSAR) has the ability to monitor large-scale ground subsidence throughout the day
under all weather conditions with millimeter-scale precision. The development of multi-temporal
InSAR (MT-InSAR) addressed the limitations of traditional InSAR technology, such as temporal
decorrelation, spatial decorrelation, and atmospheric delay. Accordingly, variants of the MT-InSAR
technique, such as persistent scatterer InSAR (PS-InSAR) [23,24] and small baseline subset (SBAS) [25],
have been successfully leveraged to analyze the time-series characteristics of land subsidence. Hence,
considering the advantages of InSAR, this technique has been widely used to monitor subsidence areas
throughout the NCP [26–33]. However, detailed InSAR subsidence studies always focus on specific
sites, often Beijing, Tianjin, and Cangzhou. As a result, the spatial extent, magnitude, and temporal
evolution of land subsidence elsewhere in the NCP have not been investigated.

The purpose of this paper is to fill this knowledge gap regarding land subsidence in the NCP by
using the InSAR technique. The Sentinel-1A (S1A) satellite provides free C-band data with a swath
width of 250 km; with these data, it is feasible to overcome the sparse data coverage and to perform
large-scale subsidence monitoring. In this study, we apply the PS-InSAR technique to 3 ascending
tracks acquired from 2016 to 2018 by the S1A satellite to obtain time-series displacements across the
NCP and to detect the distribution of surface deformation therein. Then, to provide new insights into
land subsidence in the NCP, we analyze the temporal and spatial evolution characteristics of and the
main factors influencing land subsidence in this region.

The remainder of this paper is organized as follows. Section 2 introduces the history of land
subsidence in the NCP and describes the study site. The Synthetic Aperture Radar (SAR) datasets and
InSAR time-series method used in this study are presented in Section 3. Section 4 shows the InSAR
results and the validation results. Finally, the discussion and conclusions of this study are provided in
Sections 5 and 6, respectively.

2. Study Area

The NCP is an alluvial-proluvial plain formed from sediments carried by the Yellow River,
Luanhe River, and Haihe River and covers the region between 34◦46′N, 112◦30′E and 40◦25′N,
119◦30′E, spanning a total area exceeding 140,000 km2. The NCP has a typical warm, semi-humid
continental monsoon climate with a mean annual precipitation of 500–700 mm. The plain consists of
the piedmont alluvial-proluvial plain (PP), central alluvial-lacustrine plain (CP), and littoral plain (LP)
with quaternary deposit thicknesses ranging from 150 to 600 m [34]. The hydrogeological cross section
A-A’ from Shijiazhuang to Bohai Bay is illustrated in Figure 1b. The quaternary aquifers underlying
the NCP are divided into four groups (Table 1): aquifer 1 is an unconfined aquifer at depths of 10–50 m,
and aquifer 2 is a shallow confined aquifer at depths of 120 to 210 m, whereas aquifer 3 (depths of
250–310 m) and aquifer 4 (depths of 350–550 m) are confined and defined as deep groundwater [34–36].
Hereafter, the shallow aquifer refers collectively to aquifers 1 and 2. From the PP to the CP and LP,
the aquifer systems generally vary from a single aquifer comprising sandy gravel to multiple aquifers
composed of sand separated by silt or clay layers [37].

Table 1. The classification of the quaternary aquifers underlying the North China Plain (NCP).

Classification Underground Water Type Depth (m) Quaternary

Aquifer 1 unconfined 10–50 the Holocene formation (Q4)
Aquifer 2 shallow confined 120–210 the upper Pleistocene formation (Q3)
Aquifer 3 confined 250–310 the middle Pleistocene formation (Q2)
Aquifer 4 confined 350–550 the lower Pleistocene formation (Q1)
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The first record of subsidence in the NCP was discovered in Tianjin by a levelling survey conducted
in 1923. Before 1954, the NCP subsided in only parts of Beijing and Tianjin, and the annual subsidence
velocity reached only a few millimeters. However, groundwater has been used as a major source of
water since 1970; consequently, groundwater levels have fallen at alarming rates due to excessive
exploitation [38]. Between 1975 and 1995, the average water table of both the shallow aquifer and the
deep aquifer in some areas declined over 6 m and 23 m, respectively [39]. In response, land subsidence
developed rapidly, extending from cities to rural areas [37]. The measured maximum accumulative
displacement reached 800 mm from 1975 to 1995. As reported by the China Geological Survey (CGS),
by the end of 2013, 42.3% and 10.8% of the total area of the NCP exhibited a subsidence velocity in
excess of 20 mm/yr and 50 mm/yr, respectively (http://www.cigem.cgs.gov.cn). Among these areas,
90% of subsidence was distributed in Beijing, Tianjin, and Hebei and the cumulative subsidence in
some parts exceeded 3 m [40]. In this study, we focus on land subsidence in the northwestern NCP,
which includes the entire plain area around Beijing, Tianjin, and Hebei.
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3. SAR Data and MT-InSAR Processing

The SAR datasets employed herein are composed of three tracks of images acquired by S1A,
a C-band Earth observation satellite with a 12-day repeat cycle that launched on 3 April 2014. This study
utilizes 404 S1A SAR ascending orbit images (tracks 40, 142, and 69) acquired with vertical-vertical
(VV) polarization in interferometric wide swath (IW) mode between 2016 and 2018. In IW Terrain
Observation with Progressive Scan (TOPS) mode, S1A has a spatial resolution of 5 × 20 m and a swath
width of 250 km (https://sentinel.esa.int/). Detailed parameters of the S1A data are shown in Table 2.

Table 2. Satellite information for the data used in this study.

Satellite Track
No.

No. of
Images Date Rang Orbit

Direction Polarization Image Mode

Sentinel-1A

40 165 7 January 2016–28
November 2018

Ascending VV Interferometric
wide swath142 141 14 January 2016–18

October 2018

69 98 9 January 2016–1
October 2018

To measure the time-series surface deformation throughout the NCP, the persistent scatterer (PS)
technique is applied to the images from each track of SAR data by SARProZ processing software (refer to
https://www.sarproz.com/). The main processing steps (Figure 2) are as follows: master image selection,
SAR data registration, digital elevation model (DEM) simulation, interferogram generation, PS selection
with an amplitude stability index (ASI) threshold, atmospheric phase screen (APS) estimation and
removal, and time-series deformation estimation. A DEM from the Shuttle Radar Topography Mission
(SRTM) (http://dds.cr.usgs.gov/srtm/) with a 90-m resolution is used to remove the topographic phase.
In addition, to ensure high coherence and stability, the PS candidates are chosen by employing an ASI
better than 0.8. A previous study showed that the horizontal deformation within the NCP occurs with
a relatively low velocity of 1.57–1.93 mm/yr with GPS observations [42,43]. Hence, we neglect the
horizontal deformation and convert the line-of-sight (LOS) deformation into the vertical displacement
by using Equation (1) [44]:

dv = dLos/cosθ (1)

where dv is the vertical displacement, dLos is the LOS displacement, and θ is the incidence angle. Then,
the vertical displacements are validated with ground levelling data.

To generate a broad-coverage deformation velocity map, we need to mosaic the results from the
three S1A tracks. However, multi-track SAR datasets are measured along different LOSs, and the
locations of the detected pixels in each dataset also vary. Therefore, to accurately construct a
broad-coverage subsidence velocity map, we guarantee three considerations. First, the LOS deformation
from different tracks should be converted into vertical deformation. In this study, the area covered by
track 142 is chosen as the reference area because it shares the same region as that with the data from
the other two tracks. The incidence angles (Table S1) on track 142 and track 40 in the overlapping
area are approximately 33.72◦ and 43.75◦, respectively; similarly, the incidence angles on track 142
and track 69 in the overlapping area are approximately 43.77◦ and 33.67◦, respectively. Each PS point
from the three datasets is converted into the vertical deformation by Equation (1) according to the
abovementioned incidence angles. Second, the locations of the PS points detected from each dataset
differ in the overlapping area; accordingly, a nearest-neighbor search is used to match the PS points
in the overlapping area from different tracks. Third, the least square method is used to calculate the
deformation offset in the overlapping area between two neighboring tracks. Finally, the results from
the three S1A tracks can be mosaicked by compensating for the mean offset.

https://sentinel.esa.int/
https://www.sarproz.com/
http://dds.cr.usgs.gov/srtm/
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4. Results

4.1. Land Subsidence in the NCP during the Observation Period

We applied the PS-InSAR technique to the S1A datasets from 2016 to 2018 to investigate the
ground deformation behavior in the NCP. To produce a broad-coverage deformation velocity map,
we mosaicked the results from the three S1A tracks by compensating for the offset in the overlapping
areas. Figure 3 shows the overall displacements derived from the S1A datasets by using the PS-InSAR
technique in the NCP. The results reveal regions of significant subsidence mainly to the southeast and
southwest of the PP, the southwest and east of the LP, and most of the CP. The overall displacement
rate ranges from −165.4 mm/yr (where negative values denote subsidence) to 9.9 mm/yr (with positive
values indicating uplift) with a standard variance of 28.8 mm/yr (during the acquisition of S1A data).

A total of 1,426,967 PS points was detected in the study area. Points with velocities higher than 20,
50, and 100 mm/yr accounted for 53.9%, 23.9%, and 3.6% of the total points, respectively. From 2016 to
2018, the percentage of points with land subsidence rates above 20 mm increased from 53.8% to 57.2%,
while the percentage of points with subsidence rates over 100 mm presented a slight decreasing trend
(Figure 3b). PS points with subsidence rates over 50 mm/yr accounted for 23.7%, 23.8%, and 24% of the
total points during 2016, 2017, and 2018, respectively. During the observation period, the total area
with a subsidence rate greater than 50 mm/yr reached 1.4 × 104 km2. We further calculated the area of
subsidence exceeding 50 mm among the three sub-plains, and the results are presented in Figure 3c.
In the PP, the area with subsidence greater than 50 mm presented a slight increase with an increase of
1.5% from 2016 to 2018. In the CP, the area with subsidence exceeding 50 mm presented a relatively
stable tendency, constituting an increase of 0.3% between 2016 and 2018. Compared with 2016, the area
with subsidence greater than 50 mm in the LP increased significantly in 2018 (an increase of 33.8%).
From 2016 to 2018, the maximum subsidence rate was relatively stable in the CP and LP (Figure 3d).
In the PP, the maximum subsidence rate first increased and then decreased. Figure 4 shows an example
of the accumulative time-series displacements at selected points. For example, the accumulative
subsidence at CY and WQ exceeded 30 cm in 3 years; the time-series displacements at most selected
points are similarly dominated by a permanent decreasing trend with minor nonlinear variations.
In contrast, the time-series displacements at FN are characterized by significant seasonal variations:
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from September to January of the following year, the subsidence disappears or even rebounds (uplifts),
after which the surface continues to subside.
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We plot profiles of the displacement rate in the west–east (W–E) and north–south (N–S) directions
to illustrate the spatial characteristics of subsidence areas in the NCP. The location of each profile
is shown in Figure 5. The behavior of the spatial evolution of subsidence differs significantly at
different subsidence funnels between 2016 and 2018. For example, the profiles across the Beijing,
Tianjin, Shijiazhuang, Langfang-Tianjin, and Hengshui-Xingtai subsidence centers, labelled BJ-1/2, TJ,
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SJZ-1/2, LT, and HX (Figure S1 in the Supplementary Material), respectively, are characterized by steady
subsidence. The TS-1/2 profiles across the Tangshan subsidence center exhibit increasing subsidence
rates (Figure 6). In particular, the TS-2 profile indicates significant increasing subsidence rates from
west to east and from north to south, with the maximum subsidence rate increasing from 81.3 mm/yr to
105.6 mm/yr and from 82.4 mm/yr to 106.9 mm/yr, respectively. On the other profile lines, we observe
decreasing subsidence rates, for example, on the BD-2 profile across Baoding and the CZ-1 profile
across Cangzhou (Figure 6). At distances between 11 and 15 km (from west to east) on profile BD-2,
the subsidence velocity slows down from 2016 to 2018. The CZ-1 profile indicates that, at distances
from 0 to 5 km, a small zone of subsidence slows down to the north and east. Combined with the
statistical chart in Figure 3, these results indicate that the development of subsidence in the PP and CP
was relatively stable from 2016 to 2018 and even slowed down in some areas, such as Baoding and
Cangzhou. In contrast, the subsidence in the LP increased between 2016 and 2018, especially in the
coastal areas of Tangshan.
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4.2. Validation

In this section, we assess the precision and consistency of the subsidence rates derived from
the individual SAR datasets. To evaluate the precision of the results, the InSAR-derived vertical
displacement rates are compared with independent levelling measurements. In this study, 23 ground
levelling survey benchmarks were acquired annually from September 2017 to September 2018
(shown in Figure 1 as red dots). Then, the average displacement of the pixels within a certain radius
(100 m in our case) centered on each benchmark was obtained as the corresponding InSAR measurement.
Figure 7 shows the comparison of the levelling data with the subsidence velocities obtained by two
S1A datasets, showing generally good agreement. However, at some locations, differences of a few
millimeters are detected. To investigate these differences, the root-mean-square error (RMSE) of the
difference between the InSAR and levelling measurements is calculated for each levelling point, and the
maximum and minimum errors between the two measurements are calculated. The overall RMSEs
are 5.5 mm/yr and 7.2 mm/yr for tracks 142 and 69, respectively. The maximum and minimum errors
for track 142 are 11.6 mm/yr and 0.2 mm/yr, respectively, and those for track 69 are 13.5 mm/yr and
1.0 mm/yr. Hence, the difference between the InSAR and levelling measurements is partially attributable
to the differences in the location and acquisition time between the levelling and InSAR observations.
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Figure 7. Comparison between the InSAR measurements and levelling data. The left panel shows the
comparison between the Track 142 results and leveling measurements. And the right panel shows the
comparison between Track 69 results and leveling measurements.

To assess the consistency, the results from different datasets are compared by converting the
results into vertical displacements and by resampling them onto a grid, where the size of each grid cell
is 5 × 5 km. The vertical displacements from tracks 69 and 40 are then compared with the results from
track 142 in the overlapping areas between the two pairs of datasets. The correlations between the
displacement rates of track 142 and track 69 and between those of track 142 and track 40 are 0.96 and
0.87, respectively (Figure 8). The overall good agreement among the results from the three different
S1A datasets indicates the reliability of the results for further analysis.
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Figure 8. Consistency between the vertical displacement rates derived from different datasets:
the vertical displacement rate from track 142 is chosen as a reference.

5. Discussion

5.1. Comparison with Groundwater Levels

As illustrated in Figure 9a, areas with high subsidence rates always correspond to low groundwater
levels. The groundwater level contours drawn in Figure 9a are obtained from the China Geological
Environmental Monitoring Institute (http://geocloud.cgs.gov.cn/). The distribution of land subsidence
over the study region matches the spatial distribution of the sinking groundwater table, especially that
of the deep groundwater level, as shown in the right panel of Figure 9a. As mentioned in Section 2,
the shallow groundwater aquifer refers collectively to aquifers 1 and 2, whereas the deep groundwater
aquifer refers collectively to aquifers 3 and 4. According to profiles A-A’, B-B’, and C-C’ shown in

http://geocloud.cgs.gov.cn/
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Figure 9a, the shallow groundwater levels, deep groundwater levels, and subsidence velocities along
the profiles are extracted to further analyze the spatial correlation between the hydraulic head level and
land subsidence. Figure 9b shows the comparison between the hydraulic head levels from different
aquifers and the InSAR-measured subsidence along selected profile lines. As shown in Figure 9b,
the spatial distributions of the subsidence centers and the deep groundwater depression cones are fully
aligned with each other with regard to profiles A-A’, B-B’, and C-C’. In other words, the subsidence
centers are correlated with relatively low deep groundwater levels.
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On profile B-B’ at distances between 0 and 120 km and between 240 and 285 km, the distribution of
subsidence is similar to that of the shallow groundwater level. Similarly, on profile C-C’, the subsidence
distribution matches the shallow groundwater level distribution at distances between 0 and 45 km.
In contrast, these two distributions are not consistent on the other sections. Groundwater exploitation
in the NCP since the 1970s has lowered the hydraulic heads in the aquifers and formed groundwater
depressions. A previous study pointed out that groundwater depressions are widespread in the PP,
while deep groundwater depressions are distributed mainly in the middle and eastern NCP [39,45,46]
(shown in the left panel of Figure 1a). According to Terzaghi’s theory, groundwater overexploitation
has caused a shift in the pore fluid pressure, causing an equivalent change in the effective stress within
the aquifer system that compresses the aquifer system skeleton under the new load [47,48]. Thus,
subsidence has occurred. Compared with the shallow aquifer, the groundwater within the deep aquifer
has a poor ability to recharge within the study region [49]. Therefore, the contradiction attributed to
the unbalanced replenishment of the deep aquifer is more prominent than that of the shallow aquifer,
and hence, the spatial response of the former to subsidence is more obvious.

5.2. Comparison with Land Use

Figure 10a depicts a contour map of the 40-mm interval superimposed onto the InSAR-measured
subsidence and highlights four subsidence areas with maximum velocities over 100 mm/yr (marked A to
D in the left panel). To examine the land use types corresponding to different magnitudes of subsidence,
the land use classification is obtained from the Finer Resolution Observation and Monitoring–Global
Land Cover (FROM-GLC10) map provided by Tsinghua University (http://data.ess.tsinghua.edu.cn/)
with a resolution of 10 m. In this study, we integrated the classification results, and the final outcome
is illustrated in the right panel of Figure 10a. The entire region is categorized into five main classes:
cropland, vegetation, water, impervious land, and bare land. Figure 10b shows the statistics of these
land use types within the ranges of different subsidence contours. In the areas with subsidence greater
than 20, 60, and 100 mm, cropland is the most distributed land use type, followed by impervious
land. As illustrated in Figure 10c, from 2003 to 2018, the percentage of agricultural water consumption
ranged from 68% to 54% of the total water withdrawn. Agricultural water evidently consumes a
large portion of the water in the study area. In the NCP, irrigation water is mostly pumped from
groundwater, and high-intensity exploitation for irrigation causes the NCP to experience severe
groundwater depletion [50,51]. Therefore, throughout the study area, agricultural planting has a major
impact on land subsidence.

Figure 11 shows magnified views of the land use types in the four selected zones marked with
black rectangles in Figure 10a (left panel). The detailed statistical information of these subsidence
zones with velocities exceeding 100 mm/yr is provided in Table 3. In zone A, land subsidence occurs
mainly in urban areas, and the main land use type in the areas with subsidence rates over 100 mm/yr is
impervious land. In zone B, the main land use types in the area with subsidence rates over 100 mm/yr
are cropland and impervious land, and their ratio is close to 1:1. As illustrated in Figure 11, there are
considerable differences between the land use types in the two areas in zone B (marked B1 and B2)
with subsidence rates exceeding 100 mm/yr. In zone B1, the major land use type is impervious land,
but that in zone B2 is cropland. In zones C and D, the main land use types are cropland in the areas
with subsidence velocities over 100 mm/yr; the ratios between cropland and impervious land are 1:3.7
and 1:9.4 for zones C and D, respectively.

http://data.ess.tsinghua.edu.cn/
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Figure 11. Magnified views of the land use classification in the four highlighted areas: the highlighted
areas are marked with black rectangles in the left panel of Figure 10a. (a) ,(b), (c) and (d) show the land
use type with vertical displacement rate exceeds 60 mm/yr in Zone A, B,C and D, respectively.

Table 3. Land use conditions in zones A to D with subsidence rates greater than 100 mm/yr.

Zone List Area (km2)
Major Land Use (%)

Cropland Impervious Land Vegetation Bare Land

A 30.76 6.61 59.75 33.57 0.07
B 145.77 50.58 46.41 2.87 0.05
C 1233.94 89.87 9.52 0.6 0.02
D 244.31 75.23 20.53 3.49 0.75
B1 61.89 26.87 66.92 6.15 0.06
B2 83.87 68.08 31.27 0.61 0.04

5.3. Other Factors

As mentioned in Section 2, the NCP is divided into three main hydrogeological units. From the
PP to the CP and the LP, the aquifer systems change from a single aquifer consisting of sandy gravel
to a multilayer structure comprising sand separated by silt or clay layers. The NCP began to exploit
and apply groundwater on a large scale since the 1970s; consequently, groundwater overexploitation
problems exist in many areas at present. The areas in which shallow groundwater is overexploited are
distributed mainly in the PP, and those in which deep groundwater is overexploited are distributed
mainly in the CP and LP (Figure 12). Deep groundwater is characterized by slower renewal and
less recharge than shallow groundwater [52,53]. Furthermore, precipitation is the main source of
groundwater replenishment in the NCP: the spatial distribution gradually weakens from the PP to
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the LP and then increases [54,55]. The alluvial-proluvial fan area easily accepts recharge in the form
of lateral inflow in the PP, and the conditions supplying atmospheric precipitation are relatively
good. In contrast, groundwater presents weak rechargeability in the CP and LP due to the relatively
poor groundwater recharge conditions therein. Therefore, under the same groundwater exploitation
intensity, the CP and LP are more prone to land subsidence.
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exploitation information is derived from [41,56]).

The development of subsidence is controlled by faults, and the main deformation direction is
basically parallel to the fracture direction in the NCP [27,57–60]. Figure 13 demonstrates that faults
coincide with the boundaries of subsidence areas, while greater subsidence rates are directly related
to the groundwater level. The information of faults in Figure 13 are shown in Table 4. As seen
from Figure 13a, there are several active fault zones, and sharp gradients in subsidence are observed
across the faults in the study area. Figure 13b shows an example of the average subsidence in
four fault zones along profile AA’: the Tongxian–Nanyuan fault zone (TNFN), eastern Taihang fault
zone (TFZ), Wuqing–Wenan fault zone (WWFN) and Cangdong fault zone (CFZ). The profile of the
average displacement rate along AA’ shows marked differential differences on both sides of these
faults, especially WWFN and CFN, with displacement gradients up to 160 mm/yr. These high-velocity
gradients correlate with faults, indicating that these faults coincide with the boundaries of the subsidence
areas. We observe a significant subsidence center correlated with a relatively low groundwater level,
particularly between the WWFN and CFN. In addition, land subsidence is also connected with
compressible quaternary layers, urbanization, and geothermal and oil exploitation [61–63].
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(b) a profile of the InSAR results: the locations of faults are indicated with red columns. TNFN, TFN,
WWFN, and CNF are the abbreviations for Tongxian–Nanyuan fault zone, eastern Taihang fault zone,
Wuqing–Wenan fault zone, and Cangdong fault zone, respectively.
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Table 4. Information on fault zones.

No. Name No. Name

F1 Taihang fault zone F13 Nankou–Sunhe fault zone
F2 Shulu–Ningjin fault zone F14 Yongding river fault zone
F3 Baichikou fault zone F15 Sanhe–Fengnan fault zone
F4 Wuqing–Wenan fault zone F16 Jiyun river fault zone
F5 Cangdong fault zone F17 Haihe fault zone
F6 Tangshan–Ninghe fault zone F18 Hangu fault zone
F7 Changli–Ninghe fault zone F19 Laoting fault zone
F8 Eastern Taihang fault zone F20 Ningjin–Haixing fault zone
F9 Huangzhuang–Gaoliying fault zone F21 Linzhang–Daming fault zone

F10 Tongxian–Nanyuan fault zone F22 Hengshui–Dezhou fault zone
F11 Xiadian–Mafang fault zone F23 Neiqiu–Qinghe fault zone
F12 Zhuozhou–Baodi fault zone F24 Xushui–Dacheng fault zone

6. Conclusions

In this paper, we first applied SARProZ MT-InSAR technology to multi-track Sentinel-1A images
collected from 2016 to 2018 to detect the spatial and temporal distributions of land subsidence across
the NCP. The vertical displacements were estimated to have a maximum value of approximately
−165.4 mm/yr. The InSAR results are in good agreement with ground levelling measurements and
were cross-validated, indicating the reliability of our results. During the observation period, the rates
and spatial distributions of subsidence in the PP and CP have remained unchanged for at least
three years. In contrast, in the LP, especially in the coastal areas of Tangshan and Qinhuangdao,
the subsidence rates have increased and the spatial distribution has expanded significantly. An analysis
of the observed displacements coupled with information obtained from geological mapping and
groundwater level data illustrates that the distribution and development pattern of land subsidence in
the NCP is correlated with deep groundwater exploitation and is controlled by geological structures.
Moreover, comparing InSAR-derived subsidence maps with maps of land use types demonstrates that
groundwater pumping for agricultural activities is the major mechanism causing land subsidence in
the northwestern NCP.
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