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Abstract: Tree and plant structures remaining after fires reflect well their degree of consumption,
and are therefore good indicators of fire severity. Satellite optical images are commonly used to
estimate fire severity. However, depending on the severity of a fire, these sensors have a limited
ability to penetrate the canopy down to the ground. Airborne light detection and ranging (LiDAR)
can overcome this limitation. Assessing the differences between areas that have been burned in
different fire severities based on satellite images of plant and tree structures remaining after fires is
important, given its widespread use to characterize fires and fire impacts (e.g., carbon emissions).
Here, we measured the remaining tree structures after a fire in a forest stand burned in SE Spain in
the summer of 2017. We used high-resolution LiDAR data, acquired from an unmanned aerial vehicle
(UAV) six months after the fire. This information was crossed with fire severity levels based on the
relativized burnt ratio (RBR) derived from Sentinel 2A images acquired a few months before and
after fire. LiDAR tree structure data derived from vertical canopy profiles (VCPs) were classified
into three clusters, using hierarchical principal component analysis (HPCA), followed by a random
forest (RF) to select the most important variables in distinguishing the cluster groups. Among these,
crown leaf area index (LAI), crown leaf area density (LAD), crown volume, tree height and tree
height skewness, among others, were the most significant variables, and reflected well the degree
of combustion undergone by the trees based on the response of these variables to variations in fire
severity from RBR Sentinel 2A. LiDAR metrics were able to distinguish crown fire from surface fire
through changes in the understory LAI and understory and midstory vegetation. The three tree
structure clusters were well separated among each other and significantly related with the RBR
Sentinel 2A-derived fire severity categories. Unburned and low-severity burned areas were more
diverse in tree structures than moderate and high severity burned ones. The LiDAR metrics derived
from VCPs demonstrated promising potential for characterizing fine-grained post-fire plant structures
and fire damage when crossed with satellite-based fire severity metrics, turning into a promising
approach for better characterizing fire impacts at a resolution needed for many ecological processes.

Keywords: crown fire; surface fire; fire severity; random forest; LiDAR; Sentinel 2

1. Introduction

Wildfires burn heterogeneously through forested landscapes; while some patches may have the
trees barely scorched, others will have severe damage in their canopies, with all leaves and small
branches fully burned. The degree of consumption of the plant canopies has been used as a surrogate
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measure of fire severity, alone or in combination with other metrics related to it (e.g., ash color, height
of scorch, soil mineral exposure, etc.) [1–3]. Fire severity is closely related to carbon emissions during
fire [4–6], and is an important driver of fire impacts on the ecosystem [7,8]. Moreover, fire severity
heterogeneity across the landscape can be a major factor for the functioning of the ecosystem, and confers
resilience and resistance to large fire impacts [9]. Consequently, accurate estimates of fire severity and
its spatial distribution are key factors to quantify fire impacts [10–14]. Moreover, fire severity varies at
all scales; thus high-resolution information is needed to better estimate and model fire effects on basic
ecosystem processes like postfire C and N dynamics [15].

Optical remotely sensed imagery has been used since long ago to characterize fire severity [16].
However, this technique is hampered by the lack of 3D information to allow assessing the structural
changes caused by fires in plants [17–19]. In addition, optical sensors have significant limitations with
increasing aboveground biomass and leaf area index (LAI) [20,21], underestimating the fine-grain
heterogeneity in fire severity [11,22,23]. LiDAR (light detection and ranging) has the potential to
penetrate the forest canopy, emerging as a powerful active remote sensing tool for the direct 3D
measurement of plant structures, including canopy structures, at a fine-grained scale [20,24–27]. It also
allows for calibrating the reflectance-based spectral indices with specific plant structures, which can
improve their accuracy and spatial resolution [17,28,29].

While LiDAR has been used more extensively to characterize forest fire effects at the stand
level (ABA: area-based approach) [11,12,18,30,31], relatively fewer studies have used LiDAR data to
characterize crown damage after fires at the individual tree level (tree-based) [13,14,23,32]. LiDAR
based methods at tree level [33–37] provide a means to assess forest structure and patterns using metrics
that are both ecologically meaningful and management-relevant for fire management (e.g., canopy fuel
load [38] and prediction of fire risk [39]). Nevertheless, there are important technical limitations of the
studies at tree-level [36,37].

Small-footprint LiDAR systems, with high pulse density, provide a solution for some tree-level
limitations such as the underestimation of small trees and understory vegetation (e.g., [40–42]),
and also allow the production of vertical foliage profiles for each individual tree [43]. The vertical
canopy profile (VCP) is often represented by the vertical distribution of the leaf area density (LAD) in
horizontal layers [44]. The vertical integration of the LAD profile data yields the leaf area index (LAI).
These attributes are able to distinguish different fire damage levels [25,32] and reveal ecologically
relevant differences in LAD profiles for different forests, including those with LAI values above
5.0 [24,45]. Recently, voxel-based canopy profiling (VxCP) has been applied for estimating LAD profiles
and LAI with the reduced effects of non-uniformity in the foliage distribution and of non-photosynthetic
tissue (e.g., [43,46]). The VxCP method divides the 3D space into ‘volume elements’ (voxels) that are
3D pixels. The ratio of pulses departing to pulses entering each voxel provides a measurement of the
absorbance of vegetation within the voxel, from which the LAD can be estimated [43,44,47].

Apart from LAI–LAD profiles, other LiDAR-derived VCP metrics, such as the profile area under
the canopy, have been applied to assess post-fire forest structures at the area level [17,19] and in a
multitemporal way (profile area change), to quantify biomass loss at the tree level [14]. Moreover,
the VCP approach based on height and intensity standard metrics has been used to characterize the
post-fire crown structure and crown fire severity [13], or to estimate biomass in burned areas [19].
In addition, VCPs have been pursued to identify tree properties, such as the LiDAR-derived canopy
base height (CBH), using inflection points from fitted mathematical functions [13,38,48,49].

Another advantage of the VCP lies in its robustness for multiscale applications. The VCP can
be calculated either at the tree-based or the area-based level [14,50]. The VCPs have been applied at
the area-based scale to predict the time since fire (TSF) of the vegetation [51], to characterize vertical
vegetation structures for a wide range of burned areas, using metrics derived from GLAS satellites
(LiDAR full waveform pulses) [52], to characterize post-fire effects on the height and density of the
vegetation [17], or to estimate the plot-level above-ground biomass (AGB) in burned plots [19]. In other
cases, VCPs were calculated at the tree level, and later aggregated at the plot scale (e.g., [38]) to
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calculate fuel load. Nevertheless, the integration of optical remotely sensed imagery and LiDAR data
provides more accurate information than either sensor type alone for classifying post-fire residual
vegetation [11,12] or crown severity levels [13].

In this paper, we characterize the fine-grained tree structures, including their canopies, of trees in
a large Pinus halepensis-dominated fire that occurred in south-eastern Spain (Yeste, Albacete) in the
summer of 2017. We classified the damages to each individual tree by using LiDAR metrics derived
from vertical canopy profiles (VCP). Our main objective was to characterize tree morphologies (from
LiDAR) and verify the differences that exist in them after fire in relation to fire severity levels based on
Sentinel 2A RBR metrics. More specifically, we evaluated the following: (i) which structural metrics
(LiDAR-derived) are most important for separating individual trees into distinct groups, (ii) how these
tree groups are distributed within fire severity categories, and also (iii) how these groups are related
to RBR Sentinel 2A fire severity levels (how different were tree groups among them within each fire
severity level, and how different were tree groups within them across different fire severity levels).

The main novelties of this work are as follows: (i) the use of different approaches (i.e., voxels,
height bins and original points) to estimate vertical crown profile metrics at the tree level; (ii) using
LAD profiles and LAI values to estimate crown properties; (iii) using the breakpoints method to
calculate the canopy base height (CBH) for deriving the crown volume, and (iv) using multitemporal
passive optical multispectral imagery to relate spectral fire severity indices with LiDAR data.

2. Methods

2.1. Study Sites

The study area was the Yeste fire (province of Albacete, SE Spain), that occurred in summer
2017. The fire started on 27th July, one day before an incursion of warm, tropical Africa air, and was
controlled on August 1st, after burning 3217 ha (see [53] for further details). High-density LiDAR
flights were carried out six months after the fire on three areas of 5–6 ha size with different levels
of fire severity and in an unburned area adjacent to the fire (Figure 1a). The unburned area was
occupied by Pinus halepensis Mill. (60%) and shrublands. The low severity area was occupied by mixed
Pinus pinaster Ait. and Pinus halepensis Mill. (74%) forests and open forests of Juniperus oxycedrus L.
with Pinus halepensis Mill., and the moderate severity area was completely occupied by Pinus halepensis
Mill. Forest. The highest fire severity area was entirely occupied by mixed Pinus pinaster Ait. and Pinus
halepensis Mill. forest. The elevation ranges from 722 m to 1112 m and the slope from 14.6◦ to 20◦ across
the four areas. Crosstabulation between LiDAR flights and RBR Sentinel 2A fire severity categories
allowed us to broadly characterize each LiDAR flight regarding the distribution of RBR fire severity
levels (Figure 1b).



Remote Sens. 2020, 12, 3554 4 of 21
Remote Sens. 2020, 12, x FOR PEER REVIEW 4 of 22 

 

 
Figure 1. (a) Location of unmanned aerial vehicle (UAV) LiDAR flights using LidarPod device 
(Velodyne HDL-32e sensor) across the Yeste fire (Albacete, Spain) that occurred on 27th July 2017. (b) 
Location of field parcels to validate tree delineation in LiDAR flights characterized by moderate and 
high severity. (c) Crosstabulation between LiDAR flights (columns) and RBR Sentinel 2 fire severity 
levels (rows) to broadly characterize each LiDAR flight by the RBR fire severity levels. LiDAR flight 
categorized as low severity had 91% of its area in RBR low severity level; LiDAR flight categorized as 
moderate severity had 13%, 49% and 38% of its area in low, moderate and high RBR severity levels, 
respectively; and LiDAR flight categorized as high severity had 51% and 48% of its area in moderate 
and high RBR severity levels, respectively. 

2.2. LiDAR Data 

Post-fire high-density LiDAR data were acquired using the TerraSystem-Lidarpod system 
formed by the Velodyne HDL-32e sensor with a range distance of 110 m. This system has 32 pairs of 
laser sensors (wavelength of 905 nm) with a rotation rate of 100 Hz, and dual-sensor first and last 
returns, collecting a total of 700,000 pulses per second. The average pulse spacing was between 0.01 
and 0.04 m. The flights were made at an altitude of 40 m above the ground (footprint on the ground 
was 33 × 204 m), and in parallel lines 40 m apart with an overlap of 50%. The flight speed was between 
5 and 7 m/s. At this flight height, the spatial distance (spacing) among points was 0.05 m, with a mean 
density of 300 points m−2. The horizontal accuracy was <2 cm and the vertical accuracy <10 cm [54]. 

2.2.1. LiDAR Pre-Processing 

The first step consisted in aligning forward and backward flight trajectories from the 
unprocessed Global Navigation Satellite System (GNSS) data and raw advanced navigation files from 
the Inertial Measurement Unit (IMU) (.anpp) using the Kinematica software [55]. Later, in the 
LasTools software [56], point clouds were filtered to eliminate duplicates and isolated points. 

Next, ground returns were classified using the progressive Triangulated Irregular Network 
(TIN) (i.e., a Delaunay TIN) densification algorithm implemented in the lasground function of the 
LasTools software, using as parameters (i) the terrain type (-wilderness) with a step size of 6 m and 
(ii) the granularity (‘-hyper_fine’). Moreover, we fine-tuned the algorithm by specifying (i) a 
threshold in meters at which spikes are removed from the ground (3 m), and (ii) the maximal offset 

Figure 1. (a) Location of unmanned aerial vehicle (UAV) LiDAR flights using LidarPod device (Velodyne
HDL-32e sensor) across the Yeste fire (Albacete, Spain) that occurred on 27th July 2017. (b) Location of
field parcels to validate tree delineation in LiDAR flights characterized by moderate and high severity.
(c) Crosstabulation between LiDAR flights (columns) and RBR Sentinel 2 fire severity levels (rows)
to broadly characterize each LiDAR flight by the RBR fire severity levels. LiDAR flight categorized
as low severity had 91% of its area in RBR low severity level; LiDAR flight categorized as moderate
severity had 13%, 49% and 38% of its area in low, moderate and high RBR severity levels, respectively;
and LiDAR flight categorized as high severity had 51% and 48% of its area in moderate and high RBR
severity levels, respectively.

2.2. LiDAR Data

Post-fire high-density LiDAR data were acquired using the TerraSystem-Lidarpod system formed
by the Velodyne HDL-32e sensor with a range distance of 110 m. This system has 32 pairs of laser
sensors (wavelength of 905 nm) with a rotation rate of 100 Hz, and dual-sensor first and last returns,
collecting a total of 700,000 pulses per second. The average pulse spacing was between 0.01 and
0.04 m. The flights were made at an altitude of 40 m above the ground (footprint on the ground was
33 × 204 m), and in parallel lines 40 m apart with an overlap of 50%. The flight speed was between
5 and 7 m/s. At this flight height, the spatial distance (spacing) among points was 0.05 m, with a mean
density of 300 points m−2. The horizontal accuracy was <2 cm and the vertical accuracy <10 cm [54].

2.2.1. LiDAR Pre-Processing

The first step consisted in aligning forward and backward flight trajectories from the unprocessed
Global Navigation Satellite System (GNSS) data and raw advanced navigation files from the Inertial
Measurement Unit (IMU) (.anpp) using the Kinematica software [55]. Later, in the LasTools software [56],
point clouds were filtered to eliminate duplicates and isolated points.

Next, ground returns were classified using the progressive Triangulated Irregular Network (TIN)
(i.e., a Delaunay TIN) densification algorithm implemented in the lasground function of the LasTools
software, using as parameters (i) the terrain type (-wilderness) with a step size of 6 m and (ii) the
granularity (‘-hyper_fine’). Moreover, we fine-tuned the algorithm by specifying (i) a threshold in
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meters at which spikes are removed from the ground (3 m), and (ii) the maximal offset in meters
(0.05 m) up to which points above the current ground estimate are included. Once the points were
classified as “ground or not ground”, the ellipsoidal heights of the point clouds were transformed into
orthometric heights, using the geoid file from the National Geographic Institute (NGI) [57]. After that,
the orthometric height was normalized so that the height of the vegetation that was above the ground
line (0 m) could be obtained (Figure 2). Finally, using the normalized LiDAR cloud, the canopy height
model (CHM) was produced with a 0.1 m resolution.
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Figure 2. Normalized orthometric height of the different LiDAR flights across the Yeste fire
(Albacete, Spain).

2.2.2. Tree Detection and Vertical Canopy Profiles (VCP)

CHM, individual tree detection and crown metrics computation were performed using the
LidR package [58] in the R software [59] in four steps (Figure 3). First, we applied a “spike-free”
algorithm [60] to build the CHM at 0.1 m pixel. This method resolves the problem of the empty pixels
and so-called “pits” by the interpolation of first returns with a TIN, and then rasterizing it onto a grid.
It consisted of several layers of triangulation at different height bins (at 0, 2, 5, 10, 15, 20 and 30 m).
Moreover, the pit-free algorithm combined with the subcircling tweak, which replaces each return with
a circle with a small radius (i.e., option ‘-subcircle 0.25′), worked adequately without empty pixels or
pits. This algorithm is implemented with the ‘grid_canopy’ function in the LidR package [58] in R
software [59]. Afterwards, the CHM was smoothed using a Gaussian filter (window size of 3 × 3 and a
sigma value of 0.5). Second, individual trees were detected from the smoothed CHM, applying a tree
detection algorithm based on a local maxima filter using a moving window of 3 × 3 m and 4 m as the
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minimum tree height. Third, crown segmentation was achieved based on local maxima plus Voronoi
tessellation, using a threshold of 4 m, following Silva’s method (see [61] for further details), and the
computed maximum height (tree height) and crown area (CrArea, m2) in the same R package (Table 1).
Finally, we delineated crown contours using the raster R package [62]. The fourth step consisted of
clipping all the returns of the normalized heights within simplified crowns to obtain the following
(Table 1): (i) cloud metrics (standard height and intensity distribution metrics), including all height
values and for two vegetation strata (<4 m and >4 m), and the density of different vegetation layers
using raw points; (ii) diversity metrics derived from the density of height bins at 0.5 m from the ground
up to 20 m (i.e., Simpson and Shannon diversity indices, and evenness dominance indices), using
the Biodiversity R package ([63]); and (iii) leaf area density (LAD, leaf area contained in unit crown
volume) profiles based on voxels using the LeafR package [47] (Figure 3 and Table 1).

Tree delineation validation in the field was carried out on four plots of 30 m diameter, located
randomly in the moderate fire severity LiDAR flights. We located LiDAR-derived tree crowns (≥4 m)
in the field, using the X,Y position of the treetops of each crown segment. The locations of the treetops
of selected trees were recorded using a Trimble Geo 7x (Sunnyvale, CA, USA), with post sampling
corrections performed by the GPS provider. We measured the diameter at breast height (DBH) for each
tree (n = 113). The height of the trees was not measured in the field. We identified 100% of the trees
selected from LiDAR in the field. Moreover, we found a very good match between the tree crowns
delineated by low-density pre-fire LiDAR data [53] and the post-fire crown segments (Figure S1).
Finally, we related field-estimated DBH with the LiDAR-estimated tree height and crown area to assess
the coherence of the results (Figure S2). In this study, we have tested various segmentation algorithms
(i.e., watershed, Dalponte and Lee using LidR package in R software), and we have ascertained that
Silva’s tree segmentation [61] algorithm was better than the other ones because it did not merge so
many adjacent trees together. Overall, the tree delineation was successful where the trees were more
dispersed and thinner, such as in more severely burned areas [13,30,61,64].
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Table 1. LiDAR metrics derived at tree level and using different approaches (i.e., canopy height
model (CHM)) and vertical canopy profiles (VCPs) using voxels, raw points and density of height
bins to characterize individual trees. (*) percentiles (5th, 10th, 25th, 75th, 99th) and (**) height ranges
(<1 m, 1–2 m, 2–4 m, 4–6 m, 6–8 m, 8–10 m, 10–15 m, >15 m).

Type of
Metric LiDAR Metrics at Tree Level Description Source

Crown
metrics

Crown metrics
Canopy Height
Model (CHM)

Treetop height (m) Height of the treetop (m)

Crown area Area of segmented crowns (Silva’s method) (m2)

Relative Understory LAI LAI (0–2.5 m) (%)
Voxelized

vertical canopy
profiles (VCPs)

Crown LAI Total LAI—Understory LAI

Crown volume Crown length * Crown area (m3)

Cloud
metrics

All points and height strata
(<4 m and >4 m)

Min, max, average

Raw points
standard deviation, kurtosis and skewness

Percentiles *

Vegetation cover (%) Height ranges **

Diversity
metrics

Shannon and Richness
From 0 to 20 m at 0.5 m intervals Density of

height binsEvenness

2.2.3. LAI and LAD Profiles

Based on vertical profiles of the heights within each crown polygon, we calculated LAD profiles
and LAI values, following the methodology proposed by Almeida [47] (Figure 4). The point cloud of
each tree was binned into voxels (canopy volume units) with an XYZ resolution fixed at 1 × 1 × 1 m.
For each voxel, we calculated the number of pulses that entered and the number of pulses that passed
through that voxel. Next, the MacArthur–Horn equation was applied to each voxel to compute its
LAD (LADi). From the LAD profiles, the total LAI (the sum of LAD from 1 m height to the top of
the tree), the relative understory LAI (percentage of the total LAI from 0 to 3 m) and the crown LAI
(total LAI—absolute understory LAI) of each tree were obtained (Figure 4 and Table 1). Since we only
used points with a maximum of 15◦ off-nadir view, we could work under the assumption that each
LiDAR pulse was vertically incident (see Almeida [47] for further details).
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Based on the LAD profiles within each crown polygon, we detected inflection points (i.e., break
points [BP]) using the breakpoints function from the strucchange package [65] in R, and derived crown
base height (CBH, m) (Figure 4). This step eliminates the influence of stems and understory vegetation
from crown LAD profiles. We derived the minimum (out-min) and maximum (out-max) height values
around each BP. The minimum height (min-out) of the first BP with LAD values > 0 was considered
the minimum CBH (minCBH), whereas the minimum height (min-out) of the BP with the maximum
LAD (>p90 LAD) was identified as the maximum CBH (maxCBH). With the height values of minCBH
and maxCBH and the maximum height (tree height), we derived crown lengths, and using the crown
area (CrArea) we calculated two crown volumes (min and max CrVol, m3), although here we only
show results from the max CrVol (Figure 4).

2.3. RBR Sentinel 2 Fire Severity Index

Two Sentinel 2 MSI images, captured on 18th July 2017 (pre-fire) and 14th August 2017 (immediately
post-fire), were downloaded from the Copernicus open access hub server at the processing level
L1C [66]. Correction of the images for surface reflectivity (level L2A) (hereafter ‘Sentinel 2A’) was
performed using the Sen2Cor processing tool in SNAP 6.0 software [67]. All bands were resampled to
10 m pixel resolution, using the reference band B2, and a water and cloud mask, available for each scene
in SNAP 6.0, were overlaid [53].We used the Normalized Burn Ratio (NBR) to calculate the Relativized
Burnt Ratio (RBR) = (dNBR/(NBR prefire + 1.001)) ([68]), which was the spectral fire severity index
most related to field-based fire severity measures (see [53] for further details). Three fire severity levels
were established based on RBR thresholds (i.e., <0.3, 0.3–0.5 and >0.5), following the results obtained
by Viedma [53].

2.4. Statistical Analysis

To classify fire severity we used the hierarchical clustering on principal components (HCPC)
approach, which allows one to combine three standard methods commonly used in multivariate data
analyses: (i) principal component analysis (PCA), (ii) hierarchical clustering and (iii) partitioning
clustering (i.e., k-means method). The algorithm of the HCPC method was implemented in the
FactoMineR package [69] in R software. The first step consisted of PCA calculation, which is very useful
for analyzing large data sets with multiple variables (n = 4711 and 49 LiDAR-derived explanatory
variables, described in Table 1). PCA was calculated on standardized variables by z scores (mean 0 and
standard deviation 1), and we checked that all PCA assumptions were not violated (i.e., continuous
observations, linear relationship between all variables [See Figure S2], large enough sample sizes,
and no significant outliers). Moreover, we checked two tests to assess the suitability of our data for
structure detection (e.g., PCA), as follows: (i) Kaiser–Meyer–Olkin Measure of Sampling Adequacy
(KMO) and (ii) Bartlett’s test of sphericity (BTS). KMO high values (close to 1.0) and small values
(less than 0.05) of the significance level in BTS generally indicate that factor analysis may be useful for
the data, whereas a KMO value less than 0.50 and values greater than 0.05 of the significance level of
BTS indicate the opposite.

Next, the hierarchical clustering was performed on the PCA results, using Ward’s criterion. Later,
an initial partitioning was made by cutting the hierarchical tree and selecting the number of clusters
following the criterion of maximum statistical distance. Finally, K-means clustering was completed
to improve the initial partition obtained from hierarchical clustering. This HCPC approach allowed
us to quantitatively identify the variables that most describe each cluster (by means of the v test:
a value of the v test greater than 1.96 corresponds to a p-value less than 0.05; the sign of the v test
indicates if the mean of the cluster is lower or greater than the overall mean), as well as the principal
dimensions that are most associated with the clusters [70]. Later, after identifying the most important
variables, the statistical separability among tree clusters was estimated by the non-parametric post hoc
test of Kruskal–Wallis.
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Finally, to check the accuracy of the clustering, we split the entire database into training
(70%, n = 3300) and validation (30%, n = 1411) data sets, and we ran random forest (RF) (using
randomForest R package) in the classification mode [69] to predict the categorical tree classes, using the
most important variables identified in HCPC analysis. To assess the precision of the RF classification,
the Cohen’s Kappa coefficient (i.e., level of agreement and the percentage of data that are reliable),
sensitivity (i.e., the proportion of positive results out of the number of samples which were actually
positive (True Positives, TP)), specificity (i.e., proportion of negative results out of the number of
samples which were actually negative (True Negatives, TN)) and accuracy (i.e., how often the classifier
is correct, as judged by the equation (TP + TN)/Total) values were calculated [13].

3. Results

3.1. Which Structural Metrics (LiDAR-Derived) Are Most Important for Separating Individual Trees into
Distinct Groups?

Before running the HCPC analysis, we checked that all the PCA assumptions were accomplished
(see Figure S3). The KMO gave a value of 0.87, which was much above the limit (0.5), and the
significance level of BTS was <0.001. Accordingly, we were prevented from continuing with the
analysis. Based on the HCPC analysis, we identified three clusters of trees from five significant PCs
(eigenvalues > 1) that explained 85% of the total variance (Figure 5). HCPC classification selected only
14 variables as the most important ones according to the v test (Table S1). The PCA was redrawn using
this shortlist of variables (Figure 5). The performance of RF classification for explaining the separability
of the three clusters using the final 14 variables was rather high, as follows: the accuracy was 0.97
± 0.02; the Cohen’s Kappa coefficient was 0.96; the sensitivity (i.e., True Positives) was 0.97 ± 0.02,
and the specificity (i.e., True Negatives) was 0.99 ± 0.01 for the validation data set.
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According to the most important structural metrics (LiDAR-derived) for separating individual
trees into distinct groups, we ascertained that Cluster 1 (C1, n = 1852) was significantly different
from the other two groups, due to its high density of returns <1 m (63%) and the lowest crown LAI
(CrLAI), crown volume (CrVol) and crown area (CrArea) (Figure 6 and Table S2). C1 had a high
mean treetop height, of ca. 12 m, but a very low average height (ca. 3 m) due to the dominance of
vegetation < 1 m. Moreover, C1 showed the highest positively skewed distribution of LiDAR returns
(i.e., presence of tall, residual canopies in trees dominated by short vegetation), and the highest average
and standard deviation of intensity LiDAR, mainly due to of the contrast between canopies and bare
soils. This heterogeneous vegetation distribution gave place to the lowest evenness (Table S2). Cluster
2 (C2, n = 1422) had a low proportion of returns <1 m (26%), with the highest proportion of returns
between 10 and 15 m (42%), the highest CrLAI, CrVol and CrArea, and the lowest understory LAI
(<2.5 m) of all three clusters (Figure 6 and Table S2). C2 was composed of the tallest trees (mean treetop
height 13.5 m) with a mean tree height of ca. 8 m. In addition, C2 showed the lowest negative skewed
distribution of LiDAR returns, mainly due to the dominance of tall vegetation, and a lower average
and standard deviation of intensity than C1 (Table S2). Finally, C3 (n = 1436) was formed by tall
shrublands and small tree formations, with the lowest proportion of returns <1 m (19%) and the
highest percentage of returns between 2 and 6 m (66%), showing medium CrLAI, CrVol and CrArea
and the highest understory LAI of all three clusters (Figure 6 and Table S2). C3 had the lowest treetop
height (c.a. 7 m) with a mean tree height of ca. 3 m. Moreover, C3 showed negative height skewness
(i.e., even height distribution), the lowest average and standard deviation of intensity, and the highest
evenness (Table S2).
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Figure 6. (a) Vegetation cover by height layers (relative density in %) (d_x_x m were x < 1 m or
up to 10–15 m), and (b–e) boxplots of some of the most important variables according to the HCPC
classification (i.e., crown LAI (CrLAI), crown volume (CrVol), crown area (CrArea) and relative
understory LAI) for each of the tree cluster groups (C1, C2 and C3). Letters within a graph indicate
statistically different structural classes (Kruskal–Wallis p < 0.05). Bold lines show median values;
the bottoms and tops of the boxes show the 25th and 75th percentiles.



Remote Sens. 2020, 12, 3554 11 of 21

The behavior of height skewness in relation to tree crown metrics such as CrLAI was outstanding.
Height skewness increased sharply in those trees with lower CrLAI, because of the combination of
short vegetation and tall, sparse vegetation (i.e., residual crowns). On the contrary, the skewness
lowered in healthier trees where the proportion of vegetation layers was more normally or evenly
distributed in the vertical tree profiles (Figure 7a). It is likely that the density of returns <1 m was a
good indicator of crown status, as it showed a robust negative relationship with CrLAI (Figure 7b).
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tree level.

3.2. How Tree Groups Are Distributed within Fire Severity Categories

The tree structures of unburned areas and those that burned under different RBR fire severity levels
were rather different (Figure 8a–d). The unburned areas were mainly occupied by C3 (tall shrublands
and small trees) (66%) followed by C2 (tallest trees with large and dense crowns) (32%). Low severity
areas were occupied by C2 (50%) (the tallest and greatest trees) and C1 (trees with tall and residual
crowns dominated by vegetation <1 m) (31%). Moderate and high severity areas were mainly occupied
by C1 (81.5% and 91%, respectively) (Figure 8e). C1 was the tree class with the highest RBR, whereas
C3 showed the reverse behavior, C2 being in an intermediate position (Figure 8f). Accordingly, there
was a good fit between the RBR fire severity levels and Lidar tree cluster groups. However, as could be
expected, there was greater variability in tree morphologies in unburned and low severity areas than
in moderate to high ones.
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Figure 8. (a–d) Spatial distribution of the structure-derived tree groups in each LiDAR flight categorized
by the dominant RBR Sentinel 2 fire severity level. (e) Crosstabulation between RBR Sentinel 2 fire
severity levels (columns) and tree structure-derived clusters (rows) to assess the spatial correspondence
between them, and (f) boxplots of the RBR Sentinel 2 fire severity values for each tree structure-derived
cluster. Letters within a graph indicate statistically different structural classes (Kruskal–Wallis, p < 0.05).
Bold lines show median values, and the bottoms and tops of the boxes show the 25th and 75th
percentiles. UB: unburned; Low: low severity; Mod: moderate severity; and High: high severity.
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3.3. How Tree Groups Related to RBR Sentinel 2A Fire Severity Levels

When assessing the difference among the tree groups within each RBR Sentinel 2A fire severity
level, we found that all tree clusters showed similar RBR values among them on the unburned and
each of the RBR fire severity levels. On the contrary, all clusters showed significant differences among
them regarding tree structures in each RBR level (Figure S4), although the differences tended to be less
acute as fire severity increased (Table S3 and Figure 9).
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Figure 9. (a) Boxplots of the RBR Sentinel 2-based fire severity values for each tree structure-derived
cluster stratified by RBR fire severity levels (UB: unburned; Low: low severity; Mod: moderate severity;
and High: high severity). (b–e) Boxplots of crown LAI (CrLAI), crown volume (CrVol), crown area
(CrArea) and relative understory LAI for each tree group stratified by RBR fire severity levels. Letters
within a graph indicate statistically different structural classes (Kruskal–Wallis, p < 0.05). Bold lines
show median values; the bottoms and tops of the boxes show the 25th and 75th percentiles.
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Moreover, when assessing the difference within each tree group across the RBR fire severity levels,
we found that several metrics were able to significantly differentiate unburned from burned trees,
as well as the different RBR severity levels within each tree group (Table S4 and Figure 10). For all
clusters, CrArea, CrLAI, CrVol, understory LAI, as well as the proportion of understory/midstory
vegetation (density of returns until 8 m), decreased as fire severity increased, whereas height skewness
and density of returns <1 m increased. The loss of understory LAI was the tree property most
significantly different between unburned and low severity trees in all clusters. Differences in CrArea,
CrLAI and understory/midstory vegetation proportions were more significant for separating unburned
trees from those trees less damaged by fire (C2 and C3) (Table S4 and Figure 10).
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Figure 10. (a) Boxplots of the RBR Sentinel 2A values for each fire severity level (UB: unburned;
LS: low severity; MS: moderate severity; and HS: high severity) stratified by structure-derived tree
group. (b–e) Boxplots of crown LAI (CrLAI), crown volume (CrVol), crown area (CrArea) and relative
understory LAI for each RBR fire severity level stratified by each tree cluster. Letters within a graph
indicate statistically different structural classes (Kruskal–Wallis, p< 0.05). Bold lines show median
values; the bottoms and tops of the boxes show the 25th and 75th percentiles.
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On the other hand, the main tree properties able to separate the different RBR fire severity levels
were different for each of the tree clusters. For C1 they were CrLAI, average tree height, height
skewness and midstory vegetation (2 m–8 m). For C2 they were CrArea and midstory vegetation
(2 m–6 m), and for C3 they were CrArea, CrLAI, intensity (average and standard deviation) and
evenness (Table S4).

Similar to those metrics, the LAD profiles were by themselves good proxies of fire severity
(Figure 11). In this sense, we observed that as fire severity increased, the LAD values at low heights
considerably decreased, due to the consumption and removal of understory and midstory vegetation by
fire, allowing us to differentiate unburned from burned trees, as well as crown fires from surface fires.
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Figure 11. Lidar-derived leaf area density (LAD) profiles of the three structure-derived tree groups
stratified by RBR Sentinel 2 fire severity levels with a confidence interval at 95% surrounding the lines.
UB: unburned; LS: low severity; MS: moderate severity; and HS: high severity.

4. Discussion

Here, we have characterized tree structures (i.e., LAI values, crown properties, cloud metrics,
vegetation cover distribution and height diversity) after a fire, which reflect well the degree of
consumption undergone by the trees during a fire, and thus reflect the fire severity. Consequently,
these metrics can affect post-fire regeneration and ecosystem recovery [64,71], allowing a much finer
resolution as it descends to the level of a tree. The methodology presented, based on VCPs at the tree
level, provides an alternative to traditional area-based approaches based on LiDAR data, or those
based on satellite data alone, to identify the heterogeneity of burned trees within standard satellite fire
severity levels. Moreover, the object-based nature of individual tree detection can also be advantageous
when field data are not available, and can it make many structural measurements without the need for
ground-truthing [37]. Recently, researchers have begun to use LiDAR as a primary data source to study
forest canopy structures without reference to field data over large areas [11,12,72], demonstrating a
potential use for ecological analysis.
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The LiDAR metrics derived from VCPs demonstrated promising potential in characterizing
fine-grained, post-fire residual vegetation, thus providing useful information for post-fire impacts or
restoration. The LiDAR system used has a very high pulse density, which allowed the production
of vertical foliage profiles for each individual tree with high accuracy. According to Almeida [47],
accurate LAD profiles are obtained when the grain size is less than 10 m and the pulse density is
high (>15 pulses m2). Here, we used a grain of 1 m and a mean pulse density of 300 pulses m2.
Moreover, using LAD profiles from VCPs, several crown metrics closely related to vegetation health
(i.e., crown LAI, crown volume or understory LAI) could be obtained (e.g., [24–26,29,43]). The ability to
calculate CBH and CrVol from breakpoints in VCPs is promising for its efficiency, and follows previous
approaches that used inflection points from spline lines to estimate CBH [49], or the parameters of
Weibull functions [38] to estimate canopy fuel load.

4.1. Which Structural Metrics (LiDAR-Derived) Are Most Important for Separating Individual Trees into
Distinct Groups?

Here we show that a classification at the tree level using HCPC and random forests resulted in
highly accurate clustering. Our approach distinguished three clusters characterized by different tree
structures: the first was mainly composed of trees affected by crown fire; the second was formed by
trees that were mainly burned by surface fire, and the third contained trees with tall shrubs and small
tree formations that were mainly unburned. The most important variables differentiating the three
clusters provided clues about how the ecologically meaningful LiDAR metrics were able to separate
the trees by the level of damage (e.g., CrArea, CrVol and CrLAI) [10,32]. Other LiDAR metrics were
good indirect indicators of tree damage (e.g., height skewness and density of returns <1 m), due to
their negative relationship with crown LAI [18], whereas others were complementary to one another
(e.g., average tree height, treetop height and density of vegetation layers), and using them alone could
lead to erroneous results. For example, high-severity trees with tall treetops but low average tree
heights, mainly due to the very low density of returns at high heights (>10 m) and the high density of
returns at low heights (<1 m), would indicate important crown damage.

4.2. How Tree Groups Are Distributed within Fire Severity Categories

The three clusters based on tree characteristics were differentiated rather well in terms of their
Sentinel 2A RBR metrics. However, the RBR severity levels were not homogeneous in terms of
tree structure clustering, and each of these RBR levels had a mixture of tree structures [13]. While
broad RBR thresholds were applied to detect different severity levels, a range of crown severities and
morphologies was included in those thresholds, contributing to the variability in structural responses
observed. We found that open structures with high damaged trees (cluster C1) were strongly dominant
within the high fire severely RBR areas, whereas unburned and less severely burned ones showed
more complexity in tree morphologies, suggesting that low and moderate severity fires increase
heterogeneity [11]. Here, the large variation in tree structures in unburned and low to moderately
severely burned areas highlighted the value of monitoring fire-induced damage with LiDAR, rather
than optical satellite data [11,12,18,23], due to the spatial and spectral limitations that optical sensors
have [20,21], for estimating the fine-grain heterogeneity in fire severity [11,22,23]. In unburned and less
severely burned areas, optical satellite data have a limited ability to capture understory and midstory
vegetation structures, particularly in high canopy cover forests, whereas LiDAR is more sensitive to
these types of change [19].

4.3. How Tree Groups Related to RBR Sentinel 2A Fire Severity Levels

All clusters showed significant differences among them regarding tree properties in each RBR
level, although as fire severity increased those differences tended to be diluted. On the other hand,
within each cluster, increasing fire severity resulted in a significant loss in crown LAI, crown area and
crown volume, as well as a large reduction in understory/midstory vegetation, in agreement with
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Karna et al. [32]. Furthermore, the reduction in understory LAI allowed for separating significantly
unburned trees from low severity burned ones in the three tree clusters. However, the tree properties
able to significantly separate the different RBR severity levels varied among tree groups, highlighting
changes in midstory vegetation for clusters 1 and 2, and changes in crown area for clusters 2 and 3.

Furthermore, height evenness and skewness significantly decreased (higher uneven height
distribution) as fire severity increased due to the presence of both residual tall stems and bare soils,
as shown by Bolton et al. [18] and Bishop et al. [31], but contrary to the results of Karna et al. [32] who
found that crown evenness significantly increased at moderate to high fire severity. In addition, we did
not find significant differences in treetop height or mean tree height as fire severity increased [32].
On the other hand, it has been shown that higher LiDAR intensities have been associated with green
foliage, while lower LiDAR intensities with non-photosynthetic woody material, including dead
vegetation [10,13]. Here, we ascertained that intensity metrics played a secondary role in differentiating
tree groups and in the assessment of differences in severity levels. However, we found that LiDAR
intensity significantly decreased as fire severity increased in the case of small trees/tall shrubs (C3),
although it was almost insensitive in the case of tall trees, as in clusters 1 and 2, maybe because they
kept a great part of the top canopy undamaged.

4.4. Limitations and Future Work

The main limitations of this study are related to the lack of a larger field sampling of individual
trees, and the lack of other measures such as stem and twig size or biomass indicative of the combustion
degree. In future work, we propose to use multispectral and thermal unmanned aircraft systems
(UAS) and LiDAR data, as well as high-density multi-temporal LiDAR data (pre- and post-fire),
to quantifying fire-induced forest changes (e.g., [22,28,31]). This will permit the calculation of the
degree of consumption of the plants or soil litter during a fire with very high precision. Whenever
possible, during the progression of current forest fires, the UAV LiDAR (LidarPod) should be flown
in coordination and under permit of the relevant authorities, during late evening or early morning,
when the firefighting helicopters or planes have halted their operations, in order to avoid the risk
of collision. This would facilitate the maintaining of unburned patches that will later burn as true
controls for fire severity and biomass consumption calculations. Crown volume and biomass losses
and post-fire tree morphologies, as reconstructed from LiDAR, will be used to provide comparable
metrics of fire severity. Additionally, when the UAV LiDAR cannot be used during fire progression,
other LiDAR data available, such as the National Flights available for mainland Spain (LIDAR-PNOA),
could be used to characterize pre-fire vegetation structure. Nevertheless, our high-density LiDAR
data provided by the device LidarPod are not directly comparable with LIDAR-PNOA, with a very
low density of point clouds (0.5–1 point/m2), thus operational challenges remain in obtaining both
pre- and post-fire LiDAR metrics with comparable data quality [14]. As the pre- and post-fire LiDAR
data had different point densities, the canopy metrics could be affected in complex ways, interacting
with differences in slope and elevation due to large differences in the Digital Terrain Models (DTM)
derived [31].

By combining measures of LiDAR-derived post-fire tree structure with satellite-derived fire
severity levels, variabilities in early fire effects could be characterized with high precision over large
forested areas. Our results demonstrate the value of fusing RBR fire severity levels with LiDAR data
for contextualizing different tree structures in terms of fire severity, and giving a physical–ecological
meaning to reflectance-based spectral indices. These results can assist forest managers in better
identifying the areas most severely burned for conservation and restoration plans after wildfires,
and for wildlife habitat assessments and other post-fire applications, such as fire’s effects on soils.

5. Conclusions

Damage to canopy structures can provide a sensitive indicator of the degree of fuel consumption
by fire, and thus of fire severity. Here, we made a comprehensive use of the vertical canopy profiles
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from high-density LiDAR data to obtain several metrics related to biophysical single-tree characteristics,
such as crown properties, LAI values, vegetation layer distribution and diversity. Moreover, using
inflection points to derive the canopy base height, crown volume could be estimated. All these metrics
at the tree-level allowed the distinguishing of three clusters of tree morphologies, which were separated
rather well among each other. These tree structure-derived clusters were unevenly distributed in
the different RBR Sentinel 2 fire severity levels. Unburned and low severity burned areas were more
diverse than moderate and high severity burned ones. Furthermore, LiDAR metrics were able to
distinguish crown fire from surface fire through changes in the understory LAI, and the understory
and midstory vegetation. Moreover, the LiDAR metrics indicated that vegetation layers’ distribution
within a tree, and crown properties, were important for estimating the impact of fire on single trees,
a feature that was not captured by the RBR Sentinel 2 index. Although RBR was not able to distinguish
tree morphologies, especially in unburned and low severity areas, due to their inability to penetrate
the forest canopy, we could ascertain that the RBR Sentinel 2 index is an adequate proxy of fire severity.
The three tree structure clusters were rather well differentiated spatially and spectrally by the RBR
fire severity levels, and significant intra-cluster differences in terms of LiDAR metrics were observed
among RBR fire severity levels. When high-resolution LiDAR data, as we used here, is available,
it provides a high spatial resolution, at the level of a single tree, which is needed for ecological impact
studies. Tree-based fire severity maps at this level of detail could thus be used to develop more precise,
site-specific fire impact studies and post-fire management plans.
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at ground-field, Figure S3: Scatterplots relating pairs of variables included in the Principal Component Analysis
(PCA) and correlation matrix of the same set of variables, Figure S4: Normalized height point clouds of individual
trees classified by using LiDAR derived metrics (C1-C3) and stratified by RBR Sentinel 2 fire severity levels,
Table S1: Scores given by the v test derived from the PCA classification of individual trees and descriptive statistics.
Here we show the most important variables (v test value > 10), Table S2: Mean values of the most significant
variables used to classify individual trees (C1-C3), Table S3: Mean values of the most significant variables used to
classify individual trees (C1-C3) grouped within each RBR fire severity levels to assess differences among tree
groups (inter-cluster variability), Table S4: Mean values of the most significant variables used to classify individual
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