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Abstract: Continuous observation of climate indicators, such as trends in lake freezing, is important
to understand the dynamics of the local and global climate system. Consequently, lake ice has
been included among the Essential Climate Variables (ECVs) of the Global Climate Observing
System (GCOS), and there is a need to set up operational monitoring capabilities. Multi-temporal
satellite images and publicly available webcam streams are among the viable data sources capable
of monitoring lake ice. In this work we investigate machine learning-based image analysis as a
tool to determine the spatio-temporal extent of ice on Swiss Alpine lakes as well as the ice-on
and ice-off dates, from both multispectral optical satellite images (VIIRS and MODIS) and RGB
webcam images. We model lake ice monitoring as a pixel-wise semantic segmentation problem,
i.e., each pixel on the lake surface is classified to obtain a spatially explicit map of ice cover. We show
experimentally that the proposed system produces consistently good results when tested on data
from multiple winters and lakes. Our satellite-based method obtains mean Intersection-over-Union
(mIoU) scores > 93%, for both sensors. It also generalises well across lakes and winters with
mIoU scores > 78% and >80% respectively. On average, our webcam approach achieves mIoU
values of ≈87% and generalisation scores of ≈71% and ≈69% across different cameras and winters
respectively. Additionally, we generate and make available a new benchmark dataset of webcam
images (Photi-LakeIce) which includes data from two winters and three cameras.

Keywords: lake ice monitoring; climate monitoring; semantic segmentation; support vector machines;
XGBoost; convolutional neural networks; VIIRS; MODIS; webcams

1. Introduction

Climate change is one of the main challenges for humanity today and there is a great necessity
to observe and understand the climate dynamics and quantify its past, present, and future state [1,2].
Lake observables such as ice duration, freeze-up, and break-up dynamics etc. play an important role
in understanding climate change and provide a good opportunity for long-term monitoring. Lake ice
(as part of lakes) is therefore considered an Essential Climate Variable (ECV) [3] of the Global Climate
Observing System (GCOS). In addition, the European Space Agency (ESA) encourages climate research
and long-term trend analysis through the Climate Change Initiative (CCI [4], CCI+ [5]). This consortium
recently addressed the following variables: Lake water level, lake water extent, lake surface water
temperature, lake ice, and lake water reflectance. Recent research also emphasises the socio-economic
and biological role of lake ice [6]. Moreover, according to an analysis of data from 513 lakes, winter ice
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in lakes is depleting at a record pace due to global warming [2]. That study also underlined the
importance of lake ice monitoring, observing that a comprehensive, large-scale assessment of lake ice
loss is still missing. The vanishing ice affects winter tourism, cold-water ecosystems, hydroelectric
power generation, water transportation, freshwater fishing, etc., which further emphasises the need
to monitor lake ice in an efficient and repeatable manner [7]. Interestingly, an investigation of the
long-term ice phenological patterns in Northern Hemisphere lakes [8] observed trends towards later
freeze-up (average shift of 5.8 days per 100 years) and earlier break-up (average shift of 6.5 days
per 100 years), which was also confirmed by another overview [9]. However, a previous 50-year
(1951–2000) study [10] based on Canadian lakes confirmed the earlier break-up trend but reported less
of a clear trend for freeze-up dates.

The idea of monitoring lake ice for climate studies is not new in the cryosphere research
community. A main requirement for monitoring lake ice is high temporal resolution (daily) with an
accuracy of ±2 days for phenological events such as ice-on/off dates (according to GCOS). Among the
data sources that fulfil this requirement are optical satellite images such as MODIS and VIIRS. In the
following, we delve deeper into the literature on using optical satellite images and webcams for
monitoring lake ice.

1.1. Optical Satellite Images for Lake Ice Monitoring

At present, satellite images are the only means for systematic, dense, large-scale monitoring
applications. Satellite observations with good temporal as well as spatial resolution are ideal for the
remote sensing of lake ice phenology. Optical satellite imagery such as MODIS and VIIRS offer very
good temporal resolution and satisfactory spatial resolution, making them a good choice. On the other
hand, although sensors such as Landsat-8 and Sentinel-2 have a good spatial resolution, the insufficient
temporal resolution rules them out as main sources for monitoring lake ice. Some literature exists
which uses optical satellite data for lake ice analysis. Inter-annual changes in the temporal extent and
intensity of lake ice and snow cover in the Alaska region have been studied using MODIS imagery [11].
In addition, studies by Brown and Duguay [12] and Kropáček et al. [13] demonstrated that MODIS
data is effective for surveying lake ice. The former approach used MODIS and Interactive Multi-sensor
Snow and Ice Mapping System (IMS) snow products to monitor daily ice cover changes. The latter
derived ice phenology of 59 lakes (area larger than 100 km2) on the Tibetan Plateau from MODIS 8-day
composite data for the period 2001–2010. The estimated area of open water was compared against
the area extracted from high-resolution satellite images (Landsat, Envisat/ASAR, TerraSAR-X and
SPOT) and achieved a Root Mean Square (RMS) error of 9.6 days. Recently, Qiu et al. [14] derived
the daily lake ice extent from MODIS data by employing the snowmap algorithm [15]. The results of
this approach were consistent with the reference observations from passive microwave data (AMSR-E
and AMSR2, average correlation coefficient of 0.91). Additionally, the MODIS daily snow product
was used to derive the lake ice phenology of more than 20 lakes in China (Xinjiang territory) using
a threshold-based method [16]. On average, the estimated freeze-up start and break-up end dates
were respectively 7.33 and 4.73 days different (mean absolute error) compared to the reference dates
derived from passive microwave data (AMSR-E and AMSR2). Very recently, another threshold-based
technique [17] was also proposed using MODIS data which achieved a mean absolute error of 5.54 days
and 7.31 days for break-up and freeze-up dates respectively.

Lake Ice Cover (LIC), a sub-product of the newly released CCI Lakes [18] product, provides the
spatial cover (spatial resolution of 250 m) of lake ice and the associated uncertainty at a daily temporal
resolution. At present, LIC is only available for 250 lakes spread across the globe. However, none of the
target lakes in Switzerland are included in this list. Hence, a direct comparison with our results is not
feasible. Lake Ice Extent (LIE) [19] is one of the Copernicus Global Land Service near-real-time products
derived by thresholding the Top-of-Atmosphere reflectances from Level 1B calibrated radiances of
Terra MODIS (Collection 6) for snow-covered ice, snow-free ice, and water. The 250 m resolution
product has been validated against ice break-up observations over 34 Finnish lakes spanning four
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years (2010–2013). However, the LIE product has high uncertainty during the lake freezing period
due to low light conditions in the higher latitudes as well as uncertainty in cloud cover detection.
In addition, the LIE differs by an average of 3.3 days compared to the in-situ ground truth, not quite
meeting the GCOS specification. MODIS snow product [15,20] maps snow and ice cover (including ice
on large, inland lakes) at a relatively coarse spatial resolution of 500 m and daily temporal resolution
using Earth Observation System (EOS) MODIS data. A comparison of specifications of our machine
learning-based product with the operational products is shown in Table 1.

Table 1. Comparison of specifications of our machine learning-based product with the operational
products such as CCI Lake Ice Cover (CCI LIC), Lake Ice Extent (LIE), MODIS Snow Product
(MODIS SP), and VIIRS Snow Product (VIIRS SP).

CCI LIC [18] LIE [19] MODIS SP [15] VIIRS SP [21] Ours

Temporal resolution 1 day 1 day 1 day 1 day 1 day
Spatial resolution (GSD) 250 m 250 m 500 m 375 m 250 m

Input data MODIS MODIS MODIS VIIRS MODIS, VIIRS

Though in many aspects VIIRS and MODIS imagery are similar [22,23], the former has not been
leveraged much to study lake ice. Previously, Sütterlin et al. [24] proposed to use VIIRS data to retrieve
lake ice phenology in Swiss lakes using a threshold approach. Another algorithm [25] used VIIRS to
detect inland lake ice in Canada. Using VIIRS as well as MODIS, Trishchenko and Ungureanu [26]
constructed a long time series over Canada and neighbouring regions. They also developed ice
probability maps using both sensors. Various approaches have been proposed using the Landsat-8
and/or Sentinel-2 optical satellite images [27–30]. However, we do not go into the details since our
work is focused on sensors with at least daily coverage.

1.2. Webcams for Lake Ice Monitoring

To some extent, satellite remote sensing can be substituted by close-range webcams [31], especially
in cloudy scenarios. As far as we know, the FC-DenseNet (Tiramisu) model [32] of Xiao et al. [33]
used terrestrial webcam images for the first time for lake ice monitoring application, followed by a
joint approach [34] which used in-situ temperature and pressure observations, and a satellite-based
technique in addition to webcams. We note that these two works presented results only on cameras
that capture a single lake (St. Moritz) and the generalisation performance was poor, especially for
cross-camera predictions. In this work we achieve better prediction performance using webcams
compared to such approaches. In addition, we report results on data from two lakes (St. Moritz, Sihl)
and two winters (2016–2017, 2017–2018).

1.3. Machine (Deep) Learning Approaches for Lake Ice Monitoring

The literature on lake ice monitoring is vast. However, most works make use of elementary
threshold-based or index-based methodologies. While, machine learning approaches have been
successfully leveraged for various remote sensing and environment monitoring applications, their use
for lake ice detection remains under explored. We intend to fill this research gap in our paper.
To our knowledge, the previous version of our satellite-based method [35] and Xiao et al. [33]
applied machine learning techniques for the first time to detect ice in lakes. Very recently, we also
proposed a preliminary version of our webcam-based methodology [36]. In this paper, we extend our
works [34–36] and perform thorough experimentation, targeting an operational system for lake ice
monitoring. For completeness, we mention that, very recently, we have also explored the possibility to
detect lake ice using Sentinel-1 SAR data with deep learning [37].
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1.4. Motivation and Contributions

Existing observations and data on lake ice from local authorities, fishermen, ice-skaters, police,
internet media, publications, etc. are not well documented. Additionally, there has been a significant
decrease in the number of such field observations in the past two decades [9,38]. At the same time,
the potential of different remote sensing sensors has been demonstrated to measure the occurrence
of lake ice. In this context we note that, for our target region of Switzerland, the database at the
National Snow and Ice Data Centre (NSIDC) currently includes only the ice-on/off dates of a single
lake (St. Moritz), and only until 2012. Given the need for automated, continuous monitoring of lake ice,
we propose to explore the potential of artificial intelligence to support an operational system. In this
paper, we put forward a system which monitors selected Alpine lakes in Switzerland and detects
the spatio-temporal extent of ice and in particular the ice-on/off dates. Though satellite data is the
best operational input for global coverage, close-range webcam data can be very valuable in regions
with large enough camera networks (including Switzerland). Firstly, we use low spatial resolution
(250–1000 m) but high temporal resolution (1 day) multispectral satellite images from two optical
satellite sensors (Suomi NPP VIIRS [39], Terra MODIS [40]). Here, we tackle lake ice detection using
XGBoost [41] and Support Vector Machines (SVM) [42]. Secondly, we investigate the potential of images
from freely available webcams using Convolutional Neural Networks (CNN), for the independent
estimation of lake ice. Given an input webcam image, such networks are designed to predict pixel-wise
class probabilities. Additionally, we use webcam data for the validation of results from satellite data.

2. Materials and Methods

2.1. Definitions Used

By definition, ice-on date is the first day a lake is totally or in great majority frozen (≈90%), with a
similar day after it (this is the same definition as in Franssen and Scherrer [43], i.e., end of freeze-up).
Ice-off is used here as the symmetric of ice-on, i.e., the first day after having all or almost all lake
frozen, when any significant amount of clear water appears and in the subsequent days this water
area increases. We point out that our ice-off date marks the start of melting (break-up), such that the
two dates symmetrically delimit the fully frozen period. As far as we know there is no universally
accepted definition of ice-on/off dates. Hence, in the scientific cooperation we had with MeteoSwiss
we adopted the above definition which is consistent throughout this work. Ice thickness plays no role
in this definition. In very rare cases, in Switzerland, there may be more than one such date. In those
cases we use the latest ice-on and the earliest ice-off dates. Some researchers, especially in North
America and in the NSIDC database, define ice-off as the end of break-up, when almost everything is
water [9]. That date can also be retrieved with our scheme, without any changes to the methodology.
Clean pixels are those that are totally within the lake outline. In all subsequent investigations with
satellite image data, only the cloud-free clean pixels are used. Additionally, non-transition dates are
the days when a lake is mostly (≈90% or above) frozen (ice, snow) or non-frozen (water) while the
partially frozen days are termed as transition dates.

2.2. Target Lakes and Winters

Using satellite images, we processed the Swiss Alpine lakes: Sihl, Sils, Silvaplana, and St. Moritz,
see Figure 1. To assess the performance, the data from two full winters (16–17 and 17–18) are
used, including the relatively short but challenging freeze-up and break-up periods. In each winter,
we processed all available dates from the beginning of September until the end of May. The target lakes
exhibited moderate to high difficulty, with a variable area (very small to mid-sized), altitude (low to
high), and surrounding topography (flat/hilly to mountainous), and they freeze more or less often.
More details of the target lakes are shown in Table 2, including the details of the nearest meteorological
stations. For completeness, the temperature and precipitation data near the observed lakes were
also plotted (see Figure 2 for 2016–2017 winter months). Additionally, we processed three different
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webcams monitoring lakes St. Moritz and Sihl from the same two winters. For satellite images, the lake
outlines are digitised from Open Street Map (OSM) and have an accuracy of ≈25–50 m. For webcams,
our algorithm automatically determines the lake outline.

Figure 1. On the first row, left image shows the orthophoto map of Switzerland (source: Swisstopo [44]).
Regions around the four target lakes (shown as blue and yellow rectangles on the map) are zoomed
in and shown on the right side of the map (lake Sihl on the left, region around lakes Sils, Silvaplana,
St. Moritz on the right). On the second row, the image footprints of two webcams monitoring lake
St. Moritz are displayed (Camera 0 and 1 images were captured on 14 December 2016 and 13 December
2016 respectively when the lake was partially frozen). Best if viewed on screen.

Table 2. Characteristics of the target lakes (data mainly from Wikipedia). Latitude (lat, ◦North),
longitude (lon, ◦East), altitude (alt, m), area (km2), volume (vol, Mm3), and the maximum and average
depth [depth(M,A)] in m are shown. Additionally, for each lake, the nearest meteorological station
(MS) is shown together with the corresponding latitude, longitude, and altitude.

Lake Lat, Lon, Alt Area, Vol Depth (M, A) Remarks MS, Lat, Lon, Alt

Sihl 47.14, 8.78, 889 11.3, 96 23, 17 frozen most years Einsiedeln, 47.13, 8.75, 910
Sils 46.42, 9.74, 1797 4.1, 137 71, 35 freezes every year Segl-Maria, 46.43, 9.77, 1804

Silvaplana 46.45, 9.79, 1791 2.7, 140 77, 48 freezes every year Segl-Maria, 46.43, 9.77, 1804
St. Moritz 46.49, 9.85, 1768 0.78, 20 42, 26 freezes every year Samedan, 46.53, 9.88, 1708

2.3. Data

We use data from three different type of sensors for lake ice monitoring. Parameters of all these
data types are shown in Table 3.

2.3.1. Optical Satellite Images

Both MODIS (aboard Terra [40] and Aqua [45] satellites) and VIIRS (Suomi NPP [39] satellite)
images are freely available and have high temporal resolution. Due to the lower quality of Aqua
imagery we used Terra images in our analysis. Additionally, following the approach of Tom et al. [35],
we used only 12 MODIS bands and discarded the rest. For our MODIS analysis, we downloaded the
following products: MOD02 (calibrated and geolocated radiance, level 1B), MOD03 (geolocation),
and MOD35 (48-bit cloud mask) from the LAADS DAAC (Level-1 and Atmosphere Archive &
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Distribution System Distributed Active Archive Center) archive [46]. Note that, only the I-bands
are used in our VIIRS analysis. See Figure 3 for the spectral range of MODIS and VIIRS bands used in
our approach.

Table 3. Parameters of the used data (GSD = Ground Sampling Distance).

MODIS VIIRS Webcams

Temporal resolution 1 day 1 day 1 hour (typically)
Spatial resolution (GSD) 250–1000 m 375–750 m ca. 4 mm to 4 m

Spectral resolution 36 bands (0.41–14.24 µm) 22 bands (0.41–12.01 µm) RGB
Radiometric resolution 12 bits 12 bits 8 bits

Costs free free free
Availability very good very good depending on location

Cloud mask issues slight slight NA
Cloud problems severe severe negligible
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Figure 2. Bar graphs of mean monthly air temperature 2 m above ground (top) and total monthly
precipitation (bottom) in winter 2016–2017, recorded at the meteorological stations closest to the
respective lakes. Data courtesy of MeteoSwiss.

Technicalities about the processed satellite data are shown in Tables 4 and 5. It can be seen that
we analysed relatively less data in winter of 17–18 as opposed to the previous winter, due to the
fact that winter 17–18 was more cloudy than 16–17 in the regions of interest. We only processed the
dates when a lake was at least 30% cloud-free, which effectively lowered the temporal resolution from
1 day to approximately 2 days. The effective temporal resolution varies across sensors and winters
(see Table 5). Additionally, for lakes Sihl and St. Moritz, there were more transition days in winter
17–18. Throughout, we used the non-transition dates for training the SVM model as referred to in
Section 3.1. This factor along with class-imbalance explains why the decrease in data is more evident
for the class frozen. Note also that the transition dates are more likely to occur near the freezing
and thawing periods. One can note class imbalance in the dataset of both winters. In each winter,
we processed all available acquisitions during the period from September till May, while the lakes
were typically fully (or mostly) frozen during only a small subset of these dates. Moreover, the class
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imbalance was alarmingly high for lake Sihl. This is because Sihl had a moderate freezing frequency
compared to the other three lakes, because of its lower altitude and larger area, see Table 2. Note also
that the presence of a dam near the northern part of lake Sihl makes its freezing pattern relatively
less natural.

Figure 3. Spectral range of MODIS (left) and VIIRS (right) bands used in our analysis. The start and
end wavelengths are shown for each band.

Even after collecting data from a full winter, very few pixels are available to train a machine
learning-based system using MODIS imagery, due to the low spatial resolution. For instance, in every
acquisition, there exist only four clean pixels for lake St. Moritz, refer to Table 5. This problem is even
worse for VIIRS where there is no clean pixel at all for the same lake (see Table 5). Note that from
Table 4, the total number of VIIRS (clean) pixels processed is significantly less compared to MODIS
mainly due to the lower spatial resolution (see also Table 5). A challenge for machine learning is the
scarcity of lake pixels. Note also that the small number of pixels per lake makes a correction of the
lake outlines’ absolute geolocation a necessity (refer Section 2.4). Furthermore, it is highly probable
during the transition periods that both frozen and non-frozen classes coexist within a single clean
pixel (mixels). For this reason, we also generate the probability for each pixel to be frozen as an end
result, especially targeting such mixels during the transition periods. Note also that data hungry deep
learning approaches cannot be deployed, as they cannot be reliably trained with such small datasets.

Table 4. Total number of clean, cloud-free pixels on non-transition dates from MODIS (M) and VIIRS
(V) sensors (at least 30% cloud-free days) used in our experiments.

Winter Sihl Sils Silvaplana St. Moritz Total
M V M V M V M V M V

Frozen 16–17 4137 1919 2345 894 1736 739 157 — 8375 3552
Non-Frozen 16–17 13,568 4598 3019 1051 1965 765 191 — 18,743 6414

Frozen 17–18 1005 198 1858 722 1169 591 124 — 4156 1511
Non-Frozen 17–18 11,804 4311 2435 784 1574 621 140 — 15,953 5716

Total 30,514 11,026 9657 3451 6444 2716 612 — 47,227 17,193
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Table 5. Dataset statistics. M/V format displays the respective numbers of MODIS/VIIRS. The effective
temporal resolution (shown as ‘resolution’) and fraction of transition dates over all processed dates
(Trans fraction) are also shown. #Pixels (clean) displays the number of clean pixels per acquisition.

Lake #Pixels Winter Non-Transition Days Transition Resolution Trans Fraction
(Clean) Non-Frozen Frozen Days (Days)

Sihl 115/45 16–17 98/87 32/33 12/11 1.9/2.1 0.09/0.08
17–18 90/88 8/6 24/22 2.2/2.4 0.20/0.19

Sils 33/11 16-17 70/73 57/59 33/30 1.7/1.7 0.21/0.19
17–18 60/57 49/48 25/32 2.0/2.0 0.19/0.23

Silvaplana 21/9 16–17 66/66 63/59 33/34 1.7/1.7 0.20/0.21
17–18 58/58 43/54 27/31 2.1/1.9 0.21/0.22

St. Moritz 4/0 16–17 79/— 65/— 14/— 1.7/— 0.09/—
17–18 64/— 58/— 16/— 2.0/— 0.12/—

2.3.2. Webcam Images

We reported our results on various cameras with different intrinsic and extrinsic parameters,
which are freely available. For the experiments, we manually removed some unusable images,
examples are shown in Figure 4. We point out that for oblique webcam viewpoints, the GSD varied
greatly between nearby and distant parts of a lake, as does the angle between the viewing rays and
lake surface. As a consequence, webcam images are hard to interpret in the far field, in practice usable
distances tend to be up to≈1 km. We note that the usable distance also depends on the surface material,
e.g., snow on ice can be detected at further distances where it is already impossible (for humans as
well as machines) to distinguish black ice from water.

Figure 4. Example images that were discarded from the dataset due to bad illumination (left), sun
over-exposure (middle), and thick fog (right).

We make available (https://github.com/czarmanu/photi-lakeice-dataset) a new webcam dataset,
termed Photi-LakeIce, for lake ice monitoring and report our results on it. Sample images and details of
the dataset are presented in Figure 5 and Table 6 respectively. RGB images (and the corresponding
ground truth annotations) from two lakes (Sihl and St. Moritz) and two winters (2016–2017, 2017–2018)
are included in the dataset. Though the camera mounted at Hotel Schweizerhof in St. Moritz is rotating,
in our analysis we consider it as two different fixed cameras (camera 0 and camera 1, see Figure 6).
The major difference between these two streams is image scale: Camera 0 captures images with larger
GSD compared to camera 1. Another camera that monitors Sihl is non-stationary, but captures the lake
at the same scale (refer Figure 5 row 3). Hence, we consider it as a single rotating camera (camera 2).
Our dataset is not limited to but includes images with different lighting conditions (due to the sun’s
angle, time of the year, presence of clouds, etc.), shadows (from both clouds and nearby mountains),
fog conditions (we remove the extreme cases but keep the images from slightly foggy days), wind
scenarios, etc.

https://github.com/czarmanu/photi-lakeice-dataset
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Table 6. Details of the Photi-LakeIce dataset. Lat and Long respectively denote latitude (◦North) and
longitude (◦East) of the approximate camera location. Res stands for resolution and H and W represent
height and width of the image in pixels (after cropping).

Name Lake (Lat, Long) Camera Model #Images 16–17 #Images 17–18 Res (H × W)

Camera 0 St. Moritz (46.50, 9.84) AXIS Q6128-E 820 474 324 × 1209
Camera 1 St. Moritz (46.50, 9.84) AXIS Q6128-E 1180 443 324 × 1209
Camera 2 Sihl (47.13, 8.74) unknown 500 600 344 × 420

Camera 0(w) Camera 0(w + i) Camera 0(s + c) Camera 0(s)

Camera 1(w) Camera 1(w + i) Camera 1(s + c) Camera 1(s)

Camera 2(R1, w) Camera 2(R2, s) Camera 2(R3, w) Camera 2(R4, w)

Figure 5. Photi-LakeIce dataset. Rows 1 and 2 display sample images from cameras 0 and 1 (St. Moritz)
respectively. Row 3 shows example images of camera 2 (Sihl, non-stationary, and some rotations [R1, R2,
etc.] are also displayed). State of the lake: water(w), ice(i), snow(s), and clutter(c) is also displayed in
brackets.

Figure 6. Two webcams monitoring lake St. Moritz along with their approximate coverage. Image
courtesy of Google.
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To study the class imbalance in our dataset, we plot the class distribution, individually for each
camera and winter, see Figure 7. It can be inferred that the classes are highly imbalanced in most of the
sub-datasets, where ice and clutter classes suffer the most. In Figure 7, we show the percentage of the
class background in addition to the four main classes. Note that the percentage of clutter in camera
0 is less compared to camera 1. Note also, camera 1 has almost zero background while the lake area
(foreground) to background ratio for Sihl is too low, making it a very challenging case. Additionally,
the number of ice pixels is consistently low in all the cameras across all years. It will not be surprising
if the performance of classes clutter and ice are not good in a relative sense. Note that the background
class frequencies differ from one year to another even for the same camera, since in each year the
foreground-background separation was done by different human experts. The difference is even more
so for camera 2 (Sihl), since it is rotating.

Camera 0 (16-17) Camera 0 (17-18) Camera 1 (16-17) Camera 1 (17-18) Camera 2 (16-17) Camera 2 (17-18)

0

20

40

60

80

Pe
rc
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ta
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background water ice snow clutter

Figure 7. Bar graphs displaying class imbalance (including the class background) in our dataset. Ice and
clutter are the under-represented classes.

2.3.3. Ground Truth Generation for Webcam Analysis

The main difficulty in designing a machine (deep) learning system is the requirement for
accurately labelled data. However, to generate pixel-wise labels, the interpretation of webcam images
is challenging for several reasons. Image quality is limited and off-the-shelf webcams only offer poor
radiometric and spectral resolution and are subject to adverse lighting conditions like fog, which
makes the image interpretation process difficult even for humans (see Figure 8). Besides the limitations
of the sensor itself, the cameras are mounted with a rather horizontal viewing angle such that large
parts of the water body can be observed. As a result, large differences in GSD within a single image
are present. Significant intra-class appearance differences exist throughout image sequences. This is
caused by different ice structures, partly frozen water surfaces, waves, varying illumination conditions,
reflections, and shadows. Furthermore, inter-class appearance similarities exist, which impedes
automatic interpretation. In fact, even manual interpretation for some examples is impossible without
using additional temporal cues. Pixel-wise ground truth annotations are produced by human operators
by labelling polygons within the input images using the LabelMe tool [47]. For the lake detection
task, each pixel is either labelled as foreground (lake) or background. Foreground pixels are further
annotated as water, ice, snow, and clutter for lake ice segmentation.

s i i + w w w

Figure 8. Inter-class similarities and intra-class differences of states snow (s), ice (i), and water (w) in
our webcam data.
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2.3.4. Ground Truth Generation for MODIS and VIIRS Analysis

To generate the ground truth for our satellite image analysis, for each day, a human expert
visually interpreted the state of a lake (completely frozen, partly frozen, completely non-frozen,
or partly non-frozen) using webcam images of the same. Note also that most of the freely-available
webcams are not optimally installed to monitor lakes. Hence, besides webcam images, we interpret
cloud-free Sentinel-2 images whenever available. Additionally, we attempted to use online media
reports to enrich the generated ground truth, which however only provided limited information. In our
analysis, webcams have ground truth at a better granularity level (hourly, per pixel label) compared to
satellite images (daily, global label). Accurately registering webcam pixels with satellite image pixels is
beyond the scope of this work, hence we did not transfer the webcam-based per-pixel ground truth to
the satellite images.

2.4. Methodology

2.4.1. Satellite Image Analysis

Pre-processing of MODIS data (re-sampling to UTM32N coordinate system, re-projection) is done
using MRTSWATH [48] software. Similarly, VIIRS imagery data is pre-processed (assembling of data
granules, re-sampling to UTM32N, and mapping) with the SatPy [49] package. VIIRS cloud masks are
extracted with H5py [50] and re-sampled using Pyresample [51] and GDAL [52] libraries. Among the
12 selected MODIS bands (refer Section 2.3.1), the lower resolution bands (500 m and 1000 m GSD)
were upsampled to 250 m resolution using bilinear interpolation. This step is not necessary for VIIRS
analysis, since we use only the I-bands (≈375 m GSD). For both VIIRS and MODIS, we only analysed
the images with at least 30% cloud-free clean pixels. In MODIS images, there are also some pixels
marked as invalid, which were masked out. For MODIS, we merged the cloudy and uncertain clear
bits to construct a binary cloud-mask from the standard cloud-mask product. Similarly, a VIIRS pixel
is considered non-cloudy only if it is either confidently clear or probably clear. After Douglas–Peucker
generalisation [53], the outlines were further backprojected from the ground coordinate system onto
the satellite images to steer the estimation of lake ice. In addition, just the clean pixels were analysed,
after rectifying the outlines for absolute geolocation shifts, and backprojecting onto the VIIRS band I2

(≈375 m GSD), respectively MODIS band B2 (250 m GSD) as in Tom et al. [35]. For MODIS, the mean
offsets in x and y direction were 0.75 and 0.85 pixels, respectively. For VIIRS, the mean offsets were 0
and 0.3 pixels in x, respectively y direction.

Figure 9 displays the block diagram of the proposed lake ice monitoring system using satellite images.
Our semantic segmentation methodology is generic and is applicable to both VIIRS and MODIS imagery.
Here, we formulated ice detection as a supervised pixel-wise classification problem (two classes: Frozen
and non-frozen). To assess the inter-class separability of different bands, we carried out a supervised
variable importance analysis using the XGBoost feature learning system [41]. The training of that method,
a gradient boosting approach based on ensembles of decision trees, makes explicit variable importance
conditioned on the class labels. The outcome (F-score) indicates how valuable each feature is in the
formation of the boosted (shallow) decision trees within the model. The more a feature (in our case
a band) is used to make correct predictions with the decision trees, the higher its relative importance.
Though XGBoost is also a classifier by default, we only used the built-in variable selection to automatically
determine the most informative bands. For the actual classification based on the selected channels we
employed a support vector machine (SVM, [42]) classifier, mainly because with SVM it is straight-forward
to compare a linear and a non-linear variant.
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Figure 9. Block diagram of the proposed lake ice detection approach using satellite data.

The 12 usable MODIS bands and 5 I-bands of VIIRS were independently analysed with XGBoost.
All data from winter 16–17 (see Table 4) was used to perform this analysis and the results for both
MODIS and VIIRS are shown in Figure 10 (left and right respectively). Bands I1 and B1 attained
the best scores among the analysed MODIS and VIIRS bands respectively. Furthermore, we plotted
the gray-value histograms (see Figure 11) in order to double-check the results generated by XGBoost.
Due to space limitations, only the histograms for VIIRS are shown. Similar histograms for MODIS can
be found in Tom et al. [54]. It can be judged from Figure 11 that the two classes are almost similarly
separable in the two near-infrared bands I1 and I2. Since those two bands have a similar spectrum and
are highly correlated, XGBoost picks only one among them. The same holds for the two near-infrared
MODIS bands B1 and B2.
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Figure 10. Block diagram of the proposed lake ice detection approach using satellite data.
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Figure 11. Bar graphs for MODIS (left) and VIIRS (right) showing the significance of each of the
selected bands (12 for MODIS, 5 for VIIRS) for frozen vs. non-frozen pixel separation using the XGBoost
algorithm [12]. All non-transition days from winter 16-17 are included in the analysis.
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Figure 10. Bar graphs for MODIS (left) and VIIRS (right) showing the significance of each of the
selected bands (12 for MODIS, 5 for VIIRS) for frozen vs. non-frozen pixel separation using the XGBoost
algorithm [41]. All non-transition days from winter 16–17 are included in the analysis.

Figure 11. VIIRS grey-value histograms for sanity check (Bands I1, I2, I3, I4, I5 are respectively shown
from left to right).
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It is very likely that the physical state of a lake pixel is the same on subsequent days (except during
the highly dynamic freezing and thawing periods). Hence, as a post-processing step, multi-temporal
analysis (MTA) is applied. For each pixel, a moving average of the SVM class scores is computed along
the time dimension. The average is computed within a fixed window length (smoothing parameter)
that is determined empirically. Choosing the smoothing parameter is critical, as too-high values can
easily wash out the critical dynamics during the transition days. Since the pixels from each MODIS
(or VIIRS) acquisition are predicted independently by the trained SVM model, MTA is expected to
improve the SVM results by leveraging on the temporal relationships. We test three different averaging
schemes: Mean, median, and Gaussian.

2.4.2. Webcam Image Analysis

Similarly to satellite analysis, we formulated our webcam approach as supervised semantic
segmentation problem. Here, we made use of the prominent high-performance deep learning
architecture, Deeplab v3+ [55], with the Xception65 encoder branch, see Figure 12 (left). That method
has a proven track record on other semantic segmentation benchmarks such as PASCAL VOC [56]
and Cityscapes [57]. Our network classified each pixel in the RGB webcam image as water, ice, snow,
or clutter. The clutter class incorporates man-made objects on the lake, e.g., structures built for sport
events (such as tents in St. Moritz), boats, etc. Note that, as for satellite images, lake ice segmentation
is done only for foreground (lake) pixels.

By integrating the spatial pyramid pooling technique as well as atrous convolution into the
standard encoder-decoder architecture, the Deeplab v3+ network encodes rich contextual information
at arbitrary scales and retrieves segment boundaries more precisely. Spatial convolution was applied
independently to each channel, followed by 1 × 1 (point-wise) convolution to combine the per-channel
outputs. This markedly reduces the computational complexity without any noticeable performance
drop. Where needed, these depthwise separable convolutions employ stride 2 in the spatial component,
making separate pooling operations obsolete. Note that the atrous (dilated) convolution effectively
increases the receptive field without blurring the signal. Using multiple atrous rates makes sure that
features are extracted at various spatial scales.

Inspired from U-net [58], and with an aim to sharpen the class boundaries, in addition to the
single skip connection used in Deeplab v3+ per default, we introduced three more from different flow
blocks (entry and mid-level flow) of the Xception65 encoder to the decoder. We call this new variant
Deep-U-Lab, see Figure 12 (right). The new feature maps thus generated are concatenated along with
the existing ones, for better preservation of high frequency information at the class boundaries.

In order to deal with the shortage (in deep learning terms) of labelled data, we made use of
transfer-learning that allows one to re-use knowledge gained from other similar tasks. To do so,
we employed a model pre-trained on the PASCAL VOC benchmark dataset (for both lake detection and
ice segmentation tasks) rather than starting from scratch. The weights in all layers were fine-tuned since
tuning just the final layer did not work, emphasising the fact that even low-level texture characteristics
differ between our webcam images and the PASCAL dataset and must be adapted.

In previous works [33,34], the lake pixels were manually delineated before inferring their class.
Locating the lake pixels makes the job easier for the classifier as it does not have to deal with the
spectral appearance outside of the lake. We propose to automate this step, in order to make lake ice
observation more practical in operational scenarios. Automated lake detection is very useful especially
when scaling up the webcam network to also include non-stationary cameras. Hence, we formulate
lake detection as a two-class (background, foreground) segmentation problem and train yet another
instance of our Deep-U-Lab model. Then, a fine-grained classifier predicts the state (water, ice, snow,
and clutter) of lake pixels.

With the intention to minimise overfitting of the model, we performed data augmentation, i.e.,
more synthetically generated variations were added to the training dataset. This was done by applying
random rotations, zooming, up-down, and left-right flipping.
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Figure 12. Deeplab v3+ (left) and Deep-U-Lab (right) architectures. The “?” symbol indicates the
additional skip connections for Deep-U-Lab.

3. Results

For our evaluation we use the following error metrics: Recall, precision, overall accuracy,
Intersection over Union (IoU, a.k.a. Jaccard index), and mean IoU across classes (mIoU).

3.1. Experiments with Satellite Images

Unless explicitly specified, the experimental settings are the same (but independent) for both
MODIS and VIIRS. The time series is divided into two parts: Transition and non-transition dates.
During the partially frozen transition days, ground truth annotation was very challenging, as one has
to discriminate thin transparent ice from water. Hence, the quantitative results are reported only on
non-transition dates. However, qualitative analysis was done on all the available dates. Furthermore,
with VIIRS only three lakes (Sihl, Sils, Silvaplana) were processed since there exists no clean pixel for
lake St. Moritz (see Table 5).

3.1.1. Four-Fold Cross Validation

As a first experiment, the data of all the lakes were combined from the two winters (16–17 and
17–18) and 4-fold cross validation was performed in order to figure out the optimum SVM parameter
settings for detailed experimentation. We did a grid-search for the two main hyperparamaters of SVM
(the cost of a misclassification and the kernel width gamma) and found that, for both sensors, the best
results with Radial Basis Function (RBF) kernel are obtained with values 10 and 1 for cost and gamma,
respectively. With linear kernel, value 0.1 as cost works best for both MODIS and VIIRS. We notice that
classification of our dataset using the RBF kernel is fairly sensitive to the selection of hyperparameters,
while the linear kernel provides consistent results. Note also, optimum hyperparameters might vary
from one dataset to another. Quantitative results of 4-fold cross validation experiments with the
optimum parameters are displayed in Table 7. For MODIS, the best results were obtained when all
12 bands are used as feature vector (and for VIIRS with all 5 bands). In addition, our results show
that the performance of RBF kernel is a bit better compared to the linear counterpart. Additionally,
we tested variants that use fewer bands, down to a single band with the highest F-score as selected
by XGBoost (B1 for MODIS and I1 for VIIRS, refer Figure 10). Since it does not make sense to run an
RBF kernel with a single input band, only the linear kernel was tested for this experiment. Even with
a single band and a simple linear kernel the results are fairly decent. The results are even better
when using the top-five bands of MODIS, but slightly worse than the full 12-band feature vector.
Multi-temporal analysis (MTA) improves the results by a very small margin. For both MODIS and
VIIRS, MTA with Gaussian kernel (smoothing parameter 3) gives the best results and is therefore used
in all further experiments. For the best setting, we show the results in more detail in Table 8.
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Table 7. The 4-fold cross validation results on MODIS and VIIRS data from two winters (16–17 and
17–18). For the same SVM setup, results without and with multi-temporal analysis (MTA) are shown.

Sensor Feature Vector SVM Kernel with MTA Overall Accuracy mIoU

MODIS B1 Linear No 0.91 0.78
MODIS Top 5 bands Linear No 0.93 0.83
MODIS All 12 bands Linear No 0.93 0.84
MODIS All 12 bands Linear Yes 0.93 0.84
MODIS Top 5 bands RBF No 0.96 0.90
MODIS All 12 bands RBF No 0.99 0.98
MODIS All 12 bands RBF Yes 0.99 0.99

VIIRS I1 Linear No 0.93 0.84
VIIRS All 5 I-bands Linear No 0.95 0.88
VIIRS All 5 I-bands Linear Yes 0.95 0.88
VIIRS All 5 I-bands RBF No 0.97 0.93
VIIRS All 5 I-bands RBF Yes 0.97 0.93

Table 8. Detailed results on MODIS (left) and VIIRS (right) data for the best cases of 4-fold cross
validation on combined data from two winters.

Recall Precision IoU Recall Precision IoU

Frozen 0.99 0.99 0.98 Frozen 0.93 0.97 0.90
Non-Frozen 0.99 0.99 0.99 Non-Frozen 0.99 0.97 0.96

Accuracy / mIoU 0.99 / 0.99 Accuracy / mIoU 0.97 / 0.93

We note that feature selection may be beneficial especially with very small training sets. Ideally,
SVM automatically prioritizes the more important dimensions in the feature vector, but when only
few examples are available, the danger of spurious correlations in less discriminative bands increases.
For lake ice detection, where few channels carry most of the information, we recommend the use of
automatic feature selection in case the SVM over-fits.

For a practically useful and efficient learning-based monitoring framework, a model should be
trained using annotated data from a handful of lakes as well as a few winters, but should be able to
predict for lakes and winters not seen during training. To test the performance of our approach in
such scenarios, we perform the leave one lake out, respectively leave one winter out cross validation
experiments. In all the following experiments, we used all 12 (5) bands of MODIS (VIIRS), optimum
hyperparameters chosen by grid-search (cost 10 and gamma 1 for RBF kernel, cost 0.1 for linear kernel),
and MTA with Gaussian kernel (smoothing parameter 3).

3.1.2. Leave One Lake out Cross Validation

This experiment evaluates the across-lake generalisation capability of the classifier. We used the
SVM model trained on pixels of all but one lake (from both winters) and test on the pixels from the
remaining lake, in round-robin mode. MODIS and VIIRS results are presented in Tables 9 and 10,
respectively. As per the results, our models fair well even when trained using only pixels from different
lakes. Using both RBF and linear kernels, our algorithm gives excellent results on lakes Sils and
Silvaplana consistently with both VIIRS and MODIS data. Table 2 shows that both these lakes are
similar in many aspects. It is expected that for a learning-based system, predictions are better if the test
data is more similar to the training data. The performance of RBF kernel on lakes St. Moritz and Sihl is
also good, but not as good as Sils and Silvaplana. Recall that St. Moritz has just four clean pixels per
MODIS acquisition (see Table 5) and that the absolute geolocation accuracy could be critical for such a
small lake. It appears that for St. Moritz, the linear kernel does not generalise unlike other lakes, but we
do not draw any firm conclusions based on these results as the lake is too small. Lake Sihl is slightly
different compared to the other lakes (altitude, area etc., refer Table 2) and hence the SVM encounters a
more generalisation loss. Still a mean IoU of 0.78 (corresponding to 93% correctly classified pixels) for
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MODIS, respectively 0.85 (95%) for VIIRS is a rather good result. For both sensors, the performance of
the linear kernel on Sihl is better compared to RBF. Given the fact that Sihl has a somewhat different
geography than the other lakes, it appears that the linear kernel generalises better.

Table 9. MODIS leave one lake out results. Numbers are in A/B format where A and B represent the
results using Radial Basis Function (RBF) and linear kernels, respectively. The better kernel for a given
experiment is shown in black, worse kernel in grey.

Lake Sihl Lake Sils
Recall Precision IoU Recall Precision IoU

Frozen 0.82/0.79 0.63/0.78 0.55/0.65 Frozen 0.89/0.88 0.97/0.95 0.86/0.85
Non-Frozen 0.90/0.95 0.96/0.96 0.87/0.92 Non-Frozen 0.98/0.97 0.92/0.92 0.90/0.89
Accuracy 0.89/0.93 Accuracy 0.94/0.93

mIoU 0.71/0.78 mIoU 0.88/0.87

Lake Silvaplana Lake St. Moritz
Recall Precision IoU Recall Precision IoU

Frozen 0.91/0.81 0.96/0.97 0.88/0.79 Frozen 0.85/0.64 0.93/0.96 0.80/0.63
Non-Frozen 0.97/0.98 0.93/0.86 0.90/0.85 Non-Frozen 0.95/0.98 0.88/0.76 0.84/0.75
Accuracy 0.94/0.91 Accuracy 0.90/0.83

mIoU 0.89/0.82 mIoU 0.82/0.69

Table 10. VIIRS leave one lake out results. Numbers are in A/B format where A and B represent the
results using RBF and linear kernels, respectively. The better kernel for a given experiment is shown in
black, worse kernel in grey.

Lake Sihl Lake Sils
Recall Precision IoU Recall Precision IoU

Frozen 0.87/0.87 0.73/0.85 0.66/0.76 Frozen 0.93/0.89 0.97/0.99 0.90/0.88
Non-Frozen 0.92/0.97 0.97/0.97 0.90/0.94 Non-Frozen 0.98/0.99 0.94/0.91 0.92/0.90
Accuracy 0.91/0.95 Accuracy 0.95/0.94

mIoU 0.78/0.85 mIoU 0.91/0.89

Lake Silvaplana
Recall Precision IoU

Frozen 0.91/0.87 0.97/0.98 0.88/0.86
Non-Frozen 0.97/0.98 0.92/0.89 0.90/0.88
Accuracy 0.94/0.93

mIoU 0.90/0.87

3.1.3. Leave One Winter out Cross Validation

To investigate the adaptability of a model to the potentially different conditions of an unseen
winter, we trained the classifier using pixels from one of the two available winters (from all lakes),
and tested on the data from the other winter. The results for MODIS and VIIRS are shown in Tables 11
and 12, respectively. Comparing these results with Table 7, it can be inferred that, across winters,
the SVM does encounter a generalisation loss, especially with the RBF kernel. The loss with the linear
kernel is minimal. Apparently, the RBF overfitted to the data characteristics of the specific winter and
did not generalise as well as its linear counterpart. Note also, it is possible that freezing patterns could
vary across winters even for the same lake, and learning-based systems might fail in case a pattern
appears while testing that was not encountered during training. It is encouraging that the linear kernel
does not seem to overfit much, owing to its relatively lower capacity. Still, the results hint that the
annotated data from more than one winter should be present in the training set when setting up an
operational system.
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Table 11. MODIS leave one winter out results. The numbers are shown in A/B format where A and
B represent the outcomes using RBF and linear kernels, respectively. The better kernel for a given
experiment is shown in black, worse kernel in grey. Left is winter 16–17, right is winter 17–18.

Recall Precision IoU Recall Precision IoU

Frozen 0.72/0.77 0.90/0.91 0.67/0.72 Frozen 0.73/0.84 0.64/0.85 0.52/0.73
Non-Frozen 0.96/0.97 0.89/0.91 0.86/0.88 Non-Frozen 0.89/0.96 0.93/0.96 0.83/0.92
Accuracy 0.89/0.91 Accuracy 0.86/0.94

mIoU 0.76/0.80 mIoU 0.68/0.83

Table 12. VIIRS leave one winter out results. The numbers are shown in A/B format where A and
B represent the outcomes using RBF and linear kernels respectively. The better kernel for a given
experiment is shown in black, worse kernel in grey. Left is winter 16–17, right is winter 17–18.

Recall Precision IoU Recall Precision IoU

Frozen 0.83/0.79 0.92/0.99 0.77/0.78 Frozen 0.87/0.90 0.77/0.79 0.69/0.72
Non-Frozen 0.96/0.99 0.91/0.89 0.88/0.89 Non-Frozen 0.93/0.94 0.97/0.97 0.90/0.91
Accuracy 0.91/0.92 Accuracy 0.92/0.93

mIoU 0.82/0.84 mIoU 0.79/0.82

3.1.4. Timeline Plots and Qualitative Results

Figure 13 shows the results of lake Sihl from a full winter (September 2016 till May 2017), listed in
chronological order on the x-axis. For each cloud-free day (at least 30% of the lake pixels non-cloudy),
the SVM result is shown on the y-axis (in the top and middle timelines) as the percentage of cloud-free
clean pixels that are classified as non-frozen. In the bottom timeline, we display the MODIS snow
product (100 means no snow and 0 means fully snow covered). The webcam-based ground truth
is shown as a cyan colour line in all timeline plots, with four levels (100 for fully non-frozen, 75 for
more snow or more ice days, 25 for more water and 0 for fully-frozen). For each sensor, the combined
training data of all available lakes from two winters (except Sihl from 16–17) is used for these timeline
plots. It can be seen from both MODIS and VIIRS timelines that thin ice vs.water confusion exists
for both MODIS and VIIRS. This is because during the freeze-up period (late December), the model
classifies a set of consecutive days as completely non-frozen, while the ground truth asserts more ice,
probably thin ice floating on water.

In this paper, we compare our results of lake Sihl from winter 2016–2017 with the MODIS snow
product [15]. It can be inferred from Figure 13 that except for very few days, our MODIS results are in
agreement with the MODIS snow product. Although the newly added MOD10A1F [20] (collection 6.1)
seems to be a better option with the ’cloud gap filled’ feature, we use the MOD10A1 product [15]
(collection 6, daily cloud-free snow cover derived from the Terra MODIS) since the former product
is not yet available [59] for winter 2016–2017. Note that the MODIS product has a relatively coarse
spatial resolution of 500 m as opposed to our results at 250 m resolution.

Figure 14 displays exemplary qualitative results (lake Sihl, MODIS data, winter 16–17).
Three non-transition dates (27 September 2016, 3 January 2017, and 28 March 2017) and a transition
date (14 March 2017) are shown. The first and second rows portray the classification results and the
confidence of the classifier (soft probability maps) respectively. In row 1, a clean pixel is shown as blue
if the classifier estimates it as frozen, and red if non-frozen. In the second row, more blue/less red
colour denotes a higher probability of being frozen. A pixel is not processed if it is cloudy. All except
the fourth column show successfully classified days. In column 4, we present the results of an actually
fully non-frozen day (27 September 2016) that was detected as almost fully frozen. Note the missing
cloudy pixels in this image. This example shows that erroneous cloud masks (especially the false
negatives) also induce errors in our predictions. Similar effects can be observed for the end of April
(MODIS) and early October (VIIRS). Confusion due to undetected clouds is also the reason why a few
days were estimated as non-frozen during mid-winter (see VIIRS timeline, February).
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Figure 13. MODIS (top) and VIIRS (middle) timeline results of lake Sihl for full winter 16–17 using
linear kernel. A timeline of the MODIS snow and ice product (bottom) is also plotted for comparison
with our results and the webcam-based ground truth. In all timelines, the x-axis shows all dates that
are at least 30% cloud-free in chronological order and the respective results [% of Non-Frozen (NF)
pixels] are plotted on the y-axis.

3 January 2017 28 March 2017 14 March 2017 27 September 2016

Frozen Non-Frozen Transition Non-Frozen

Figure 14. MODIS qualitative results using the linear kernel. Top and bottom rows show classification
results and corresponding confidence respectively. Results of cloudy pixels are not displayed. First,
second, and third columns show success cases while the fourth column displays a failure case. In the
second row, more red means more non-frozen and more blue means more frozen. The dates and
ground truth labels are shown below each sub-figure in the first and second rows respectively.
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3.2. Experiments with Webcam Images

The neural network is implemented in Tensorflow [60]. We extracted square patches (crop size,
see Table 13) from the images and train the network by minimising the weighted cross-entropy loss,
giving more attention to the under-represented classes to compensate imbalances in the training data.
Testing is performed at full image resolution without cropping. More details about the hyperparameters
used are shown in Table 13.

Table 13. Hyperparameters for the Deep-U-Lab model.

Name Lake Detection Lake Ice Segmentation

Crop size 500, 500 321, 321
Optimiser stochastic gradient descent stochastic gradient descent
Atrous rates (dilation) 6, 12, 18 6, 12, 18
Output stride 16 16 (training), 8 (testing)
Base learning rate 1 × 10−5 1 × 10−5

Batch size 4 8
Epochs 100 100

For the task of lake detection, we collected image streams from four different lakes, see Table 14.
The cameras near lakes Sihl and St. Moritz are rotating while the others are stationary. Performance of
the network for lake detection is assessed only on summer images in order to sidestep the complications
in winter due to the presence of snow in and around the lake. A score of ≥0.9 mIoU is achieved,
see Table 14. However, the IoU for the lake (class foreground, FG) is somewhat lower because of the
severe class imbalance. Note that IoU is a rather strict measure, e.g., detection with 80%, recall at 80%,
and precision results in an IoU of 60%. Qualitative results are displayed in Figure 15. The first three
rows show successful cases while the last row displays a case with some misclassification. Note that on
such a low visibility day, even humans find it difficult to spot the transition from lake to sky. Whereas
our network detected the lake even in the presence of challenging sun reflections (row 2) and when
the foreground lake area is very small (row 3).

Table 14. Lake detection results (mIoU). The four cameras that monitor lake Silvaplana are indicated
as S0, S1, S2, and S3. BG and FG denote background and foreground (lake area) respectively.

Training Set Test Set IoU (BG) IoU (FG) mIoULakes #Images Lake #Images

S0, S1, S2, S3, Sils, St. Moritz 9104 Sihl 448 0.95 0.60 0.93
S0, S1, S2, S3, St. Moritz, Sihl 7477 Sils 2075 0.95 0.60 0.93
S1, S2, S3, Sils, St. Moritz, Sihl 8041 S0 1511 0.96 0.59 0.94
S0, S2, S3, Sils, St. Moritz, Sihl 8676 S1 876 0.92 0.58 0.90
S0, S1, S3, Sils, St. Moritz, Sihl 7906 S2 1646 0.98 0.44 0.95
S0, S1, S2, Sils, St. Moritz, Sihl 7652 S3 1900 0.98 0.55 0.95
S0, S1, S2, S3, Sils, Sihl 8456 St. Moritz 1096 0.93 0.80 0.92

To assess lake ice segmentation, we experimented exhaustively for the two lakes (St. Moritz,
Sihl) and two winters (16–17, 17–18) annotated in the Photi-LakeIce dataset. The evaluation includes
experiments for segmentation within the same camera, across cameras, across winters, and across lakes.

For same camera experiments, we employed a 75%/25% train-test split. Corresponding
quantitative results are presented in Table 15. Note that, in all comparable experiments, we surpass
previous state-of-the-art [34] by a significant margin. They produced results only on two cameras
monitoring St. Moritz. We demonstrate our system also on a new lake (Sihl, camera 2) with images
that are significantly harder to classify (see Figure 5 and Table 6) due to poor spatial resolution,
image compression artefacts, frequent unfavourable lighting, etc. Additionally, the foreground to
background pixel ratios in Sihl images are very low, which poses an additional challenge, and magnifies
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the influence of very small misclassified areas on the quantitative error metrics. As a result,
the performance on lake Sihl is not as good as for St. Moritz. Nevertheless, the predictions have a
mean IoU > 74%. The images with a mix of classes, like water with some ice or partially snow-covered
ice are the most difficult ones to classify in part due to the fact that the ice class is especially rare and
therefore under-represented in the training data, as snow that falls on the ice does not melt away for a
long time.

St. Moritz (46.50◦N, 9.84◦E) Our prediction Ground truth

Sihl (47.13◦N, 8.74◦E) Our prediction Ground truth

Silvaplana (46.51◦N, 9.81◦E) Our prediction Ground truth

Sihl (47.13◦N, 8.74◦E) Our prediction Ground truth

Colour code

Figure 15. Lake detection results. Both success (rows 1,2,3) and failure (row 4) cases are shown.
The colour code used to visualise the results is also displayed. The first column shows the lakes being
monitored, along with the approximate location (latitude, longitude) of the webcam.
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Table 15. Results (IoU) of same camera train/test experiments. We compare our results with Tiramisu
Network [34] (shown in grey). Cameras 0 and 1 monitor lake St. Moritz while camera 2 captures
lake Sihl.

Training Set Test Set Water Ice Snow Clutter mIoUCamera Winter Camera Winter

Camera 0 16–17 Camera 0 16–17 0.98/0.70 0.95/0.87 0.95/0.89 0.97/0.63 0.96/0.77
Camera 0 17–18 Camera 0 17–18 0.97 0.88 0.96 0.87 0.93
Camera 1 16–17 Camera 1 16–17 0.99/0.90 0.96/0.92 0.95/0.94 0.79/0.62 0.92/0.85
Camera 1 17–18 Camera 1 17–18 0.93 0.84 0.92 0.84 0.89
Camera 2 16–17 Camera 2 16–17 0.79 0.62 0.81 — 0.74
Camera 2 17–18 Camera 2 17–18 0.81 0.69 0.86 — 0.79

All results shown so far are for networks trained with data augmentation. To quantify the
influence of this common practice, we also report results without augmentation for camera 0, which are
2 percent points lower, see Table 16.

Table 16. Effect of data augmentation (IoU values) on the same camera train/test experiment (camera 0).

Experiment Water Ice Snow Clutter mIoU

Without augmentation 0.97 0.93 0.91 0.96 0.94
With augmentation 0.98 0.95 0.95 0.97 0.96

Additionally, in order to study how quickly the network learns, the mIoU is plotted on the training
set against the number of training iterations. For that study, we use the example of lake St. Moritz
(camera 0) from winter 16–17. Results are shown in Figure 16. The (smoothed) learning curve is very
steep initially (<10 k steps) but does not completely saturate, which indicates that more training data
could probably improve the results further.

Figure 16. Evolution of mean IoU (mIoU) against the number of training steps (camera 0, St. Moritz,
winter 2016–2017). Dark red curve represents a smoothed version of the original (light red) curve.

The generalisation performance (across cameras and winters) of the best webcam model reported
in previous work [34] is still unsatisfactory, especially for the cross-camera case. As can be seen
from our cross-camera results (within St. Moritz cameras, refer Table 17), the Deep-U-Lab model
trained using data from one camera works well on a different camera, meaning that our method
generalises well across cameras with totally different viewpoints, image scales, and lighting conditions.
Note that, we indeed improve over prior state-of-the-art [34] significantly (gain of 35–40 percent
points), which implies that Deep-U-Lab has the capacity to learn generalisable class appearance, without
overfitting to a specific camera geometry or viewpoint. Our results for winter 17–18 are not as good as
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16–17, primarily due to complicated lighting and ice patterns (e.g., black ice) which appeared only
in that winter. In addition, the scores for the ice and clutter classes are low, primarily due to lower
sample numbers. A comparison to prior work is not possible for winter 17–18, as that season has not
been processed before.

Table 17. Results (IoU) of cross-camera experiments. We compare our results with the Tiramisu
Network [34] (shown in grey). Both cameras 0 and 1 monitor lake St. Moritz.

Training Set Test Set Water Ice Snow Clutter mIoUCamera Winter Camera Winter

Camera 0 16–17 Camera 1 16–17 0.76/0.36 0.75/0.57 0.84/0.37 0.61/0.27 0.74/0.39
Camera 0 17–18 Camera 1 17–18 0.62 0.66 0.89 0.42 0.64
Camera 1 16–17 Camera 0 16–17 0.94/0.32 0.75/0.41 0.92/0.33 0.48/0.43 0.77/0.37
Camera 1 17–18 Camera 0 17–18 0.59 0.67 0.91 0.51 0.67

Deep-U-Lab performs superior to prior state-of-the-art in cross-winter experiments, too (Table 18),
outperforming [34] by about 14–20 percent points. However, it does not generalise across winters as
well on lake Sihl.

Table 18. Results (IoU) of cross-winter experiments. We compare our results with the Tiramisu
Network [34] (shown in grey). Cameras 0 and 1 monitor lake St. Moritz while camera 2 captures
lake Sihl.

Training Set Test Set Water Ice Snow Clutter mIoUCamera Winter Camera Winter

Camera 0 16–17 Camera 0 17–18 0.64/0.45 0.58/0.44 0.87/0.83 0.59/0.40 0.67/0.53
Camera 0 17–18 Camera 0 16–17 0.98 0.91 0.94 0.58 0.87
Camera 1 16–17 Camera 1 17–18 0.86/0.80 0.71/0.58 0.93/0.92 0.57/0.33 0.77/0.57
Camera 1 17–18 Camera 1 16–17 0.93 0.76 0.86 0.65 0.80
Camera 2 16–17 Camera 2 17–18 0.61 0.14 0.35 — 0.51
Camera 2 17–18 Camera 2 16–17 0.41 0.18 0.45 — 0.50

For a more complete picture of the cross-winter generalisation experiment, we also plot
precision-recall curves (refer Figure 17). Similar curves for same camera and cross-camera experiments
can be found in Prabha et al. [36]. As expected, segmentation of the two under-represented classes
(clutter and ice) is less correct. Additionally, for the class clutter, a considerable amount of the
deviations from ground truth occur due to improper annotations rather than erroneous predictions.
As drawing pixel-accurate ground truth boundaries around narrow man-made items placed on frozen
lakes such as tents, poles, etc. is time-consuming and tedious, the clutter objects are often annotated
with rough summary masks that include considerable snow/ice background. This greatly exaggerates
the (relative) number of clutter pixels in the annotations, thus increasing the relative error.

According to Figure 17, operating points around 85% recall are a good trade-off for cross-winter
segmentation, if not every single pixel must be labelled. A more extreme test is generalisation across
lakes, with different spatial resolution, image quality, reflection, and lighting patterns, shadows, etc.
To our knowledge our work is the first one to try this. See Table 19 for results. Before training the
models, we remove the clutter pixels from camera 0, since camera 2 does not have any clutter that
could serve as training data. Classifying images from a lake with different characteristics and acquired
with a different type of camera proves challenging. In one case, the results are acceptable for the more
frequent classes despite a noticeable drop, as for the case camera 2→camera 0. In the other case camera
0→camera 2 the attempt largely fails. The images of lake Sihl (camera 2) are of clearly lower quality
and more difficult to classify, challenging even human annotators. Consequently, training on St. Moritz
does not equip the classifier to deal with them.
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Precision-recall for class Clutter (area = 0.58)

0.8 1.00.0 0.2 0.60.4   
RECALL

PR
EC

IS
IO

N

1.0

0.0

0.2

0.8

0.6

0.4

Precision-recall for class Water (area=0.99)
iso-f1 curves

Tested on camera 0 (16–17),
trained on camera 0 (17–18).

Precision-recall for class Ice (area = 0.76)
Precision-recall for class Snow (area = 0.88)
Precision-recall for class Clutter (area = 0.65)

0.8 1.00.0 0.2 0.60.4   
RECALL

PR
EC

IS
IO

N

1.0

0.0

0.2

0.8

0.6

0.4

Precision-recall for class Water (area=0.95)
iso-f1 curves

Tested on camera 1 (16–17),
trained on camera 1 (17–18).

Figure 17. Precision-recall plots (St. Moritz) of cross-winter experiments. Best if viewed on screen.

Table 19. Results (IoU) of cross-lake experiments. Cameras 0 and 2 monitor lakes St. Moritz and
Sihl respectively.

Training Set Test Set Water Ice Snow mIoU

Camera 0 (16–17) Camera 2 (16–17) 0.40 0.23 0.42 0.35
Camera 2 (16–17) Camera 0 (16–17) 0.85 0.25 0.68 0.60

In a further experiment, we divide the Photi-LakeIce dataset into six folds, see Table 20. This makes
it possible to perform experiments with a larger amount of training data, given that in previous
experiments the loss had not fully saturated. As expected from a high-capacity statistical model,
more training data improves the results i.e., it seems feasible to build a practical system if one is
willing to undertake a bigger (but still reasonable and realistic) annotation effort. An exception in
this experiment is lake Sihl (camera 2), where the performance drops. This confirms the observation
above that this camera is the most difficult one to segment in our dataset, and the domain gap from
St. Moritz to Sihl is too large to bridge without appropriate adaptation measures. One solution might
be fine-tuning with at least a small set of cleverly picked samples from the target lake, but this is
beyond the scope of the present paper.

Table 20. Results (IoU) of leave one dataset out experiments. Cameras 0 and 1 monitor lake St. Moritz
while camera 2 captures lake Sihl.

Training Set Test Set Water Ice Snow Clutter mIoU

Camera 0 (17–18), Cameras 1 and 2 (2 winters) Camera 0 (16–17) 0.98 0.90 0.96 0.62 0.86
Camera 0 (16–17), Cameras 1 and 2 (2 winters) Camera 0 (17–18) 0.83 0.78 0.95 0.59 0.78
Camera 1 (17–18), Cameras 0 and 2 (2 winters) Camera 1 (16–17) 0.99 0.92 0.91 0.69 0.87
Camera 1 (16–17), Cameras 0 and 2 (2 winters) Camera 1 (17–18) 0.92 0.81 0.96 0.55 0.81
Camera 2 (17–18), Cameras 0 and 1 (2 winters) Camera 2 (16–17) 0.35 0.25 0.46 — 0.35
Camera 2 (16–17), Cameras 0 and 1 (2 winters) Camera 2 (17–18) 0.66 0.30 0.36 — 0.44

To assess the lake ice segmentation visually, we depict qualitative webcam results for cameras 0
and 1 in Figure 18. Deep-U-Lab successfully segments correctly in challenging scenarios. For instance,
our network performed well even when shadows appeared on the lake either from clouds or nearby
mountains (Figure 18 row 1). To determine how well the Deep-U-Lab predictions follow the ground
truth, especially during freezing and thawing periods, we plot time series results that include all
the transition as well as non-transition days from a full winter (17–18, see Figure 19). Per image,
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we sum the numbers of ice and snow pixels and divide by the sum of all lake pixels. The resulting
fractions of frozen pixels are aggregated into a daily value by taking the median. Optionally, the daily
values are further processed with another 3-day median to improve temporal coherence. The daily
fractions of frozen pixels (y-axis) are displayed in chronological order (x-axis), for the ground truth,
daily prediction, and smoothed prediction. Smoothing across time improves the final results by ≈3%.

Camera 0 (St. Moritz) Our prediction Ground truth

Camera 1 (St. Moritz) Our prediction Ground truth

Colour code

Figure 18. Qualitative lake ice segmentation results on webcam images. The colour code is also shown.
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Figure 19. Cross-camera time series results (winter 17–18) of lake St. Moritz using Deep-U-Lab. Results
for camera 1 (when trained on camera 0 data) is displayed. All dates are shown in chronological order
on the x-axis and the respective results (percentage of frozen pixels) are plotted on the y-axis. Data lost
due to technical failures are shown as red bars.

3.3. Ice-on/off Results

We go on to estimate the ice-on and ice-off dates using our satellite- and webcam-based
approaches, results are shown in Table 21. A comparison with the ground truth dates (estimated by
visual interpretation of webcams by a human operator) is also provided. Additionally, we compare
our results with the in-situ temperature analysis results reported in Tom et al. [34]. We can only show
the results for one winter (16–17), since ground truth is not available for 17–18.

Prior to the estimation of the two dates, we combine the time series results of both MODIS and
VIIRS (Figure 13) in order to minimise data gaps due to clouds, by simply filling in missing days in
the VIIRS time series with MODIS results, whenever the latter are available. Even after merging the
two time series, some gaps still exist during the critical transition periods. Note that the presence of
gaps near the ice-on/off dates could affect the accuracy and confidence in the estimated dates. This is
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one of the risks when using optical satellite image analysis and where webcams could constitute a
valuable alternative, if sufficient coverage can be ensured for a lake of interest.

Table 21. Ice-on/off dates (winter 16–17). Ground truth dates are shown in the order of confidence in
case of more than one candidate.

Dates Ground Truth Satellite Approach Webcam Approach In-Situ (T) [34]

ice-on (Sihl) 1 January 2017 3 January 2017 4 January 2017 28–29 December 2016
ice-off (Sihl) 14 March 2017, 15 March 2017 10 March 2017 14 February 2017 16 March 2017
ice-on (Sils) 2 January 2017, 5 January 2017 6 January 2017 - 31 December 2016
ice-off (Sils) 8 April 2017, 11 April 2017 31 March 2017 - 10 April 2017

ice-on (Silvaplana) 12 January 2017 15 January 2017 - 14 January 2017
ice-off (Silvaplana) 11 April 2017 30 March 2017 - 14 April 2017
ice-on (St. Moritz) 15–17 December 2016 1 January 2017 14 December 2016 17 December 2016
ice-off (St. Moritz) 30 March–6 April 2017 7 April 2017 18 March–26 April 2017 5–8 April 2017

We estimate the ice-on/off dates from the combined time series and show them as “satellite
approach” in Table 21. The best results are obtained with an RBF kernel for St. Moritz and with a
linear kernel for rest of the lakes. In most cases the ice-on/off dates have an offset of 1–4 days from
the ground truth. Exceptions are the ice-off dates of Sils and Silvaplana. Note that data from only one
winter (of the lake being tested) is present in the corresponding training set. It appears that training
data from more winters is critical to estimate accurate ice-on/off dates. We note that there could also
be noise in the ground truth ice-on/off dates due to human interpretation errors. Using the satellite
approach, significant errors in ice-on/off estimation exist for St. Moritz. Recall that the daily decision
for lake St. Moritz is taken based on just four pixels and based only on cloud-free days in MODIS.
This clearly points to the fact that MODIS (and even more, VIIRS) imagery is not the best choice
for very small lakes. The results obtained with webcams show a higher accuracy for lake St. Moritz
(see Table 21 and Figure 19). Here, we use camera 0 to estimate the two phenological dates, since it has
a better coverage of the lake than camera 1. Note that no data is available between 18 March 2017 and
26 April 2017 due to a technical problem with the camera, and ice-off unfortunately occurred during
that period. While we obtain excellent results for St. Moritz with webcams, the accuracy of ice-on/off
for lake Sihl is not good, primarily because of the limited image quality with low spatial resolution
(see Table 6), compression artefacts, and acute view angles (see Figure 5).

4. Discussion

4.1. VIIRS and MODIS Analysis

The optical satellite sensors such as MODIS and VIIRS can clearly serve as a basis for routine
monitoring of lake ice (especially for global coverage) and the results achieved show a high level of
accuracy. One weakness is their inability to penetrate clouds, especially during lake freeze-up and
break-up. The main advantage of MODIS is the availability of longer time series data. In addition,
MODIS has useful bands in various areas of the electromagnetic spectrum. However, there are several
disadvantages too. The radiometric quality is not that good, moreover, the sensor is very old and its
absolute geolocation is less accurate than that of VIIRS (more important for small lakes). Furthermore,
MODIS data is expected to eventually be discontinued, whereas VIIRS operation is guaranteed over a
longer future period (JPSS-1/NOAA-20 until 2024; JPSS-2 with same suite of sensors will be launched
in 2021 with designed life time of 7 years; JPSS-3 and -4 are in the planning phase).

Poor spatial resolution (particularly for VIIRS), makes it impossible to operate our satellite
methodology on small-size lakes up to at least 2 km2. Another issue is the significant confusion
between (thin) ice and water since the similar reflectance of these two classes can confuse the classifier.
Unfortunately there exist very few non-transition dates with no clouds, snow-free ice, mixture of thin
ice, and water in both the MODIS and VIIRS datasets, such that training a reliable model for these
situations still remains a challenge. Moreover, the presence of label noise in the ground truth impacts
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the training. Such noise occurs mainly because most of the webcams are not optimally configured
and it is very difficult to capture the whole lake in a single webcam frame. This problem is even
bigger for larger lakes. Integrating the visual interpretations from multiple cameras observing a lake
is cumbersome as well as challenging. One possible solution for the noise problem could be to not
train on dates near the transition period, for which label noise in the ground truth is more likely.
It is, however, equally possible that this would even aggravate the problem, as the conditions seen in
the training set would become even less representative of the transition periods. Large-scale in-situ
measurements are an alternative to webcam-based ground truth, but are not realistic for wide-area
coverage. Furthermore, imperfections of the cloud-masks bring in more errors in the high-accuracy
range where our method operates.

Regarding our SVM-based methodology, the RBF kernel tends to not generalise as well as its
linear counterpart. However, this behaviour may depend on the available training data. Under our
current experimental conditions, the linear kernel overall has the upper hand, but this assessment
could still change when using data from multiple winters.

4.2. Webcam Analysis

For webcam data featuring sufficient spatial resolution, we see a great potential for lake ice
monitoring. We do note that webcam placement is restricted by practical considerations. Selecting
and/or mounting webcams for lake ice monitoring will normally be a compromise between the
ideal geometric configuration and finding a place where the device can be installed with reasonable
effort. For the ideal placement, the usual perspective imaging rules apply, most importantly viewing
directions from above are preferable over grazing angles, and viewing directions directly towards the
sun should be avoided as much as possible.

One question that still remains unanswered is: What is the reason that results in Deep-U-Lab
outperforming the Tiramisu lake ice network [32–34]? One possible explanation is that our model
profits from the smarter dilated convolutions and multi-scale pyramid pooling at the feature extraction
stage, effectively letting the network grasp a relatively broader context as opposed to the Tiramisu
network. Additionally, our model heavily benefits from the pre-trained weights to learn with still
limited training data for the lake ice task. Our Deep-U-Lab model did not converge when we tried
to train it without transfer learning whereas pre-trained weights for FC-DenseNet are not available,
so that we can not at the moment quantify the influence of pre-training.

Regarding the computational efficiency of the CNN approach, (off-line) training for 100k steps on
camera 0 (820 images) takes ≈24 h on a PC equipped with a NVIDIA GeForce GTX 1080 Ti graphics
card (for cross-camera experiment, lake St. Moritz, winter 16–17). Testing takes ≈10 min for the
1180 images of camera 1.

5. Conclusions

We investigated the potential of machine-learning based image analysis, in combination with
various image sensors to retrieve lake ice. So far such an approach has rarely been explored, especially
with regard to the many small lakes on Earth (particularly in mountainous regions), but it can be a
valuable source of information that is largely independent of in-situ observations as well as models of
the freezing/thawing process. We put forward an easy-to-use, SVM-based approach to detect lake
ice in MODIS and VIIRS satellite images and show that it delivers conclusive results. Additionally,
we set a new state-of-the-art from webcam-based lake ice monitoring, using the Deep-U-Lab network,
and have in that context also automated the detection of lake outlines as a further step towards
operational monitoring with webcams. Finally, we introduced a new, public webcam dataset with
pixel-accurate annotations.

To detect lake ice from MODIS and VIIRS optical satellite imagery, we proposed a simple, generic
machine learning-based approach that achieves high accuracy for all tested lakes. Though we focused
on Swiss Alpine lakes, the proposed approach is very straight-forward and hence the results could
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hopefully be directly applied to other lakes with similar conditions, in Switzerland and abroad,
and possibly to other sensors with similar characteristics. We demonstrated that our approach
generalises well across winters and lakes (with similar geographical and meteorological conditions).
In addition to the lake ice detection from space, we have proposed the use of free data from terrestrial
webcams for lake ice monitoring. Webcams are especially suitable for small lakes (ca. up to 2 km2),
which cannot be monitored by VIIRS-type sensors. Despite the limited image quality, we obtained
promising results using deep learning. Webcams have good ice detection capability with a much
higher spatial resolution compared to satellites. However, one has no control over the location,
orientation, lake area coverage, and image quality (often poor) of public webcams. In addition,
there are no, or too few, webcams for some lakes. On the positive side, webcams are largely unaffected
by cloud cover. For continental/global coverage, satellite-based monitoring is clearly the method
of choice, again confirming the advantage of satellite observations for large-scale Earth observation.
For focused, local campaigns and as a source of reference data at selected sites, the webcam-based
monitoring method may be an interesting alternative. Note also, it may in certain cases be warranted to
install dedicated webcams (respectively, surveillance cameras) with pan, tilt and zoom functionalities
optimised for lake ice monitoring.

One way to circumvent the problem of clouds with optical satellite sensors is to use microwave
data. In particular, Sentinel-1 SAR data (GSD 10 m, freely available) looks very promising [37]. Optical
sensors such as Sentinel-2 and Landsat-8 are visually easier to interpret w.r.t. lake ice than Radar,
and have a better spatial resolution than MODIS and VIIRS. Although they are not suitable as a
stand-alone source for lake ice monitoring due to their low temporal resolution (under ideal conditions
five days), they may still in certain cases be useful to fill gaps in VIIRS/MODIS results.

We consider our satellite-based approach as a first step and ultimately hope to produce a 20-year
time series, using MODIS data since 2000. It will be interesting to correlate the longer-term lake
freezing trends with other climate time series such as surface temperature or CO2 levels. We expect
that such a time series will be helpful to draw conclusions about the local and global climate change.

One technical finding of our study is that the prior learning-based approaches [33,34] did not
fully leverage the power of deep CNNs to observe lake ice. At the methodological level, we clearly
demonstrated the potential of machine (deep) learning systems for lake ice monitoring, and hope
that this research direction will be pursued further. Given the good cross-winter and cross-camera
generalisation of the models and computational efficiency at inference time (on GPU for the CNN
part), an operational deployment is within reach. Our results show that employing the state-of-the-art
CNN frameworks was highly effective for ice analysis, especially during the transition periods. What
still needs improvement is cross-lake generalisation. We do expect that a Deep-U-Lab model trained
using data from a couple of winters could consistently reach >80% IoU on the four major classes.
From the segmentation results we were in many cases able to determine the ice-on and ice-off dates
to within 1–2 days and for that task the relatively better quality webcams were particularly helpful,
as satellite-based segmentation was less reliable during the transition periods. An interesting direction
may be to reduce the one-time effort for ground truth labelling with techniques such as domain
adaptation or active learning.

For monitoring small lakes, integrating the webcam results with in-situ temperature
measurements seems to be a possible future direction. Additionally, for such lakes, usage of UAVs
equipped with both thermal and RGB cameras could be a plausible option, but may be difficult to
operationalise due to the need for accurate geo-referencing, lack of robustness in cold weather, as well
as legal flight restrictions. An intriguing extension of the webcam-based approach could be to use
crowd-sourced imagery for lake ice detection. We published some preliminary results in one of our
recent works [36]. A large, and exponentially growing, number of images are available on the internet
and social media. With the advance of smartphones equipped with cameras and the habit of selfies,
many personal images show a lake in background. Still regular coverage of a given site is hard to
ensure, and accurate geo-referencing of such images is challenging.
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