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Abstract: Unlike conventional natural (RGB) images, the inherent large scale and complex structures
of remote sensing images pose major challenges such as spatial object distribution diversity and
spectral information extraction when existing models are directly applied for image classification.
In this study, we develop an attention-based pyramid network for segmentation and classification
of remote sensing datasets. Attention mechanisms are used to develop the following modules: (i) a
novel and robust attention-based multi-scale fusion method effectively fuses useful spatial or spectral
information at different and same scales; (ii) a region pyramid attention mechanism using region-based
attention addresses the target geometric size diversity in large-scale remote sensing images; and
(iii) cross-scale attention in our adaptive atrous spatial pyramid pooling network adapts to varied
contents in a feature-embedded space. Different forms of feature fusion pyramid frameworks are
established by combining these attention-based modules. First, a novel segmentation framework,
called the heavy-weight spatial feature fusion pyramid network (FFPNet), is proposed to address the
spatial problem of high-resolution remote sensing images. Second, an end-to-end spatial-spectral
FFPNet is presented for classifying hyperspectral images. Experiments conducted on ISPRS Vaihingen
and ISPRS Potsdam high-resolution datasets demonstrate the competitive segmentation accuracy
achieved by the proposed heavy-weight spatial FFPNet. Furthermore, experiments on the Indian
Pines and the University of Pavia hyperspectral datasets indicate that the proposed spatial-spectral
FFPNet outperforms the current state-of-the-art methods in hyperspectral image classification.

Keywords: high-resolution and hyperspectral images; spatial object distribution diversity;
spectral information extraction; attention-based pyramid network; heavy-weight spatial feature
fusion pyramid network (FFPNet); spatial-spectral FFPNet

1. Introduction

Supervised segmentation and classification are important processes in remote sensing image
perception. Many socioeconomic and environmental applications, including urban and regional
planning, hazard detection and avoidance, land use and land cover, as well as target mapping
and tracking, can be handled by using suitable remote sensing data and effective classifiers [1,2].
A great deal of data with different spectral and spatial resolutions is currently available for different
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applications with the development of modern remote sensing technology. Among these massive remote
sensing data, high-resolution and hyperspectral images are two important types. High-resolution
remote sensing images usually have rich spatial distribution information and a few spectral bands,
which contain the detailed shape and appearance of objects [3]. Semantic segmentation is a powerful
and promising scheme to assign pixels in high-resolution images with class labels [4,5]. Hyperspectral
images can capture hundreds of narrow spectral channels with an extremely fine spectral resolution,
allowing accurate characterization of the electromagnetic spectrum of an object and facilitating a
precise analysis of soils and materials [6]. Because each pixel can be considered a high-dimensional
vector and to be surrounded by local spatial neighborhood, supervised spatial-spectral classification
methods are suitable for hyperspectral images.

However, segmentation or classification of different types of remote sensing images is an
exceedingly difficult process, which includes major challenges of spatial object distribution diversity
(Figure 1) and spectral information extraction. Specifically, the following are the challenges with
segmentation and classification of remote sensing images:

• Missing pixels or occlusion of objects: different from traditional (RGB) imaging methods,
remote sensing examines an area from a significantly long distance and gathers information
and images remotely. Due to the large areas contained in one sample and the effects of the
atmosphere, clouds, and shadows, missing pixels or occlusion of objects are inevitable problems
in remote sensing images.

• Geometric size diversity: the geometric sizes of different objects may vary greatly and some
objects are small and crowded in remote sensing imagery because of the large area covered
comprising different objects (e.g., cars, trees, buildings, roads in Figure 1).

• High intra-class variance and low inter-class variance: this is a unique problem in remote sensing
images and it inspires us to study superior methods aiming to effectively fuse multiscale features.
For example, in Figure 1, buildings commonly vary in shape, style, and scale; low vegetations
and impervious surfaces are similar in appearance.

• Spectral information extraction: hyperspectral image datasets contain hundreds of spectral
bands, and it is challenging to extract spectral information because of the similarity between the
spectral bands of different classes and complexity of the spectral structure, leading to the Hughes
phenomenon or curse of dimensionality [7]. More importantly, hyperspectral datasets usually
contain a limited number of labeled samples, thus making it difficult to extract effective spectral
information from hyperspectral images.

Figure 1. Challenges of object segmentation in spatial distribution in remote sensing images.
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A. Review of Semantic Segmentation of High-resolution Remote Sensing Images by Multiscale
Feature Processing.

First, to solve the problem of spatial object distribution diversity in high-resolution images, it is
necessary to effectively extract and fuse features in multiple scales. Recently, deep-learning methods
have shown excellent performance in remote sensing image processing, especially deep convolutional
neural networks (DCNNs), which have strong ability to express multiscale features (such as FCNs [8],
S-RA-FCN [9], DeepLabv3 [10], and DeepLabv3+ [11]). To date, many models based on DCNNs for
semantic segmentation of remote sensing images have been proposed. Sun and Wang [4] established a
semantic segmentation scheme based on fully convolutional networks [8]. Wang et al. [12] proposed
a gated network based on the information entropy of feature maps. This method can effectively
integrate local details with contextual information. The cascaded convolutional neural networks [5,13]
were utilized for the segmentation of remote sensing images by successively aggregating contexts.
Most recently, many multiscale context-augmented models [9,14,15] have been proposed to exploit
contextual information in remote sensing images. Remote sensing target segmentation problems
such as object occlusion, geometric size diversity, and small objects have attracted increasing research
attention [16–19].

Further analysis of these multiscale/contextual feature fusion models reveals that their common
objective is to establish an effective feature attention weight fusion method. Attention mechanisms
are widely used for various tasks such as machine translation [20], scene classification, and semantic
segmentation. The non-local network [21] first adopts a self-attention mechanism as a submodule for
computer vision tasks. Recently, many attention-reinforced mechanisms [9,22,23] have been proposed
on the basis of non-local operation in semantic segmentation. Attention U-Net [24] learns to suppress
irrelevant areas in an input image while highlighting useful features for a specific task on the basis
of cross-layer self-attention. CCNet [25] harvests the contextual information of all the positions
in one image by stacking two serial criss-cross attention modules. ACFNet [26] is a coarse-to-fine
segmentation network based on the attention class feature module, which can be embedded in any
base network. Most recently, various self-attention mechanisms have proven to be effective for solving
the problem of multiscale feature fusion in feature pyramid-based models [27–30].

In summary, the above-mentioned multiscale feature fusion models based on attention
mechanisms apply convolutional neural networks (CNNs) in three-band data, which have achieved
significant breakthroughs in semantic segmentation. However, these models still cannot effectively
solve the problem of spatial distribution diversity in remote sensing for the following reasons:

(1) Most models only consider the fusion of two or three adjacent scales and do not further
consider how to achieve the feature fusion of more or even all the different scale layers.
Improved classification accuracy can be achieved by combining useful features at more scales.

(2) Although a small part of the attention mechanism (such as GFF [31]) considers the fusion of more
layers, it does not successfully solve the semantic gaps between high- and low-level features.
The detailed analysis of different feature layers is discussed in Section 2.1.

(3) The novel attention mechanisms based on self-attention mainly focus on spatial and channel
relations for semantic segmentation (such as the non-local network [21]). Regional relations are
not considered for the remote sensing images, and thus the relationship between object regions
cannot be deepened.

B. Review of Spatial-spectral Classification for Hyperspectral Images by Multiscale Feature Processing.

To solve the problem of spectral information extraction in hyperspectral images and enhance the
classification performance, spatial-spectral classification methods have gained prominent application
in hyperspectral image processing, mainly including handcrafted feature-based approaches [32–35]
and deep learning methods. Since deep learning methods (especially DCNNs) have proven to be more
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advantageous in feature extraction and representation compared with the traditional shallow learning
method, this paper mainly focuses on deep spatial-spectral feature extraction and representation
by multiscale feature processing in DCNNs. A review of DCNN-based classification methods for
spatial-spectral approaches is given in [6], including 1D or 2D CNN [36,37], 2D + 1D CNN [38], and 3D
CNN [39–41]. However, although these methods achieve promising performance for hyperspectral
classification, they cannot fully extract and represent features, because they utilize the features of
only the last convolutional layer for classification without considering multiscale features obtained
by the previous convolutional layers. To this end, Zhao et al. [42] proposed a multiple convolutional
layer fusion framework to fuse features extracted from different convolutional layers. The fusion
process mainly involves the majority voting or direct concatenate mechanisms after applying the fully
connected layer to each convolutional layer. The CNNs with multiscale convolution (MS-CNNs) [43]
are proposed to address the limited number of training samples and class differences in variance
for hyperspectral images by extracting deep multiscale features. By conducting experiments on
three popular hyperspectral images, Imani and Ghassemian [44] demonstrated that although feature
fusion methods are time-consuming, they can provide superior classification accuracy compared to
other methods. Imani and Ghassemian [44] also showed that multiscale feature fusion is developed
into one of the trends of hyperspectral image classification. Furthermore, attention mechanisms
are used to extract and fuse contextual features. Haut et al. [45] is the first to develop a visual
attention-driven mechanism for spatial-spectral hyperspectral image classification, which applies
the attention mechanism to residual neural networks. Mei et al. [46] proposed a spatial-spectral
attention network for hyperspectral image classification by the RNN and CNN both with the attention
mechanism. However, these methods are only the initial application of multiscale fusion and the
attention mechanism in hyperspectral datasets. There is still room for improvement in the following
aspects in the area of hyperspectral image classification:

(1) When dealing with hyperspectral spatial neighborhoods of the considered pixel, the semantic
gap in multiscale convolutional layers is not considered, and simple fusion is not the most
effective strategy.

(2) The spectral redundancy problem is not considered sufficiently in the existing hyperspectral
classification models. With regard to such a complex spectral distribution, there is exceedingly
little work on extraction of spectral information from coarse to fine (multiscale) processing by
different channel dimensions.

C. Contributions.

Bearing the above challenges in mind, in this study, we propose an attention-based pyramid
network by using a self-attention mechanism flexibly. Our model utilizes attention mechanisms in the
following three areas:

(1) We propose attention-based multiscale fusion to fuse useful features at different and the same scales
to achieve the effective extraction and fusion of spatial multiscale information and extraction of
spectral information from coarse to fine scales.

(2) We propose cross-scale attention in our adaptive atrous spatial pyramid pooling (adaptive-ASPP)
network to adapt to varied contents in a feature-embedded space, leading to effective extraction
of the context features.

(3) A region pyramid attention module based on region-based attention is proposed to address the
target geometric size diversity in large-scale remote sensing images.

Through different combinations of these attention modules, different forms of feature fusion
pyramid frameworks (two-layer and three-layer pyramids) are established. First, a novel and practical
segmentation model, called the heavy-weight spatial feature fusion pyramid network (FFPNet),
is proposed to solve the spatial object distribution diversity problem in high-resolution remote
sensing images. The heavy-weight spatial FFPNet is a three-level feature fusion pyramid built on
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the basis of region pyramid attention and attention-based multiscale fusion modules. Furthermore,
boundary-aware (BA) loss [47] is used to train the heavy-weight spatial FFPNet in an end-to-end
manner. Second, a spatial-spectral FFPNet is developed to extract and integrate multiscale spatial
features and multi-dimensional spectral features of hyperspectral images using the attention-based
multiscale fusion module. The spatial-spectral FFPNet mainly consists of two modules: a light-weight
spatial feature fusion pyramid (FFP) and a spectral FFP. The light-weight spatial FFP is a two-level
pyramid, whose trainable parameters are less than one-third those of the heavy-weight spatial FFPNet.
Thus, the light-weight module is suitable for a small number of labeled samples of the hyperspectral
dataset. In addition, the spectral FFP, which is also a two-level pyramid, is proposed to better extract
the spectral features from hyperspectral datasets by compressing spectral information from coarse to
fine scales.

To evaluate the accuracy and efficiency of the proposed models, first, extensive experiments are
conducted on two challenging high-resolution semantic segmentation benchmark datasets, namely
the ISPRS (International Society for Photogrammetry and Remote Sensing) Vaihingen dataset and the
ISPRS Potsdam dataset. The local experimental results demonstrate that the heavy-weight spatial
FFPNet outperforms other predominant DCNN-based models (DeepLabv3+ [11] considered as the
baseline). In addition, the effectiveness and practicability of these novel attention-based mechanisms
is demonstrated by conducting an ablation study. Furthermore, we apply the spatial-spectral FFPNet
to two popular hyperspectral datasets, namely the Indian Pines dataset and the University of Pavia
dataset. The experimental results (the well-known CNN model [40] considered as the baseline)
indicate that the spatial-spectral FFPNet is more robust for a small number of training samples of
the hyperspectral dataset and can obtain state-of-the-art results under different training samples.
Our proposed spatial-spectral FFPNet has excellent ability to extract and express multiscale spatial
and spectral information. It is worth noting that the spatial-spectral FFPNet with data enhancement is
a better choice for hyperspectral image classification when the sample size is extremely small.

2. Proposed Spatial-Spectral FFPNet

2.1. Overview

In this study, we focus on the challenge of spatial and spectral distribution of remote sensing
images in the “encoder–decoder” frameworks [9,11,12,48–50]. The encoder part is based on a
convolutional model to generate a feature pyramid with different spatial levels or spectral dimensions.
Then, the decoder fuses multiscale contextual features. The interaction of adjacent scales can be
formulated as

Fl = H (fl , fl+1) , (1)

where Fl is the fused feature at the lth level, H represents a combination of multiplication [49,51],
weight sum [31], concatenation [50], attention mechanism [27,48,52], and other operations [12].

However, these operations cannot solve the problem of multiscale feature fusion of objects in
remote sensing images. The main reason is that the feature maps from the lower layers are of high
resolution and may have excessive noise, resulting in insufficient spatial details for high-level features.
Further, these integrated operations may suppress necessary details in the low-level features, and most
of these fusion methods do not consider the large semantic gaps between the feature pyramids
generated by the encoder. Furthermore, these operations do not consider effective extraction and
fusion of multiscale spectral information in hyperspectral images.

Therefore, we propose a multi-feature fusion model based on attention mechanisms in this paper.
Current attention mechanisms [9,22,24,53] are based on the non-local operation [21], which usually
deal with spatial pixel and channel selections. These mechanisms cannot achieve regional relations
of objects and cannot effectively extract and integrate multiscale features in remote sensing images.
To address these issues, three novel attention modules are proposed: (1) A region pyramid attention
(RePyAtt) module is proposed to effectively establish relations between different region features of
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objects and relationships between local region features by using a self-attention mechanism on different
feature pyramid regions; (2) An adaptive-ASPP module aims to adaptively select different spatial
receptive fields to tackle large appearance variations in remote sensing images by adding an adaptive
attention mechanism to the ASSP [10,11]; (3) A multiscale attention fusion (MuAttFusion) module is
proposed to fuse the useful features at different scales and the same scales effectively.

As shown in Figure 2, segmentation and classification schemes of remote sensing
images are achieved through the different combinations of the proposed attention modules.
First, for high-resolution images, most of the information is concentrated in spatial dimensions.
The proposed heavy-weight spatial FFPNet segmentation model solves the spatial object distribution
diversity problem in remote sensing images. We adopt ResNet-101 [54] pretrained on ImageNet [55] as
the backbone of the segmentation model. A three-level feature fusion pyramid is designed as shown
in Figure 2. In addition, the residual convolution (ResConv) module is used as the basic processing
unit, while the adaptive-ASPP module is used to adaptively combine the context features generated
from the ResNet-101 and ResConv.

Figure 2. Proposed segmentation scheme of high-resolution images and classification scheme of
hyperspectral images (upper left). For the heavy-weight spatial FFPNet, given a high-resolution
image (3-band), ResNet-101 pretrained on ImageNet [55] is used as the backbone for feature extraction
(middle, where W denotes the height or width of the image). The heavy-weight spatial FFPNet is a
three-level feature fusion pyramid. The detailed configurations of the heavy-weight spatial FFPNet
are described in Section 2.5. Furthermore, BA loss is used to train the heavy-weight FFPNet in an
end-to-end manner. For the spatial-spectral FFPNet, given a hyperspectral image with the size of
p× H ×W, where p is the number of spectral bands, the image is sent to the light-weight spatial FFP
and the spectral FFP modules simultaneously. The light-weight spatial FFP is a two-level pyramid, and
VGGNet16 pretrained on ImageNet [55] is used as the backbone. Notably, the initial parameters of the
first convolutional layer in the pretrained network are copied until the p-channel inputs are attained.
Furthermore, fully connected layers are used to effectively merge multiscale spatial feature obtained by
the light-weight spatial FFP and spectral feature obtained by the spectral FFP and predict the class of
all pixels. The detailed description of the spatial-spectral FFPNet is presented in Section 2.6.

Second, for hyperspectral images, the proposed spatial-spectral FFPNet extracts and integrates
multiscale spatial and spectral features. Recalling Figure 2, the spatial-spectral FFPNet includes three
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parts: (1) multiscale spatial feature extraction with the light-weight spatial FFP; (2) multi-spectral
feature extraction with the spectral FFP; (3) fusion of spatial and spectral features as well as classification
prediction with fully connected layers. Specifically, the light-weight spatial FFP module is a shallow
classification framework, which uses the blocks of VGGNet-16 [56]. It only has a two-level feature
fusion pyramid based on MuAttFusion. In comparison, the trainable parameters of the light-weight
spatial FFP module are less than one-third those of the heavy-weight spatial FFPNet. This is because
of the small number of labeled samples in hyperspectral datasets. The more parameters a model has,
the greater its capacity, but also more labeled data needed to prevent overfitting. Similarly, the spectral
FFP module has a two-level feature fusion pyramid based on MuAttFusion, which reduces the amount
of parameters while capturing as much spectral information as possible.

2.2. Region Pyramid Attention Module

Currently, the soft attention-based methods mainly aim to capture long-range contextual
dependencies on the basis of the non-local mechanism and its variants. However, the geometric size of
different objects in remote sensing images varies significantly, so it is challenging to achieve regional
dependencies of objects using existing models. Inspired by the ideas of the feature pyramid, we propose
the region pyramid to address the target scale diversity. After this, we combine the region pyramid
and self-attention to effectively establish dependencies between different object region features and
relationships between local region features. We illustrate our approach via a simple schematic in Figure 3.

Figure 3. Proposed RePyAtt Module. We first generate a region pyramid by partitioning the input
feature maps (left) into four groups and employing the self-attention mechanism to extract the regional
dependence. Finally, the output of the RePyAtt module is obtained by summation (‘SUM’) of different
region groups.

2.2.1. Region Pyramid

We partition the input feature maps into different regions via a chunk operation. The region
block size defined in this article are {single pixel level, 8× 8 level, 4× 4 level, 2× 2 level, and 1× 1
level}. In addition, we conduct an ablation study on different combinations as detailed in Section 3.3.2.
For each group of the pyramid, we first feed the region blocks into a global pooling layer to obtain
the regional representations. Then, we concatenate the representations of the region block to generate



Remote Sens. 2020, 12, 3501 8 of 34

a regional representation of the whole input feature. It is worth noting that the single-pixel level is
directly sent to the self-attention module without the global pooling operation.

2.2.2. Self-Attention on The Regional Representation

To exploit more explicit regional dependencies of objects, we compute the self-attention
representations within the regional representation. Self-attention consists of one 3× 3 convolution
and one 1× 1 convolution, with the number of channels F/2 and 1, respectively, where F denotes
the number of channels of the input feature maps. Further experiments show that the parallel
form of attention-weighted representations of different region groups can effectively enhance the
dependencies across different region features and the relationships between local region features better
than pixel-wise and channel-wise self-attention operators.

As illustrated in Group 3 of Figure 3, we first divide the input feature X into G (2× 2) partitions.
Then, we concatenate the point statistics after global pooling to obtain the regional representation
Xm3 ∈ RF×G. We apply self-attention on Xm3 as follows:

Am3 = softmax (W1 ∗ Xm3) , Zm3 = Am3 f (Xm3) + Xm3, (2)

where Am3 ∈ R1×G is an attention matrix based on the global information across all spectral bands,
and Zm3 ∈ RF×G is the weighted output features. W1 denotes the combination operation of one 3× 3
convolution and 1× 1 convolution. f (.) represents 1× 1 convolution and ∗ denotes convolution.

Finally, the output of the RePyAtt module is obtained by the weighted sum of different region
groups, which is formulated as

∑M
i=1 Up(Zmi)⊗ X, (3)

where M represents the total number of groups in the region pyramid, ⊗ denotes region-wise
multiplication, and Up(.) is the upsampling layer using the nearest interpolation.

2.3. Multi-Scale Attention Fusion

The main task of the proposed MuAttFusion module is to effectively integrate multiscale spatial
and spectral features of different objects in remote sensing images. MuAttFusion selectively fuses
same-layer, high-layer, and low-layer features by an adaptive attention method as shown in Figure 4.

Figure 4. Proposed MuAttFusion module. It selectively fuses the same-layer, higher-layer,
and lower-layer features using an adaptive attention method.
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2.3.1. Higher- and Lower-scales

The lower-layer branch propagates spatial information from the lower layers (T < t) to the current
layer (t) by the downsampling aggregation module (DAM). As shown in Figure 4a, to minimize
memory consumption, we first use a 1× 1 convolutional layer to compress the incoming feature maps.
To achieve a consistent size for all feature maps, low-level features are downsampled to the feature
size of the current layer by using bilinear interpolation. To fully use the entire feature information,
all lower-layer feature maps are concatenated. Introducing the lower layers into the current layer
inadvertently passes noise as well. To tackle this, high-level (T > t) contextual information is
simultaneously propagated into the current layer by the upsampling aggregation module (UAM).
The UAM structure is similar to that of the DAM, as shown in Figure 4b.

2.3.2. Attention Fuse Module

The lower-layer features, although refined, may contain some unnecessary background clutter,
whereas in the higher-layer features, the detailed information may be oversuppressed in the current
layer. To address these issues, we introduce an attention fuse (AttFuse) module, shown in Figure 4c.
This module combines features of these two branches by adaptive attention weights. Consider the
two feature maps FLL and FHL; the attention module concatenates them and feeds them through a
set of convolution layers (3× 3 conv and 1× 1 conv) and a sigmoid layer to produce an attention
map with two channels, with each channel specifying the importance of the corresponding feature
map. The attention maps are calculated as follows: A f = sigmoid (Concat [FLL, FHL]) . The attention
maps thus generated are then multiplied element-wise to produce the final higher- and lower-layer
fusion feature maps: Ff = A1

f � FLL + A2
f � FHL. Ff is a powerful and enriched multiscale feature by

combining the advantages of lower-layer features FLL and FHL.
Finally, the output feature F̃t of the MuAttFusion module is then fused with the same-layer features

by the RePyAtt module: F̃t = Concat
[

FSL, Ff

]
. It is worth noting that for the light-weight model,

the output feature and the same-layer features are directly fused to reduce the model parameters.
To further refine the features and reduce network parameters. ResConv shown in Figure 5 is

introduced. The ResConv block consists of one 1× 1 convolution and two 3× 3 dilated convolution,
with rates = 1 and 3. The 1× 1 convolution reduces the network channel, thereby reducing the network
parameters. Two 3× 3 dilated convolution can deepen the network to enhance its ability to capture
sophisticated features.

Figure 5. ResConv module used to refine the features and reduce network parameters.

2.4. Adaptive-ASPP Module

Objects within a remote sensing image typically have different sizes. Existing multiple branch
structures such as ASPP [10,11] and DenseASPP [57] are developed to learn features using filters
of different dilation rates in order to adapt to the scales. However, these approaches ignore the
same problem: different local regions may correspond to objects with different scales and geometric
variations. Thus, spatial adaptive filters are desired for different scales to tackle large feature variations
in remote sensing images.

Toward this end, inspired by the MuAttFusion module described in Section 2.3, an adaptive-ASPP
is designed to adapt to varied contents. The core of adaptive-ASPP is to adjust the combination weights
for different contents in a feature-embedded space. The CASINet [30] was proposed to solve this
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problem; it first uses a non-local operation to achieve the adaptive information interaction across
scales. However, the non-local operation [21] was used to exploit the long-range contexts for feature
refinement and its calculation cost is high. The non-local operation is not applicable for cross-scale
attention problems; this is also verified by our experiments. Different from the non-local operation, we
propose a novel cross-scale attention (CrsAtt) module based on the self-attention mechanism.

Cross-Scale Attention Module

The structure of the proposed CrsAtt module is shown in the top of Figure 6. CrsAtt first uses two
different scales to obtain the attention coefficients; then, it adaptively adjusts different scale feature
weights by element-wise multiplication of the input scale feature maps and attention coefficients.

Figure 6. Structure of the proposed adaptive-ASPP module. It is designed to adjust the combination
weights for varied contents in a feature-embedded space by using the proposed cross-scale attention
(CrsAtt) module (top). Image Pooling represents a global average pooling operation.

As depicted in Figure 6, consider five intermediate feature maps, {X1, X2, X3, X4, and X5},
obtained from five branches of the ASPP with each Xi ∈ RH×W×C (except X5, which is obtained by
image pooling of features). Information interaction is performed across each scale feature of four scales
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{X1, X2, X3, X4}, with each scale being a feature node. Then, CrsAtt operations are performed on the
four features. The feature of the ith scale is calculated as

Aji = σ2

(
ϕT
(

σ1

(
WT

g ∗ Xj + WT
x ∗ Xi

)))
,

X̂i = ∑
j=4
j=1
j 6=i

AjiXi + Xi, (4)

where σ1 = max(0, x) and σ2 = 1
1+e−x correspond to ReLU and Sigmoid activation functions,

respectively. ∗ denotes channel-wise 1× 1× 1 convolutional layer parameterized by Wx ∈ RC×Cint ,
Wg ∈ RC×Cint . In addition, ϕT ∈ RCint×1 is computed using channel-wise 1× 1× 1 convolutions.

Finally, the output of the adaptive-ASPP is obtained by concatenating {X̂1, X̂2, X̂3, X̂4, and X5}.

2.5. Heavy-Weight Spatial FFPNet Model

The heavy-weight spatial FFPNet model is achieved through the combination of the three
attention-based modules introduced in the previous sections. The configurations of the three-level
heavy-weight FFPNet is shown in Table 1. Concretely, consider an input image X ∈ RC×H×W , in which
C, H, and W denote the number of channels, height, and width of the image, respectively. First, the
image is fed it into the ResNet-101 [54] pretrained on the ImageNet dataset [55] to generate different
scale feature maps. In the first level of the pyramid, the features from the four stages of the backbone
are fed into ResConv to generate different scale feature maps x1, x2, x3, and x4, with 256 channels,
respectively. In addition, the output of the backbone is fed into the adaptive-ASPP module to generate
the feature map x5 to adaptively combine these context features. In the second level of the pyramid,
the intermediate features x2 and x3 are sent to RePyAtt based on region-based attention; x6 and x7 are
then generated after MuAttFusion. In the third level of the pyramid, the final predicted segmentation
map is generated after using MuAttFusion for x6, x7, and x5 again. Furthermore, BA loss [47] is utilized
to train the heavy-weight spatial FFPNet in an end-to-end manner to optimize the model parameters.
By the simple modification of cross entropy loss, the BA loss is utilized to solve the issue that the pixels
surrounding the boundary are hard to predict.

Table 1. Three-level heavy-weight spatial FFPNet configurations. The module parameters are denoted
as “module name(receptive fields of different convolutions)-number of modules-number of module
output channels”. Note that some complex modules only give the module name

Level Detailed Configurations

First-level pyramid

x1: Conv2d(7 × 7)-1-64 + ResConv(1 × 1 + 3 × 3 + 3 × 3)-1-256

x2: Maxpool + Block1(1 × 1 + 3 × 3 + 1 × 1)-3-256 + ResConv(1 × 1 + 3 × 3 + 3 × 3)-1-256

x3: Block2(1 × 1 + 3 × 3 + 1 × 1)-4-512 + ResConv(1 × 1 + 3 × 3 + 3 × 3)-1-256

x4: Block3(1 × 1 + 3 × 3 + 1 × 1)-23-1024 + Block4(1 × 1 + 3 × 3 + 1 × 1)-3-2048 + ResConv(1 × 1 + 3 × 3 + 3 × 3)-1-256

x5: Adaptive-ASPP

Second-level pyramid x7: RePyAtt + MuAttFusion(x1, x2, x3, x4) + ResConv(1 × 1 + 3 × 3 + 3 × 3)-1-256

x6: RePyAtt + MuAttFusion(x1, x2, x3, x4) + ResConv(1 × 1 + 3 × 3 + 3 × 3)-1-256

Third-level pyramid MuAttFusion(x5, x6, x7)

Parameter: 78.8 million

2.6. Spatial-Spectral FFPNet Model

To maximize the use of hyperspectral spatial and spectral information, instead of dealing with
the hypercube as a whole, the proposed spatial-spectral FFPNet model includes two CNN modules:
the light-weight spatial FFP module for learning multiscale spatial features and the spectral FFP
module for extracting spectral features along multiple dimensions. The features from the two modules
are then concatenated and fed to a fully connected classifier to perform spatial-spectral classification.
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2.6.1. Light-Weight Spatial Feature Fusion Pyramid Module

The light-weight spatial FFP module is a relatively shallow spatial feature extraction framework,
which only uses VGGNet-16 [56] as the backbone; the configurations of two-level light-weight spatial
FFP module is shown in Table 2. Compared with the heavy-weight spatial FFPNet, the light-weight one
only has 24.8 million trainable parameters owing to the small number of labeled hyperspectral samples.
Furthermore, MuAttFusion is utilized to fuse the useful features from x1, x2, and x3, generated by the
backbone after the execution of ResConv.

Table 2. Two-level light-weight spatial feature fusion pyramid configurations. The module parameters
are denoted as “module name(receptive fields)-number of modules-number of module output
channels”.

Level Detailed Configurations

First-level pyramid
x1: Conv2d(3 × 3)-2-64 + Conv2d(3 × 3)-2-128 + Maxpool + ResConv(1 × 1 + 3 × 3 + 3 × 3)-1-256

x2: Conv2d(3 × 3)-3-256 + Conv2d(3 × 3)-3-512 + Maxpool + ResConv(1 × 1 + 3 × 3 + 3 × 3)-1-256

x3: Conv2d(3 × 3)-3-512 + Maxpool + ResConv(1 × 1 + 3 × 3 + 3 × 3)-1-256

Second-level pyramid MuAttFusion(x1, x2, x3) + ResConv(1 × 1 + 3 × 3 + 3 × 3)-1-256

Parameter 24.8 million

2.6.2. Spectral Feature Fusion Pyramid Module

as shown in Figure 2, the spectral module can use multiple convolutional kernels to automatically
extract features from fine to coarse scales as convolutional layer progresses. Similarly, to solve the
problem of spectral redundancy of hyperspectral images, the spectral information can be compressed
by different channel dimensions from coarse to fine scales, and the useful features in the multiple
scales are selected and merged by the attention mechanism. Thus, the spectral FFP module extracts
the spectrum features of hyperspectral data more effectively. The configurations of the two-level
spectral FFP module are presented in Table 3. Specifically, the multiscale features can be divided
into three stages by different channels, with depths of 64, 32, and 16. Every stage contains a 3× 3
convolutional layer to reduce the dimension of features and a 1× 1 convolutional layer to further
enhance the expression ability of spectral features. MuAttFusion is then harnessed to extract and
combine useful features generated from the three stages.

Table 3. Two-level spectral feature fusion pyramid configurations. The module parameters are denoted
as “module name(receptive fields)-number of modules-number of module output channels”.

Level Detailed Configurations

First-level pyramid
x1: Conv2d(3 × 3 + 1 × 1)-1-64

x2: Conv2d(3 × 3 + 1 × 1)-1-32

x3: Conv2d(3 × 3 + 1 × 1)-1-16

Second-level pyramid MuAttFusion(x1, x2, x3)

Parameter 0.20 million

2.6.3. Merge

In the spatial-spectral FFPNet, the last step is the combination of the output features of the
light-weight spatial FFP and spectral FFP modules. The overall framework is shown in Figure 2.
To effectively merge the spatial and spectral features as well as express the fused spatial-spectral
features, first, the multiscale spatial features generated by the light-weight spatial FFP module and
the multi-dimensional spectral features extracted by the spectral FFP module are converted into a
one-dimensional tensor by a fully connected layer with the ReLU activation function. Then, the two
types of features are directly merged through concatenation. Finally, another fully connected layer
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with the ReLU activation function is used to further refine and represent the combined spectral–spatial
features, and a softmax activation layer predicts the probability distribution of each class.

Furthermore, to prevent the model from overfitting in case of limited hyperspectral datasets,
the dropout method [58] is used for the fully connected layers. Specifically, the dropout method
randomly selects hidden neurons as zero with a probability of 0.5. These dropped neurons will not
play a role in the forward and backward processes of the model.

3. Experiments

Numerical experiments were carried out on two high-resolution remote sensing datasets,
namely ISPRS Vaihingen dataset (http://www2.isprs.org/commissions/comm3/wg4/2d-sem-
label-vaihingen.html) and ISPRS Potsdam dataset (http://www2.isprs.org/commissions/comm3/
wg4/2d-sem-label-potsdam.html), to validate the effectiveness of the heavy-weight spatial
FFPNet segmentation model. Furthermore, in order to evaluate the performance of our newly
presented spatial-spectral FFPNet classification architecture, two popular hyperspectral image
datasets, namely the AVIRIS (Airborne Visible / Infrared Imaging Spectrometer) Indian
Pines dataset (http://www.ehu.eus/ccwintco/index.php/Hyperspectral-Remote-Sensing-Scenes#
Indian-Pines) and the University of Pavia dataset (http://www.ehu.eus/ccwintco/index.php/
Hyperspectral-Remote-Sensing-Scenes#Pavia-University-scene) were utilized.

3.1. Dataset Description and Baselines

3.1.1. High-Resolution Datasets

The Vaihingen dataset consists of 3-band IRRG (Infrared, Red and Green) image data acquired by
airborne sensors. There are 33 images with a spatial resolution of 9 cm. The average size of each image
is 2494× 2064 pixels. All datasets are labeled into the five foreground classes (impervious surfaces,
buildings, low vegetation, trees, and cars) and one background class (see Figure 7). Following the setup
in the online test, 16 images were used as a training set, while the remaining 17 images (Image IDs: 2,
4, 6, 8, 10, 12, 14, 16, 20, 22, 24, 27, 29, 31, 33, 35, 38) were used as a model testing set. We randomly
sampled the 512× 512 patches from the 33 images and the images were processed at the training stage
with normalization, random horizontal flip, and Gaussian blur. Finally, 6200 images were generated in
the training set and 1000 images in the testing set. The Potsdam dataset is composed of 38 images with
a spatial resolution of 5 cm and consists of IRRGB channels. IRRG and RGB images are utilized for the
segmentation model. The size of all images is 6000× 6000 pixels, which are annotated with pixel-level
labels of six classes corresponding to the Vaihingen dataset. To train and evaluate the heavy-weight
spatial FFPNet, we also followed the data partition method used in benchmark methods. 24 images
were selected as a training set and 14 images (Image IDs: 02_13, 02_14, 03_13, 03_14, 04_13, 04_14,
04_15, 05_13, 05_14, 05_15, 06_13, 06_14, 06_15, 07_13) as a testing set. We randomly sampled the
512× 512 patches from the original images and generated 14,000 patches for the training set and 3000
patches for the testing set. Similar to the Vaihingen dataset, the patches were processed at the training
stage with normalization, random horizontal flip, and Gaussian blur.

3.1.2. Hyperspectral Datasets

the AVIRIS Indian Pines (IP) dataset is gathered by the AVIRIS sensor. The image contains
224 spectral channels in the 400–2500 nm region of the visual and infrared spectra. As a conventional
setup, 24 spectral bands were removed owing to noise and the remaining 200 bands were utilized for
the experiments. The image is of size 145× 145 with a spatial resolution of 20 m per pixel, and its
ground truth contains sixteen different land-cover classes, which is shown in Figure 7. 10,249 pixels
were selected for manual labeling according to the ground truth map. The University of Pavia (UP)
dataset is recorded by the ROSIS-03 sensor. The image consists of 610× 340 pixels and 115 bands with
a spectral coverage ranging from 0.43 to 0.86 µm. After removing noisy bands, 103 bands were used.

http://www2.isprs.org/commissions/comm3/wg4/ 2d-sem-label-vaihingen.html
http://www2.isprs.org/commissions/comm3/wg4/ 2d-sem-label-vaihingen.html
http://www2.isprs.org/commissions/comm3/wg4/ 2d-sem-label-potsdam.html
http://www2.isprs.org/commissions/comm3/wg4/ 2d-sem-label-potsdam.html
http://www.ehu.eus/ccwintco/index.php/Hyperspectral-Remote-Sensing-Scenes#Indian-Pines
http://www.ehu.eus/ccwintco/index.php/Hyperspectral-Remote-Sensing-Scenes#Indian-Pines
http://www.ehu.eus/ccwintco/index.php/Hyperspectral-Remote-Sensing-Scenes#Pavia-University-scene
http://www.ehu.eus/ccwintco/index.php/Hyperspectral-Remote-Sensing-Scenes#Pavia-University-scene
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Nine classes of land covers were considered in the ground truth of this image, which are shown in
Figure 7.

Figure 7. Ground-truth images of different datasets and the number of image samples for
high-resolution datasets (Vaihingen and Potsdam) and pixel samples for hyperspectral datasets (the IP
and UP datasets).

3.1.3. Baselines

In order to evaluate the heavy-weight spatial FFPNet segmentation model, we chose
DeepLabv3+ [11] as our baseline. DeepLabv3+ fuses multiscale features by introducing low-level
features to refine high-level features; thus, state-of-the-art performance is achieved on many public
datasets. Furthermore, for the spatial-spectral classification model, a generally recognized deep
convolutional neural network proposed by Paoletti et al. [40] was utilized as the baseline for
hyperspectral image classification. The CNN is a 3-D network using spatial and spectral information,
which performs on hyperspectral datasets accurately and efficiently.

3.2. Evaluation Metrics

To evaluate the performance of the proposed models for segmentation and classification of
remote sensing images, F1 score, Overall Accuracy (OA), Average Accuracy (AA), mean Intersection
over Union (mIoU), and Kappa coefficient were used. First, for the measurement of heavy-weight
spatial FFPNet performance, the F1 score was calculated for the foreground object classes and for
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a comprehensive comparison of the heavy-weight spatial FFPNet with different models, OA for all
categories including background and mIoU were adopted. In addition, following a previous study [28],
the ground truth with eroded boundaries was utilized for the evaluation in order to reduce the impact
of uncertain border definitions. Second, AA, OA, and Kappa coefficient were used to measure the
performance of spatial-spectral FFPNet classification. More importantly, the average results of three
runs of all experiments of training and testing sets were calculated.

3.3. Heavy-Weight Spatial FFPNet Evaluation on High-Resolution Datasets

3.3.1. Implementation Details

The stochastic gradient descent (SGD) was employed as the optimizer of the heavy-weight spatial
FFPNet with momentum = 0.9 and weight decay = 5× 10−4. The initial learning rate = 2.5× 10−4,
a poly learning rate policy was used for the optimizer. The mini-batch size was set to 4 and the
maximum epoch was 10. In addition, the batch normalization and the ReLU function were used in
all layers, except for the output layers, where softmax units were used. Furthermore, inspired by the
baseline model (Deeplabv3+), the dropout method (with probability = 0.5 and 0.1) was employed in the
last layer of the decoder module to effectively avoid overfitting. We used Pytorch for implementation
on a high-performance computing cluster, with one NVIDIA Titan RTX 24 GB GPU. The average
training time for each experiment was approximately 20 h. Code will be made publicly available.

3.3.2. Experiments on Vaihingen Dataset

Ablation study. In the proposed heavy-weight spatial FFPNet, three novel attention based
modules extract and integrate multiscale features adaptively and effectively in remote sensing images.
To verify the effectiveness of these attention-based modules, extensive experiments in different settings
were conducted and the results are listed in Table 4. In addition, to study the adaptability of different
combinations of region sizes to object features, we investigated different combinations of groups in the
RePyAtt module, and the results are presented in Table 5.

As can be seen in Table 4, the three novel attention modules result in significant improvement
compared to the baseline (Deeplabv3+ with ResNet-101). Specifically, the use of the feature fusion
pyramid framework yields an OA of 90.64% and an mIoU of 80.37% , which are 2.55% and 7.54%
improvement, respectively, over the values yielded by the baseline. However, employing the ASPP
module in the framework can lead to a slight decline on the model performance. This result is mainly
because the ASPP module cannot solve well the issue of context feature fusion for geometric variations
in remote sensing images. By contrast, the adaptive-ASPP adapts to varied contents by the CrsAtt
module, thus improving the performance over the baseline by 2.82% and 8.51% in terms of OA and
mIoU, respectively. Therefore, it is demonstrated that the adaptive-ASPP can be widely used in other
related models in case of large appearance variations. Furthermore, the introduction of the BA loss
can improve the performance by approximately 0.20% and 0.51% in terms of OA and mIoU compared
with when the CE loss is used. Overall, the novel heavy-weight spatial FFPNet has great benefit in
dealing with the spatial object distribution diversity challenge in remote sensing images.

We further studied the effects of different combinations of groups in the RePyAtt module. Table 5
shows that the performance is optimal and robust when the combination is set to { 4× 4 level, 2× 2
level, and 1× 1 level}, in which the best OA and mIoU of 90.91% and 81.33%, respectively, are achieved.
In addition, it can be observed that more combinations of groups do not necessarily result in better
model performance. Thus, an optimal combination can be used to more effectively achieve region-wise
dependencies of objects, resulting in improved model performance.



Remote Sens. 2020, 12, 3501 16 of 34

Table 4. Results of the ablation study on the Vaihingen testing dataset; the values in bold are the best.
All results are the average of three runs with maximum epoch = 10 and mini-batch size = 4.

Method RePyAtt MuAttFusion Adaptive-ASPP ASPP CE Loss BA Loss OA(%) mIoU(%)

ResNet-101 Baseline (Deeplabv3+) √ √ 88.09 72.83
ResNet-101 + RePyAtt + MuAttFusion + BA √ √ √ 90.64 80.37

ResNet-101 + RePyAtt + MuAttFusion + ASPP + BA √ √ √ √ 90.37 79.96
ResNet-101 + RePyAtt + MuAttFusion + Adaptive-ASPP + BA √ √ √ √ 90.91 81.33
ResNet-101 + RePyAtt + MuAttFusion + Adaptive-ASPP + CE √ √ √ √ 90.71 80.82

Table 5. Results of the ablation study with different combinations of groups in the RePyAtt module;
the values in bold are the best. All results are the average of three runs with maximum epoch = 10 and
mini-batch size = 4.

Pyramid Combinations OA(%) mIoU(%)

{single pixel, 8, 4, 2, 1} 90.28 79.63
{single pixel, 4, 2, 1} 90.91 81.33

{single pixel, 2, 1} 90.49 80.08
{single pixel, 1} 90.66 80.39

Comparison with existing methods. To evaluate the effectiveness of the segmentation model,
we compare our model with other leading benchmark models and the results are shown in Table 6.
Specifically, FCNs [8] connect multiscale features by the skip architecture. DeepLabv3 [10] adopts the
ASPP module with global pooling operation to capture contextual features. UZ_1 [59] is a CNN model
based on encoder–decoder. Attention U-Net [24] fuses the adjacent-layer features based on attention
mechanisms. DeepLabv3+ [11] fuses multiscale features by introducing low-level features to refine
high-level features based on DeepLabv3 [10]. RefineNet [60] refines low-resolution semantic features
with fine-grained low-level features in a recursive manner to generate high-resolution semantic feature
maps. S-RA-FCN [9] produces relation-augmented feature representations by the spatial and channel
relation modules. ONE_7 [61] fuses the output of two multiscale SegNets [62]. DANet [22] adaptively
integrates local features with their global dependencies by two types of attention modules. GSN5 [12]
utilizes entropy as a gate function to select features. DLR_10 [63] combines boundary detection with
SegNet and FCN. PSPNet [64] exploits the capability of global context information by the pyramid
pooling module. Importantly, most of the models adopt the ResNet-101 as the backbone.

Table 6. Experimental results on the Vaihingen dataset; the values in bold are the best.

Method Imp. Surf. Build. Low Veg. Tree Car Mean F1(%) OA(%) mIoU(%)

FCNs [8] 88.11 91.36 77.10 85.70 75.03 83.46 85.73 72.12
DeepLabv3 [10] 87.75 92.04 77.47 85.85 65.21 81.66 86.48 70.05

UZ_1 [59] 89.20 92.50 81.60 86.90 57.30 81.50 87.30 -
Attention U-Net [24] 90.44 92.91 80.30 87.90 79.10 86.13 87.95 76.05

DeepLabv3+ [11] 90.03 93.13 79.08 87.09 68.94 83.65 88.09 72.83
RefineNet [60] 90.82 94.11 81.07 88.92 82.17 87.42 88.98 78.01
S-RA-FCN [9] 91.47 94.97 80.63 88.57 87.05 88.54 89.23 -

ONE_7 [61] 91.00 94.50 84.40 89.90 77.80 87.52 89.80 -
DANet [22] 91.63 95.02 83.25 88.87 87.16 89.19 89.85 80.53
GSN5 [12] 91.80 95.00 83.70 89.70 81.90 88.42 90.10 -

DLR_10 [63] 92.30 95.20 84.10 90.00 79.30 88.18 90.30 -
PSPNet [64] 92.79 95.46 84.51 89.94 88.61 90.26 90.85 82.58

Heavy-weight Spatial FFPNet 92.80 95.24 83.75 89.38 86.56 89.55 90.91 81.33

Table 6 indicates that the heavy-weight spatial FFPNet outperforms other context aggregation
or attention-based models in terms of OA. Specifically, we can see that the heavy-weight spatial
FFPNet outperforms the baseline model (DeepLabv3+ [11]), with 2.82% and 8.5% increase in OA
and mIoU, respectively. Importantly, the qualitative comparisons between our proposed model and
the baseline model are provided in Figure 8. The quantitative and qualitative analyses indicate that
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our method outperforms the DeepLabv3+ [11] method by a large margin. Furthermore, compared
with PSPNet [64], the heavy-weight spatial FFPNet achieves 0.06% improvement in OA but slightly
inferior results in some categories such as low vegetation, trees, and cars. However, compared with
other high-performance models (such as HMANet [28]) on the Vaihingen dataset, the performance of
the heavy-weight spatial FFPNet can be further improved by adopting some strategies such as data
augmentation and left-right flipping counterparts during inference.

Figure 8. Qualitative comparisons between our method and the baseline (Deeplabv3+) on the Vaihingen
dataset with 512 × 512 patches.

3.3.3. Experiments on Potsdam Dataset

In order to further validate the effectiveness of the segmentation model, we conducted
experiments on the Potsdam dataset. Table 7 shows the result of a comparison of the proposed
model with other excellent models, including DAT_6 [65], an end-to-end self-cascaded network
CASIA3 [5], and the other methods used for the comparison on the Vaihingen dataset. Notably, the
heavy-weight spatial FFPNet achieves an OA of 92.44% and mIoU of 86.20%, which are 0.02% and
1.32% improvement, respectively, compared to the values achieved by PSPNet. In addition, our F1
score of cars is much higher than that achieved by PSPNet and exceeds the second-best value achieved
by CCNet by 1.03%. Thus, the effectiveness of our proposed model in handling multiscale feature
fusion for the segmentation of remote sensing images is demonstrated.

Table 7. Experimental results on the Potsdam dataset; the values in bold are the best.

Method Image Type Imp. Surf. Build. Low Veg. Tree Car Mean F1(%) OA(%) mIoU(%)

UZ_1 [59] IRRG 89.30 95.40 81.80 80.50 86.50 86.70 85.80 -
FCNs [8] IRRG 89.05 93.34 83.54 83.67 89.48 87.82 86.40 78.48

Attention U-Net [24] IRRG 90.26 92.47 85.49 85.90 94.70 89.76 87.64 81.62
DeepLabv3 [10] IRRG 89.90 94.58 83.58 85.48 73.24 85.36 87.73 75.12
S-RA-FCN [9] IRRG 91.33 94.70 86.81 83.47 94.52 90.17 88.59 82.38
RefineNet [60] IRRG 91.17 95.13 85.22 87.69 95.15 90.87 89.16 83.51

DeepLabv3+ [11] IRRG 92.27 95.52 85.71 86.04 89.42 89.79 89.60 81.69
DST_6 [65] IRRG 92.40 96.40 86.80 87.70 93.40 91.34 90.20 -
DANet [22] IRRG 91.50 95.83 87.21 88.79 95.16 91.70 90.56 83.77

AZ3 IRRG 93.10 96.30 87.20 88.60 96.00 92.24 90.70 -
CASIA3 [5] IRRG 93.40 96.80 87.60 88.30 96.10 92.44 91.00 -
PSPNet [64] IRRG 93.36 96.97 87.75 88.50 95.42 92.40 91.08 84.88

Heavy-weight Spatial FFPNet IRRG 93.61 96.70 87.31 88.11 96.46 92.44 91.10 86.20
Heavy-weight Spatial FFPNet RGB 92.82 96.29 86.71 88.52 96.48 92.16 90.54 85.72

In addition, the quantitative comparison results are shown in Figure 9. The third and fourth
columns represent the results of the baseline and the proposed models, respectively. Obviously,
the visualization results in the fourth column are better than those in the third column. Moreover,
as Table 7 indicates, the proposed model shows an improvement of 1.5% in OA and 4.51% in mIoU
compared with the values achieved by DeepLabv3+ [11]. Therefore, it has been further demonstrated
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that the heavy-weight spatial FFPNet can effectively extract and fuse the spatial features of remote
sensing images, thereby improving the segmentation performance of high-resolution images.

Figure 9. Qualitative comparisons between our method and the baseline (Deeplabv3+) on the Potsdam
dataset with 512 × 512 patches.

Comparison between IRRG and RGB. Generally, the high-resolution remote sensing images
are RGB band data. Therefore, it is necessary to compare the two types of available input images
for the high-weight spatial FFPNet, including IRRG and RGB modes. The results of the last two
rows in Table 7 show that the overall results of the two modes are a little difference. Specifically,
the IRRG images improve the average performance by about 0.5% comparing to the RGB images.
Again, the visualization results in Figure 10 show that the IRRG images can obtain better segmentation
maps.

Figure 10. Qualitative comparisons of the two types of available input images (IRRG and RGB) on the
Potsdam test set
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3.4. Spatial-Spectral FFPNet Evaluation on Hyperspectral Datasets

3.4.1. Implementation Details

Data preprocessing. When the hyperspectral images are divided into training and testing sets, the
imbalance between categories brings difficulties for model training. For example, in the IP dataset, the
“Oats” class has 20 labeled pixels, while the “Soybean-mintill” class has 2455 labeled pixels. To ensure
comparability of data as much as possible, the same data processing strategy as the baseline [40]
is used to deal with the imbalance of categories, that is, optimally selecting the number of samples
of each category. Importantly, some lower data setups were added to highlight the superiority of
the spatial-spectral FFPNet. Specifically, a maximum number of samples per category was set as a
threshold to select the number of samples, that is, 50, 100, 150, and 200, per category. For the richer
class samples, we simplified split the samples on the basis of the threshold. On contrary, when the
number of class samples was less than twice the threshold, 50% samples of the corresponding class
were selected. Detailed training sample schemes for the IP dataset are listed in Table 8, and the same
schemes are adopted for the UP dataset as shown in Table 9. It is worth noting that the number of
samples in both datasets is less than or equal to that in the baseline [40]; we conducted more sampling
schemes for subsequent experiments.

Model setup. The proposed spatial-spectral FFPNet was initialized with two strategies:
the backbone of the light-weight spatial FFP module was initialized with VGGNet16 pretrained
on ImageNet [55]. Importantly, the parameters (weights and bias) of the first convolutional layer
in the pretrained network only include three channels, while the hyperspectral classification task
requires p-channel inputs (for example, 200 channels for the IP dataset and 103 channels for the
UP dataset). Therefore, we copied the initialization parameters of the first convolutional layer
in the pretrained network until the p-channel inputs were reached, similarly to CoinNet [66].
By contrast, the spectral FFP module was initialized with Kaiming uniform distribution. In addition,
different from high-resolution experiments, the cross-entropy loss function was used to minimize the
spatial-spectral FFPNet parameters because of the quantity limitation of labeled hyperspectral images.
Batch normalization and ReLU were used in all layers, except for the classifier layer. Adam [67] was
employed as the optimizer with a learning rate of 0.001. The mini-batch size was set to 24 for both
datasets, and the maximum epoch was 200. The experiments were conducted on a high-performance
computing cluster with one NVIDIA Titan RTX 24 GB GPU.

Table 8. Number of training samples used by the spatial-spectral FFPNet for the IP dataset.

IP

Class Pixels 200 Samples
per Category

150 Samples
per Category

100 Samples
per Category

50 Samples
per Category

200 Samples
per Category in [40]

Alfalfa 46 23 23 23 23 33
Corn-notill 1428 200 150 100 50 200

Corn-mintill 830 200 150 100 50 200
Corn 237 118 118 100 50 181

Grass-pasture 483 200 150 100 50 200
Grass-trees 730 200 150 100 50 200

Grass-pasture-mowed 28 14 14 14 14 20
Hay-windrowed 478 200 150 100 50 200

Oats 20 10 10 10 10 14
Soybeans-notill 972 200 150 100 50 200

Soybeans-mintill 2455 200 150 100 50 200
Soybeans-clean 593 200 150 100 50 200

Wheat 205 102 102 100 50 143
Woods 1265 200 150 100 50 200

Bldg-grass-tree-drives 386 193 150 100 50 200
Stone-steel-towers 93 46 46 46 46 75

Total 10,249 2306 1813 1293 693 2466
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Table 9. Number of training samples used by the spatial-spectral FFPNet for the UP dataset.

UP

Class Pixels 200 Samples
per Category

150 Samples
per Category

100 Samples
per Category

50 Samples
per Category

200 Samples
per Category in [40]

Asphalt 6631 200 150 100 50 200
Meadows 18,649 200 150 100 50 200

Gravel 2099 200 150 100 50 200
Trees 3064 200 150 100 50 200

Painted metal sheets 1345 200 150 100 50 200
Bare soil 5029 200 150 100 50 200
Bitumen 1330 200 150 100 50 200

Self-blocking bricks 3682 200 150 100 50 200
Shadows 947 200 150 100 50 200

Total 42,776 1800 1350 900 450 1800

3.4.2. Ablation Study

In order to analyze the effectiveness of the proposed spatial-spectral FFPNet in hyperspectral
image classification, two aspects are mainly considered. First, to analyze how the training set, including
the number of samples and sample patch size, and data augmentation affect the performance of
hyperspectral image classification, we conducted different ablation studies. Second, in order to analyze
the impact of spatial and spectral models on the performance of hyperspectral image classification,
the ablation experiments of the spatial FFPNet, spectral FFPNet, and spatial-spectral FFPNet were
conducted for the IP and UP hyperspectral image datasets.

(1) Sample patch size. We conducted an ablation study for different sample patch sizes. For the
IP dataset, patch sizes d = 9, 15, 19 and 29 were considered, and for the UP dataset, d = 9, 15, 21, and
27 were tested. The different patch sizes determine the different amount of spatial information that
can be utilized for hyperspectral image classification. Table 10 shows the total training times and
accuracy results with different patch sizes for a fixed number of samples (100) per category. On both
datasets, as more pixels are added, more useful contextual spatial information could be utilized by
the spatial-spectral FFPNet model. Thus, the model achieves better performance in the case of more
spatial information while also spending more training time. However, as the patch size is further
increased, such as d = 27 for the UP dataset, the model performance slightly decreases; this is because
a patch containing too many other classes can detract from the target pixel. Specifically, for the IP data,
d = 29 obtains the best performance, with an OA of 98.76%. However, the average training time for d =
29 is considerably longer than that for the other groups (almost twice that for d = 19). In terms of the
accuracy to time ratio, d = 19 yields the best performance for the IP dataset, with an OA of 98.50% for
an average training time of 14.66 min. For the UP dataset, d = 21 achieves the best result in terms of the
accuracy–time ratio, resulting in an OA of 98.82% for an average training time of 8.16 min. In addition,
d = 15 requires the minimum training time (7.06 min) to achieve an acceptable accuracy (96.41%).

(2) Sample per category. In order to evaluate the impact of the number of samples per category
on the model performance, many experiments with different patch sizes and different number of
training samples, that is, 50, 100, 150, and 200, per category were conducted.

The classification accuracy results in terms of OA, AA, and kappa coefficients obtained for the
IP dataset are presented in Table 11. Obviously, according to the results of each patch size (d = 9, 15,
19, and 29), as more training samples per category are added, the accuracy of the proposed model
classification increases, and the training time also increases. Concretely, when the number of samples
is small, the model can achieve a superior classification result; that is, with d = 9, 15, 19, and 29 and 50
samples per category, OA values of 82.12%, 86.44%, 89.79%, and 94.64%, respectively, are achieved.
Therefore, it is confirmed that the spatial-spectral FFPNet model can fully use multiscale spatial and
spectral information to achieve more robust and accurate end-to-end hyperspectral image classification
with a small number of training samples. Furthermore, with 200 samples per category, the best OA
value of 99.84% of all groups is achieved for d = 29, and the OA values for d = 9, 15, and 19 vary
by not more than 0.8%. All of the groups with 200 samples per category attain values above 99%;
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this further shows the spatial-spectral FFPNet’s robustness and the ability to express and extract
multiscale features.

Table 10. Total training time (in minutes) and accuracy evaluation with different patch sizes d = 9, 15,
19, and 29 for the IP dataset and d = 9, 15, 21, and 27 for the UP dataset; the values in bold are the best.
All results are the average of three runs with 100 samples per category; maximum epoch = 200 and
mini-batch size = 24.

Dataset Patch Size Total Time Accuracy

OA AA Kappa

IP

d = 9 15.13 96.30 98.31 95.73
d = 15 17.86 96.78 98.68 96.29
d = 19 14.66 98.50 99.16 98.27
d = 29 21.57 98.74 99.43 98.57

UP

d = 9 9.12 91.37 91.28 88.60
d = 15 7.06 96.41 96.14 95.25
d = 21 8.16 98.82 98.37 98.44
d = 27 9.60 97.29 97.26 96.42

Table 11. Classification accuracies obtained by the proposed spatial-spectral FFPNet (with sample
patch sizes d = 9, 15, 19, and 29) for the IP dataset. The values in bold are the best under different
sample patch sizes. All results are the average of three runs with maximum epoch = 200 and mini-batch
size = 24.

Sample Patch Size d = 9 d = 15 d = 19 d = 29

Samples per Category 50 100 150 200 50 100 150 200 50 100 150 200 50 100 150 200

Alfalfa 100.00 100.00 95.65 95.65 100.00 100.00 95.65 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Corn-notill 73.66 95.63 98.83 98.78 74.38 94.65 98.51 99.35 83.16 99.32 99.53 99.59 87.11 99.72 100.00 100.00

Corn-mintill 72.69 98.63 98.97 99.84 86.03 97.40 99.71 98.25 97.44 96.30 99.56 99.05 95.65 100.00 100.00 100.00
Corn 93.58 100.00 100.00 100.00 100.00 100.00 100.00 100.00 98.93 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Grass-pasture 90.76 98.96 98.80 100.00 97.46 99.48 100.00 100.00 93.07 97.65 98.80 98.94 95.83 98.33 100.00 100.00
Grass-trees 97.06 98.10 99.31 99.62 97.50 99.84 100.00 100.00 97.35 99.05 100.00 98.87 95.05 98.35 99.45 100.00

Grass-pasture-mowed 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Hay-windrowed 97.20 100.00 100.00 100.00 98.36 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Oats 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Soybeans-notill 78.98 94.01 99.75 99.33 87.04 99.19 97.78 99.73 87.15 97.81 99.51 100.00 98.26 98.70 99.57 100.00

Soybeans-mintill 70.73 93.25 94.84 98.58 74.80 93.25 97.53 99.38 80.79 97.54 95.75 99.78 91.19 96.41 99.35 99.35
Soybean-clean 86.37 99.19 99.55 99.24 94.66 98.58 98.87 100.00 96.87 98.99 100.00 100.00 98.65 99.32 99.32 100.00

Wheat 98.71 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Woods 94.07 97.94 98.57 98.78 96.79 98.63 99.64 99.34 93.83 99.91 100.00 100.00 98.73 100.00 99.68 100.00

Bldg-grass-tree-drives 99.11 97.20 100.00 100.00 98.51 97.90 100.00 100.00 100.00 100.00 100.00 100.00 96.88 100.00 100.00 100.00
Stone-steel-towers 100.00 100.00 100.00 95.74 100.00 100.00 100.00 100.00 97.87 100.00 100.00 100.00 100.00 100.00 100.00 100.00

OA 82.12 96.30 97.98 99.07 86.44 96.78 98.74 99.47 89.79 98.50 98.63 99.68 94.65 98.74 99.69 99.84

AA 90.81 98.31 99.02 99.10 94.10 98.68 99.23 99.75 95.40 99.16 99.57 99.76 97.34 99.43 99.84 99.96

Kappa 79.65 95.73 97.65 98.90 84.56 96.29 98.53 99.38 88.35 98.27 98.41 99.63 93.93 98.57 99.64 99.82

Run time 9.24 15.13 20.39 22.55 8.21 17.86 28.47 31.44 10.37 14.66 23.12 34.05 15.43 21.57 27.41 37.38

The qualitative results obtained for the IP dataset for patch sizes of d = 9, 15, 19, and 29,
respectively, with 50, 100, 150, and 200 samples per category, are provided in Figures 11–14. First, the
visualization results of the confusion matrix for each category indicate that as more training samples
are added, the color of the diagonal area gets brighter, while the other areas become more unified
to blue. This indicates that the classification results of each class are improving. In addition, as the
patch size increases, the accuracy of each class increases. However, when relatively adequate training
samples are used in the network, the accuracy of each class is relatively similar (e.g., d = 9, 15, 19, and
29 with 200 samples per category, and d = 29 with 150 samples per category). Second, according to
the classification maps acquired from each experiment, shown in Figures 11–14, the best results are
achieved with 200 samples per category, especially for d = 19 and 29 with 200 samples per category;
these are the most similar to the ground truth map of the IP image. Specifically, when the number of
spatial pixels is small (d = 9, 15, and 19 with 50 samples per category), a small part of the middle pixels
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of the areas in some categories could be misclassified, especially for d = 9 with 50 samples per category.
However, when the number of training samples per category increases to 100, these middle pixels are
accurately classified. Furthermore, when the number of training samples is less, a small number of
pixels near the edges are easily misclassified; we call this the “boundary error effect”. However, with
increasing training samples, the boundary error effect gradually weakens or even disappears for 150
training samples per category. More importantly, the overall classification result is generally excellent
when the sample size is extremely small (i.e., for d = 9, 15, 19, and 29 with 50 samples per category).
This demonstrates that the proposed model can better address the problem of overfitting when less
hyperspectral samples are available.

Figure 11. Classification results for the IP image with d = 9 and number of samples per category =
50 (first column), 100 (second column), 150 (third column), and 200 (fourth column). The upper row
represents the visualization results of the confusion matrix for each category on the testing set (the
more prominent the color of the diagonal area, the better the result) and the lower row represents the
qualitative results of classification

Figure 12. Classification results for the IP image with d = 15 and number of samples per category =
50 (first column), 100 (second column), 150 (third column), and 200 (fourth column). The upper row
represents the visualization results of the confusion matrix for each category on the testing set (the
more prominent the color of the diagonal area, the better the result) and the lower row represents the
qualitative results of classification
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Figure 13. Classification results for the IP image with d = 19 and number of samples per category =
50 (first column), 100 (second column), 150 (third column), and 200 (fourth column). The upper row
represents the visualization results of the confusion matrix for each category on the testing set (the
more prominent the color of the diagonal area, the better the result) and the lower row represents the
qualitative results of classification

Figure 14. Classification results for the IP image with d = 29 and number of samples per category =
50 (first column), 100 (second column), 150 (third column), and 200 (fourth column). The upper row
represents the visualization results of the confusion matrix for each category on the testing set (the
more prominent the color of the diagonal area, the better the result) and the lower row represents the
qualitative results of classification

Table 12 lists the results for the UP dataset. For every patch size, as the training samples increase,
the model performance gradually improves. Notably, the model performance is more sensitive when
the sample size is exceedingly small. For example, for d = 9 and 15 with 50 samples per category,
the model performance in terms of OA for the UP dataset is less than 80%, while it improves to more
than 90% when the samples per category are increased to 100. Furthermore, the sensitivity of the
model performance to the small amount of training data and a large number of model parameters can
be better addressed by data enhancement methods such as random rotation and addition of random noise.
The effectiveness of data augmentation will be discussed in the third ablation analysis. Furthermore,
d = 27 with 200 samples per category can be regarded as the best setting for the UP dataset as an OA of
99.53% is achieved. However, the model performance for d = 15 and 21 with 200 samples per category
differs from the performance for d = 27 with 200 samples per category by less than 0.4%. In terms of
the training time, d = 15 or d = 21 is a better choice.
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Table 12. Classification accuracies obtained by the proposed spatial-spectral FFPNet (with sample
patch sizes of d = 9, 15, 21, and 27) for the UP dataset. The values in bold are the best under different
sample patch sizes. All results are the average of three runs with maximum epoch = 200 and mini-batch
size = 24.

Sample Patch Size d = 9 d = 15 d = 21 d = 27

Samples per Category 50 100 150 200 50 100 150 200 50 100 150 200 50 100 150 200

Asphalt 66.14 88.65 95.72 96.32 78.03 94.57 98.19 98.19 93.54 97.34 98.97 97.59 92.28 91.61 99.70 99.82
Meadows 87.47 94.64 98.09 97.96 92.86 97.98 99.44 99.98 97.68 99.81 99.89 99.91 97.45 99.31 99.68 99.85

Gravel 49.62 90.27 97.14 95.99 91.03 96.37 99.43 98.66 89.12 98.09 99.81 99.81 93.32 98.66 99.05 99.05
Trees 57.44 86.03 87.86 90.60 59.79 92.95 96.08 96.61 72.19 94.39 94.39 96.34 83.16 93.34 94.26 96.61

Painted metal sheets 95.24 97.62 99.40 100.00 97.92 98.81 99.70 99.11 98.51 98.51 100.00 100.00 96.13 99.40 99.70 100.00
Bare Soil 18.46 87.59 96.26 93.95 60.14 98.41 99.68 100.00 94.99 99.68 100.00 100.00 95.78 100.00 100.00 100.00
Bitumen 94.88 98.49 99.40 97.59 98.49 98.80 99.40 100.00 97.59 100.00 100.00 100.00 97.59 100.00 100.00 100.00

Self-Blocking Bricks 36.96 84.46 95.98 96.30 36.74 90.00 98.70 99.02 77.39 99.24 97.28 98.04 71.09 93.91 97.72 99.13
Shadows 79.65 93.81 96.02 97.35 79.65 97.35 100.00 98.23 93.36 98.23 98.67 100.00 95.13 99.12 95.58 99.56

OA 67.99 91.37 96.58 96.51 79.47 96.41 98.99 99.25 92.66 98.82 99.12 99.15 92.87 97.29 99.05 99.53

AA 65.09 91.28 96.21 96.23 77.18 96.14 98.96 98.87 90.49 98.37 98.78 99.08 91.33 97.26 98.41 99.33

Kappa 56.52 88.60 95.47 95.37 72.73 95.25 98.66 99.01 90.24 98.44 98.83 98.87 90.55 96.42 98.75 99.38

Run time 4.91 9.12 13.23 15.48 4.79 7.06 12.40 14.05 4.90 8.16 11.50 14.55 5.04 9.60 13.66 18.45

(3) Data enhancement. We used random horizontal and vertical flips, random rotation (with
angles 90°, 180°, and 270°) to enhance small-scale hyperspectral datasets. To further test the
effectiveness of the spatial-spectral FFPNet subjected to data enhancement when the training samples
are intensely limited, 50 samples per category for the IP dataset and the UP dataset were utilized.
To highlight the superiority of the proposed model purely, it is worth noting that data enhancement
techniques were not used in other experiments in this paper because the baseline model [40] does not
use data enhancement.

The ablation study results of data enhancement, with sample patch sizes of d = 9, 15, 19, and 29
and 50 samples per category on the IP and UP datasets are shown in Tables 13 and 14, respectively.
Clearly, the classification accuracy of the spatial-spectral FFPNet with data enhancement is significantly
higher than that of the spatial-spectral FFPNet. The accuracy difference between the two datasets
reaches 2–20% in terms of OA. The performance of the model with data enhancement is more dominant
for the UP dataset, which is due to the lower ratio of training samples to total samples. Specifically,
with d = 9, for the IP dataset, the difference between the spatial-spectral FFPNet with data enhancement
and the spatial-spectral FFPNet models is 8.20%, while the corresponding difference for the UP dataset
is 19.93%. As the spatial information increases (patch size increases), the performance advantage
of the data-enhanced model gradually decreases. For example, in terms of OA, the performance of
data-enhanced model is 3.22% higher than that of spatial-spectral FFPNet for the IP dataset with d = 29,
and the performance of the spatial-spectral FFPNet improves by 2.71% for the UP dataset with d = 27
by data enhancement. Thus, in case of an extremely small quantity of the labeled hyperspectral dataset,
the spatial-spectral FFPNet with data enhancement may be the best choice.

(4) Spatial FFPNet, spectral FFPNet, and spatial-spectral FFPNet. As mentioned in the method
section, the spectral FFPNet focuses on the extraction and fusion of multi-scale spectral features, while
the spatial FFPNet focuses more on effective extraction and integration of context spatial features
by the use of attention-based modules. The effects of spectral-only and spatial-only models on the
performance of hyperspectral data classification as well as the effectiveness of the spatial-spectral
FFPNet model require further analysis. Thus, we conducted ablation studies on the spatial-only,
spectral-only, and spatial-spectral FFPNet models. The spatial-only and spectral-only models
correspond to the light-weight spatial FFP module and the spectral FFP module in Figure 2 with
fully connected classifiers, respectively.
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Table 13. Ablation study of data enhancement to spatial-spectral FFPNet performance (with sample
patch sizes of d = 9, 15, 19, and 29 and 50 samples per category) on the IP dataset; the values in bold are
the best. All results are the average of three runs with maximum epoch = 200 and mini-batch size = 24.

Class

Methods d = 9 d = 15 d = 19 d = 29

Spatial-Spectral
FFPNet

Spatial-Spectral
FFPNet +

Data Enhancement

Spatial-Spectral
FFPNet

Spatial-Spectral
FFPNet +

Data Enhancement

Spatial-Spectral
FFPNet

Spatial-Spectral
FFPNet +

Data Enhancement

Spatial-Spectral
FFPNet

Spatial-Spectral
FFPNet +

Data Enhancement

Alfalfa 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Corn-notill 73.66 82.22 74.38 89.84 83.16 96.81 87.11 98.60
Corn-min 72.69 95.90 86.03 95.64 97.44 98.46 95.65 98.55

Corn 93.58 98.40 100.00 100.00 98.93 100.00 100.00 98.31
Grass/Pasture 90.76 91.69 97.46 97.00 93.07 94.46 95.83 95.83

Grass/Trees 97.06 94.12 97.50 98.68 97.35 98.09 95.05 100.00
Grass/pasture-mowed 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Hay-windrowed 97.20 99.77 98.36 99.30 100.00 100.00 100.00 100.00
Oats 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Soybeans-notill 78.98 87.25 87.04 84.53 87.15 96.08 98.26 97.39
Soybeans-min 70.73 84.24 74.80 93.43 80.79 94.97 91.19 94.62
Soybean-clean 86.37 97.97 94.66 99.08 96.87 97.05 98.65 99.32

Wheat 98.71 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Woods 94.07 95.06 96.79 99.92 93.83 98.60 98.73 100.00

Bldg-Grass-Tree-Drives 99.11 99.70 98.51 99.11 100.00 99.70 96.88 100.00
Stone-steel 100.00 100.00 100.00 100.00 97.87 97.87 100.00 100.00

OA 82.12 90.32 86.44 94.68 89.79 97.02 94.65 97.88

AA 90.81 95.39 94.10 97.28 95.40 98.26 97.34 98.91

Kappa 79.65 88.95 84.56 93.89 88.35 96.58 93.93 97.58

Table 14. Ablation study of data enhancement to spatial-spectral FFPNet performance (with sample
patch sizes of d = 9, 15, 21, and 27 and 50 samples per category on the UP dataset; the values in bold are
the best. All results are the average of three runs with maximum epoch = 200 and mini-batch size = 24.

Class

Methods d = 9 d = 15 d = 21 d = 27

Spatial-Spectral
FFPNet

Spatial-Spectral
FFPNet +

Data Enhancement

Spatial-Spectral
FFPNet

Spatial-Spectral
FFPNet +

Data Enhancement

Spatial-Spectral
FFPNet

Spatial-Spectral
FFPNet +

Data Enhancement

Spatial-Spectral
FFPNet

Spatial-Spectral
FFPNet +

Data Enhancement

Asphalt 66.14 91.37 78.03 90.83 93.54 97.16 92.28 88.17
Meadows 87.47 89.94 92.86 98.07 97.68 98.33 97.45 97.73

Gravel 49.62 72.90 91.03 88.17 89.12 91.22 93.32 96.95
Trees 57.44 84.73 59.79 90.08 72.19 81.07 83.16 90.73

Painted metal sheets 95.24 96.73 97.92 98.81 98.51 99.40 96.13 98.21
Bare Soil 18.46 85.28 60.14 99.28 94.99 97.69 95.78 98.81
Bitumen 94.88 92.47 98.49 99.70 97.59 100.00 97.59 100.00

Self-Blocking Bricks 36.96 80.00 36.74 87.72 77.39 91.74 71.09 94.35
Shadows 79.65 93.81 79.65 92.48 93.36 97.79 95.13 96.02

OA 67.99 87.92 79.47 95.09 92.66 95.99 92.87 95.59

AA 65.09 87.47 77.18 93.90 90.49 94.93 91.33 95.66

Kappa 56.52 84.19 72.73 93.52 90.24 94.68 90.55 94.19

Tables 15 and 16, respectively, present the results of a comparison of different models on the
IP and UP datasets with sample patch sizes of d = 9, 15, 21, and 27 and 100 samples per category.
Obviously, on both datasets, the performance of the spatial-spectral FFPNet model is significantly
better than that of the exclusive spatial FFPNet and spectral FFPNet, especially when a small amount
of spatial information is considered. Specifically, when d = 9, for the IP dataset, the OA value of
the spatial-spectral model shows an improvement of 3.15% and 6.77% compared with the values
achieved by the spatial-only and spectral-only models, respectively. In addition, the spatial-only
and spectral-only models are more unstable and have limited accuracy for the UP dataset when
spatial information is restricted (i.e., when d = 9, the spatial-spectral model shows an improvement
of 12.39% and 33.26% compared with the values achieved by spatial-only and spectral-only models,
respectively). Therefore, it is demonstrated that spatial information (the neighboring pixels) and
spectral information should be simultaneously considered in the model to obtain an excellent
classification result. Furthermore, the proposed spatial-spectral FFPNet model can effectively extract
and fuse multiscale spatial and spectral features to achieve high classification accuracy even with a
few training samples. However, Tables 15 and 16 indicate that when the number of training samples is
sufficient, the performance gap between the three models is not very large, especially for the IP dataset.
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Table 15. Ablation study of the spatial FFPNet, spectral FFPNet, and spatial-spectral FFPNet with
sample patch sizes of d = 9, 15, 19, and 29 and 100 samples per category on the IP dataset; the values in
bold are the best. All results are the average of three runs with maximum epoch = 200 and mini-batch
size = 24.

Sample Patch Size d = 9 d = 15 d = 19 d = 29

Models Spatial
FFPNet

Spectral
FFPNet

Spatial-Spectral
FFPNet

Spatial
FFPNet

Spectral
FFPNet

Spatial-Spectral
FFPNet

Spatial
FFPNet

Spectral
FFPNet

Spatial-Spectral
FFPNet

Spatial
FFPNet

Spectral
FFPNet

Spatial-Spectral
FFPNet

Alfalfa 100.00 100.00 100.00 100.00 100.00 100.00 95.65 100.00 100.00 100.00 100.00 100.00
Corn-notill 92.77 81.10 95.63 93.07 95.48 94.65 99.47 96.39 99.32 98.04 99.72 99.72

Corn-mintill 96.30 95.75 98.63 92.74 96.30 97.40 96.71 97.53 96.30 99.52 100.00 100.00
Corn 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Grass-pasture 96.61 98.43 98.96 97.13 97.13 99.48 97.91 95.82 97.65 94.17 96.67 98.33
Grass-trees 95.87 97.94 98.10 97.78 95.56 99.84 98.10 99.52 99.05 98.90 97.80 98.35

Grass-pasture-mowed 57.14 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Hay-windrowed 99.74 98.94 100.00 98.41 99.47 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Oats 100.00 90.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Soybeans-notill 90.09 86.87 94.01 96.43 95.28 99.19 97.70 96.31 97.81 98.26 98.26 98.70

Soybeans-mintill 87.90 81.44 93.25 95.16 91.00 93.25 95.54 95.12 97.54 98.04 96.90 96.41
Soybean-clean 95.94 96.55 99.19 96.15 97.77 98.58 99.19 96.75 98.99 97.30 100.00 99.32

Wheat 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Woods 95.71 95.62 97.94 98.28 98.45 98.63 99.91 99.48 99.91 100.00 100.00 100.00

Bldg-grass-tree-drives 99.30 96.50 97.20 96.50 97.20 97.90 100.00 100.00 100.00 100.00 98.96 100.00
Stone-steel towers 97.87 95.74 100.00 97.87 95.74 100.00 100.00 100.00 100.00 100.00 100.00 100.00

OA 93.15 89.53 96.30 95.86 95.31 96.78 97.97 97.16 98.50 98.55 98.70 98.74

AA 94.08 94.68 98.31 97.47 97.46 98.68 98.76 98.56 99.16 99.01 99.27 99.43

Kappa 92.10 87.95 95.73 95.20 94.58 96.29 97.65 96.72 98.27 98.34 98.52 98.57

Run time 13.37 5.80 15.13 15.88 8.68 17.86 14.42 8.48 14.66 16.67 16.01 21.57

Table 16. Ablation study of the spatial FFPNet, spectral FFPNet, and spatial-spectral FFPNet with
sample patch sizes of d = 9, 15, 21, and 27 and 100 samples per category on the UP dataset; the values in
bold are the best. All results are the average of three runs with maximum epoch = 200 and mini-batch
size = 24.

Sample Patch Size d = 9 d = 15 d = 21 d = 27

Models Spatial
FFPNet

Spectral
FFPNet

Spatial-Spectral
FFPNet

Spatial
FFPNet

Spectral
FFPNet

Spatial-Spectral
FFPNet

Spatial
FFPNet

Spectral
FFPNet

Spatial-Spectral
FFPNet

Spatial
FFPNet

Spectral
FFPNet

Spatial-Spectral
FFPNet

Asphalt 79.48 57.82 88.65 90.04 81.41 94.57 91.43 94.39 97.34 88.47 84.67 91.61
Meadows 84.34 62.46 94.64 95.35 96.42 97.98 98.01 97.81 99.81 98.26 95.92 99.31

Gravel 76.91 68.70 90.27 90.27 91.79 96.37 98.09 94.47 98.09 97.90 97.52 98.66
Trees 76.89 54.44 86.03 80.68 78.98 92.95 87.60 69.84 94.39 93.08 83.29 93.34

Painted metal sheets 97.62 93.45 97.62 94.35 97.92 98.81 99.11 96.73 98.51 99.40 98.51 99.40
Bare SoilC 60.78 29.91 87.59 90.06 89.58 98.41 99.92 99.12 99.68 99.68 99.84 100.00
Bitumen 94.58 96.08 98.49 97.89 97.89 98.80 99.40 100.00 100.00 100.00 100.00 100.00

Self-Blocking Bricks 63.15 37.28 84.46 86.30 64.13 90.00 88.70 84.67 99.24 85.65 87.61 93.91
Shadows 91.59 91.59 93.81 92.48 91.59 97.35 97.35 97.35 98.23 97.35 93.36 99.12

OA 78.98 58.11 91.37 91.81 89.02 96.41 95.73 94.16 98.82 95.51 93.25 97.29

AA 80.59 65.75 91.28 90.82 87.75 96.14 95.51 92.71 98.37 95.53 93.41 97.26

Kappa 72.42 47.10 88.60 89.23 85.50 95.25 94.37 92.22 98.44 94.07 91.09 96.42

Run time 5.83 2.24 9.12 5.04 3.12 7.06 6.57 3.39 8.16 7.63 4.97 9.60

3.4.3. Comparison with Existing CNN Methods

To further verify the effectiveness and superiority of the spatial-spectral FFPNet model,
we compare it with some of the state-of-the-art and well-known CNN models developed in recent
years for hyperspectral classification. The main comparisons about the configuration and training
settings of these models are briefly described as follows:

(1) CNNs by Chen et al. [41]: First, the model configuration includes 1-D, 2-D, and 3-D CNNs.
The 1-D CNN consists of five convolutional layers with ReLU and five pooling layers for the
IP dataset as well as three convolutional layers with ReLU and three pooling layers for the
UP dataset; the 1-D CNN extracts only spectral information. The 2-D CNN contains three 2D
convolutional layers and two pooling layers. The latter two 2-D convolutional layers use the
dropout strategy to prevent overfitting. The 3-D CNN is designed to effectively extract spatial
and spectral information. It includes three 3D convolution and ReLU nonlinear activation layers,
and the dropout strategy is also used to prevent overfitting. Overall, the design of the proposed
model represents the early application of DCNN methods in hyperspectral image classification.
However, although the models are simple and effective, the spatial and spectral distribution diversities
of hyperspectral datasets are not considered. Second, in training settings, 1765 labeled samples were
used as the training set for the IP dataset and 3930 samples as the training set for the UP dataset.



Remote Sens. 2020, 12, 3501 27 of 34

Furthermore, experiments were conducted with different patch sizes (d = 9, 19, 29 for the IP
dataset; d = 15, 21, 27 for the UP dataset) in the baseline [40].

(2) CNN by Paoletti et al. [40]: The CNN model serves as the baseline model for our hyperspectral
experiments. First, in the model configuration, to extract hyperspectral classification features,
three 3D convolutional layers (i.e., 600× 5× 5× 200, 200× 3× 3× 600, 200× 1× 1× 200 for
the IP dataset, and 380× 7× 7× 103, 350× 5× 5× 380, 350× 1× 1× 350 for the UP dataset)
are designed, and each convolution layer is followed by a ReLU function. To reduce the spatial
resolution, the first two convolution layers are followed by two 2× 2 max pooling. In addition,
to prevent overfitting, the dropout method is executed in the first two convolution layers of the
model, with probability = 0.1 for the IP dataset and 0.2 for the UP dataset. Next, a four-layer full
connection classifies the extracted features. Although the 3D model requires less parameters and
layers, it cannot address the diversity problem of spatial object distribution in hyperspectral data and cannot
make the full use of spectral information. In addition, 3D convolution processes hyperspectral data
are uniform volumetric data, while the hyperspectral actual object distribution is asymmetrical.
Second, in the training setting, detailed experiments were conducted on different training samples
and different patch sizes for the IP and UP datasets. The best experimental results of the baseline
model (patch sizes d = 9, 19, and 29 with training samples = 2466 for the IP dataset; patch size
d = 15, 21, and 27 with training samples = 1800 for the UP dataset) were considered for the
comparison of the models.

(3) Attention networks [45]: A visual attention-driven mechanism applied to residual neural
networks (ResNet) facilitates spatial-spectral hyperspectral image classification. Specifically,
the attention mechanism is integrated into the residual part of ResNet, which mainly includes two
parts, namely the trunk and mask. The trunk consists of some residual blocks that perform feature
extraction from the data, while the mask consists of a symmetrical downsampler–upsampler
structure to extract useful features from the current layer. Although the attention mechanism
has been successfully applied to ResNet, this attention method does not solve the problems of spatial
distribution (the different geometric shapes of the objects) and spectral redundancy of hyperspectral data.
Second, the network was optimized using 1537 training samples with 300 epochs for the IP dataset
and 4278 training samples with 300 epochs for the UP dataset.

(4) Multiple CNN fusion [42]: Compared with other models, although the multiscale spectral and
spatial feature fusion model is time-consuming, it can achieve superior classification accuracy
and hence has been gaining prominence in hyperspectral image classification. For example,
Zhao et al. [42] presented a multiple convolutional layers fusion framework, which fuses features
extracted from different convolutional layers for hyperspectral image classification. This multiple
CNN model only considers the fusion of spatial features at different scales, but not the effective extraction
of spatial and spectral features at multiple scales. Specifically, the multiscale spectral and spatial
feature fusion model is divided into two types according to the fusion mechanism. The first one
is the side output decision fusion network (SODFN), which applies majority voting to many side
classification maps generated by each convolutional layer. The other one is the fully convolutional
layer fusion network (FCLFN), which combines all features generated by each convolutional layer.
Second, the SODFN and FCLFN parameters were tuned using 1029 training samples for the IP
dataset and 436 training samples for the UP dataset.

Indian Pines dataset benchmark evaluation. The classification results for the IP dataset
obtained by different CNN models and our proposed model are shown in Table 17. Obviously,
the spatial-spectral FFPNet without data enhancement generates the highest OA, AA, kappa coefficient
and thus presents the best performance among all benchmark models. The proposed model also
shows excellent performance in each class. The best result of the spatial-spectral FFPNet exceeds the
best result of the baseline model [40] by 1.47% in terms of OA. Notably, the spatial-spectral FFPNet
shows superior performance in all experimental configurations compared with the baseline model. In
particular, when spatial information is limited (i.e., patch size d = 9), the proposed model outperforms



Remote Sens. 2020, 12, 3501 28 of 34

the same configuration of the baseline model by 8.96%, and even exceeds the best configuration of the
baseline model (d = 29, training samples = 2466) by 0.7%. The results presented in Table 17 further
demonstrates the superiority of the proposed spatial-spectral FFPNet and its robustness in case of a
small number of training samples.

A graphical comparison of the OA values for the IP dataset obtained by different CNN models
is shown in Figure 15. The OA results obtained by our proposed model are presented in red,
while those obtained by the benchmark models are presented in black. Clearly, our model shows more
promising performance under different training samples compared with the well-known hyperspectral
classification CNN models. Specifically, when the number of training samples is relatively small
(600–800), the spatial-spectral FFPNet with data enhancement acquires outstanding performance.
As the number of samples increases, the dominance of the spatial-spectral FFPNet over the other
methods is relatively more. In addition, note that attention networks [45] and multiple CNN fusion [42]
perform better than the CNN models by [40,41]; this is also in line with the current development
trend of hyperspectral classification; that is, the application of multiscale feature fusion and attention
mechanisms in the spatial and spectral dimensions.

Figure 15. Comparison of the OA obtained by different CNN models for the IP dataset. The abscissa
represents the total number of training samples (600–2500), and the ordinate represents the OA
(%) of the CNN models. The figure mainly compares the accuracy of the existing CNN methods
and the proposed spatial-spectral FFPNet under different training samples. In the legend, different
shapes represent different methods for hyperspectral classification. In the same shape, different colors
indicate different configurations of the same method. The OA results obtained by our proposed
model is presented in red, and those obtained by other CNNs [41], CNN [40], attention networks [45],
and multiple CNN fusion [42] are presented in black.

University of Pavia dataset benchmark evaluation. Table 18 lists the classification results of
different CNN models developed from 2016 to 2019 and our proposed model for the UP dataset.
The spatial-spectral FFPNet (without data enhancement) with different d values shows outstanding
results in performance. Specifically, with the experimental configuration of d = 27, the proposed model
shows an improvement of 1.73% compared to the CNN model [40] in terms of OA. The spatial-spectral
FFPNet also shows a great performance compared with the baseline [40] with the same experimental
configuration. Furthermore, the performance of the spatial-spectral FFPNet with a lower patch size
(d = 9) differs slightly from that of the baseline model [40] with d = 15. Notably, attention networks [45]
perform the best among all model in terms of OA and AA results because of the sufficient training
samples (4278), while our proposed model performs the best in terms of the kappa coefficient.
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Table 17. Classification accuracies (in %) of different CNN models developed from 2016 to 2019 and the proposed model for the IP dataset (with maximum epoch =
200 and mini-batch size = 24). The values in bold are the best. The CNN by [40] is considered as the baseline.

CNN Models Attention Networks [45] Multiple CNN Fusion [42] CNNs [41] CNN [40] Spatial-Spectral FFPNet

A-ResNet Samples SODFN FCLFN Samples 1-D 2-D 3-D d = 9 d = 19 d = 29 Samples d = 9 d = 19 d = 29 Samples d = 9 d = 15 d = 19 d = 29 Samples

Alfalfa 89.23 7 95.12 95.12 5 89.58 99.65 100.00 100.00 100.00 100.00 30 99.13 99.57 99.13 23 95.65 100.00 100.00 100.00 33
Corn-notill 97.69 214 98.91 99.38 143 85.68 90.64 96.34 90.57 94.06 97.17 150 80.48 94.47 98.17 200 98.78 99.35 99.59 100.00 200
Corn-min 99.29 125 99.06 100.00 83 87.36 99.11 99.49 97.69 96.43 98.17 150 96.65 98.22 98.92 200 99.84 98.25 99.05 100.00 200

Corn 92.24 36 98.12 100.00 24 93.33 100.00 100.00 99.92 100.00 100.00 100 99.66 100.00 100.00 118 100.00 100.00 100.00 100.00 181
Grass/Pasture 99.02 72 95.62 95.16 49 96.88 98.48 99.91 98.10 98.72 98.76 150 99.46 99.75 99.71 200 100.00 100.00 98.94 100.00 200

Grass/Trees 99.77 110 99.09 99.24 73 98.99 97.95 99.75 99.34 99.67 100.00 150 99.53 98.90 99.40 200 99.62 100.00 98.87 100.00 200
Grass/pasture-mowed 93.04 4 80.03 72.10 3 91.67 100.00 100.00 100.00 100.00 100.00 20 100.00 100.00 100.00 14 100.00 100.00 100.00 100.00 20

Hay-windrowed 100.00 72 100.00 99.53 48 99.49 100.00 100.00 99.58 99.92 100.00 150 99.67 99.62 100.00 200 100.00 100.00 100.00 100.00 200
Oats 90.59 3 100.00 88.89 2 100.00 100.00 100.00 100.00 100.00 100.00 15 100.00 100.00 100.00 14 100.00 100.00 100.00 100.00 14

Soybeans-notill 98.57 146 99.31 99.54 98 90.35 95.33 98.72 94.28 97.63 99.14 150 92.43 98.00 98.62 200 99.33 99.73 100.00 100.00 200
Soybeans-min 99.37 368 98.87 98.64 245 77.90 78.21 95.52 87.75 92.93 94.59 150 76.42 94.32 96.15 200 98.58 99.38 99.78 99.35 200
Soybean-clean 97.14 89 87.99 92.68 60 95.82 99.39 99.47 94.81 97.17 99.06 150 97.74 99.09 99.33 200 99.24 100.00 100.00 100.00 200

Wheat 100.00 31 97.83 100.00 21 98.59 100.00 100.00 100.00 100.00 100.00 150 99.71 100.00 99.90 102 100.00 100.00 100.00 100.00 143
Woods 99.57 190 99.91 99.91 126 98.55 97.71 99.55 98.09 97.88 99.76 150 97.71 98.85 98.96 200 98.78 99.34 100.00 100.00 200

Bldg-Grass-Tree-Drives 99.58 58 98.56 97.41 39 87.41 99.31 99.54 89.79 95.80 98.39 50 99.27 99.90 100.00 193 100.00 100.00 100.00 100.00 200
Stone-steel 97.72 14 96.39 97.59 10 98.06 99.22 99.34 100.00 99.57 98.92 50 100.00 100.00 100.00 46 95.74 100.00 100.00 100.00 75

OA 98.75 98.21 98.56 87.81 89.99 97.56 93.94 96.29 97.87 90.11 97.23 98.37 99.07 99.47 99.68 99.84

AA 97.05 96.54 95.94 93.12 97.19 99.23 96.87 98.11 99.00 96.12 98.79 99.27 99.10 99.75 99.76 99.96

Kappa 98.58 97.97 98.36 85.30 87.95 97.02 93.12 95.78 97.57 88.81 96.85 98.15 98.90 99.38 99.63 99.82

Total samples 1537 1029 1765 2466 2306

Table 18. Classification accuracies (in %) of different CNN models developed from 2016 to 2019 and the proposed model for the UP dataset (with maximum epoch =
200, mini-batch size = 24). The values in bold are the best. The CNN by [40] is considered the baseline.

CNN Models Attention Networks [45] Multiple CNN Fusion [42] CNNs [41] CNN [40] Spatial-Spectral FFPNet

A-ResNet Samples SODFN FCLFN Samples 1-D 2-D 3-D d = 15 d = 21 d = 27 Samples d = 15 d = 21 d = 27 Samples d = 9 d = 15 d = 21 d = 27 Samples

Asphalt 99.80 663 99.62 97.03 67 92.06 97.11 99.36 97.53 98.80 98.59 548 92.81 95.31 96.31 200 96.32 98.19 97.59 99.82 200
Meadows 99.97 1865 99.98 100.00 186 92.80 87.66 99.36 98.98 99.46 99.60 540 97.20 98.16 97.54 200 97.96 99.98 99.91 99.85 200

Gravel 99.56 210 97.47 95.14 22 83.67 99.69 99.69 98.96 99.59 99.45 392 96.97 97.92 96.84 200 95.99 98.66 99.81 99.05 200
Trees 99.74 306 91.79 88.49 31 93.85 98.49 99.63 99.75 99.68 99.57 542 98.62 98.74 97.58 200 90.60 96.61 96.34 96.61 200

Painted metal sheets 99.97 135 99.77 99.18 15 98.91 100.00 99.95 99.93 99.78 99.61 256 100.00 100.00 99.65 200 100.00 99.11 100.00 100.00 200
Bare Soil 100.00 503 96.77 99.46 51 94.17 98.00 99.96 99.42 99.93 99.84 532 98.57 99.57 99.33 200 93.95 100.00 100.00 100.00 200
Bitumen 99.16 133 89.51 95.89 15 92.68 99.89 100.00 98.71 99.88 100.00 375 97.27 99.75 98.90 200 97.59 100.00 100.00 100.00 200

Self-Blocking Bricks 99.73 368 97.59 100.00 38 89.09 99.70 99.65 98.58 99.53 99.67 514 96.17 98.20 98.89 200 96.30 99.02 98.04 99.13 200
Shadows 99.88 95 92.52 96.20 11 97.84 97.11 99.38 99.87 99.79 99.83 231 99.86 99.82 99.58 200 97.35 98.23 100.00 99.56 200

OA 99.86 98.13 98.17 92.28 94.04 99.54 98.87 99.47 99.48 96.83 98.06 97.80 96.51 99.25 99.15 99.53

AA 99.76 96.11 96.80 92.55 97.52 99.66 99.08 99.60 99.57 97.50 98.61 98.29 96.23 98.87 99.08 99.33

Kappa 99.82 97.53 97.58 90.37 92.43 99.41 98.51 99.30 99.32 95.83 97.44 97.09 95.37 99.01 98.87 99.38

Total samples 4278 436 3930 1800 1800
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Figure 16 provides a graphical comparison of the OA of different CNN models for the UP dataset.
Again, our model attains more homogenized and favorable classification results. As Figure 16 shows,
the results of our proposed model are centered around 400–1900 training samples. However, the local
OA comparison chart indicates that the multiple CNN fusion [42] is superior (98.17%) even for an
extremely small number of training samples (approximately 400). As the training samples increase,
the superiority of the spatial-spectral FFPNet gradually gains prominence. In addition, for a large
training sample (>3000), attention networks [45] perform considerably better than the traditional CNN
model [41].

Figure 16. Comparison of the OA obtained by different CNN models for the UP dataset. The abscissa
represents the total number of training samples (400–4400), and the ordinate represents the OA (%) of
the CNN models. The figure mainly compares the accuracy of different models (existing CNN methods
and the proposed spatial-spectral FFPNet) under different training samples. In the legend, different
shapes represent different methods for hyperspectral classification. In the same shape, different colors
indicate different configurations of the same method. The OA results obtained by our proposed
model are presented in red and those obtained by the existing CNNs [40,41], attention networks [45],
and multiple CNN fusion [42] are presented in black.

4. Conclusions

In this study, we mainly focus on spatial object distribution diversity and spectral information
extraction, which are the major challenges of high-resolution and hyperspectral remote sensing images.
To address the spatial and spectral problems, three novel and practical attention-based modules
were proposed: attention-based multiscale fusion, region pyramid attention, and adaptive-ASPP.
We constructed different forms of feature fusion pyramid frameworks (two-layer or three-layer
pyramids) by combining these attention-based modules. First, we developed a new semantic
segmentation framework for high-resolution images, called the heavy-weight spatial FFPNet. Second,
for the classification of hyperspectral images, an end-to-end spatial-spectral FFPNet was presented
to extract and fuse multiscale spatial and spectral features. The experiments conducted on two
high-resolution datasets demonstrated that the proposed heavy-weight spatial FFPNet achieves
excellent segmentation accuracy. Detailed ablation studies further revealed the superiority of the three
attention-based modules in processing the spatial distribution diversity of remote sensing images.
Furthermore, detailed training parameter analysis and comparison with other state-of-the-art CNNs
(such as [40]) were performed on the two hyperspectral datasets. The results demonstrated that the
spatial-spectral FFPNet is more robust and achieves greater accuracy in case when the number of
training samples of the hyperspectral dataset is small and that it can obtain state-of-the-art results
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under different training samples. Overall, the proposed methods can serve as a new baseline for
remote sensing image segmentation and classification. In future work, we will focus on few-shot or
zero-shot segmentation and classification in high-resolution or hyperspectral remote sensing data to
promote practical application of deep learning in remote sensing image perception.

5. Code and Model Availability

Algorithms, trained models (including heavy-weight spatial FFPNet for segmentation of
high-resolution remote sensing images and spatial-spectral FFPNet for classfication of hyperspectral
images) are available to the public on Github under a GNU General Public License (https://github.
com/xupine/FFPNet).

Author Contributions: Conceptualization, X.Y. and C.O.; Funding acquisition, C.O.; Investigation, Y.Z.;
Methodology, Q.X.; Software, Q.X.; Supervision, C.O.; Visualization, Y.Z.; Writing–original draft, Q.X.;
Writing–review and editing, Q.X., X.Y. and C.O. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was funded by the NSFC(Grant No. 42022054), the Strategic Priority Research Program
of CAS (Grant No. XDA23090303), the National Key Research and Development Program of China (Project No.
2017YFC1501000), the CAS Youth Innovation Promotion Association.

Acknowledgments: Authors want to sincerely acknowledge the work of the reviewers in the manuscript with
special thanks to Holly Huang, Assistant Editor.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Ghamisi, P.; Mura, M.D.; Benediktsson, J.A. A Survey on Spectral–Spatial Classification Techniques Based
on Attribute Profiles. IEEE Trans. Geosci. Remote Sens. 2015, 53, 2335–2353. [CrossRef]

2. Wei, K.; Ouyang, C.; Duan, H.; Li, Y.; Chen, M.; Ma, J.; An, H.; Zhou, S. Reflections on the catastrophic 2020
Yangtze River Basin flooding in southern China. Innovation 2020, 1, 100038. [CrossRef]

3. Wang, N.; Chen, F.; Yu, B.; Qin, Y. Segmentation of large-scale remotely sensed images on a Spark platform:
A strategy for handling massive image tiles with the MapReduce model. ISPRS J. Photogramm. Remote Sens.
2020, 162, 137–147. [CrossRef]

4. Sun, W.; Wang, R. Fully convolutional networks for semantic segmentation of very high resolution remotely
sensed images combined with DSM. IEEE Geosci. Remote Sens. Lett. 2018, 15, 474–478. [CrossRef]

5. Liu, Y.; Fan, B.; Wang, L.; Bai, J.; Xiang, S.; Pan, C. Semantic labeling in very high resolution images via a
self-cascaded convolutional neural network. ISPRS J. Photogramm. Remote Sens. 2018, 145, 78–95. [CrossRef]

6. Audebert, N.; Le Saux, B.; Lefèvre, S. Deep learning for classification of hyperspectral data: A comparative
review. IEEE Geosci. Remote Sens. Mag. 2019, 7, 159–173. [CrossRef]

7. Melgani, F.; Bruzzone, L. Classification of hyperspectral remote sensing images with support vector machines.
IEEE Trans. Geosci. Remote Sens. 2014, 42, 1778–1790. [CrossRef]

8. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015;
pp. 3431–3440.

9. Mou, L.; Hua, Y.; Zhu, X.X. A relation-augmented fully convolutional network for semantic segmentation
in aerial scenes. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Long Beach, CA, USA, 16–20 June 2019; pp. 12416–12425.

10. Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic image segmentation
with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach.
Intell. 2017, 40, 834–848. [CrossRef]

11. Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable
convolution for semantic image segmentation. In Proceedings of the European Conference on Computer
Vision (ECCV), Munich, Germany, 8-14 September 2018; pp. 801–818.

12. Wang, H.; Wang, Y.; Zhang, Q.; Xiang, S.; Pan, C. Gated convolutional neural network for semantic
segmentation in high-resolution images. Remote Sens. 2017, 9, 446. [CrossRef]

https://github.com/xupine/FFPNet
https://github.com/xupine/FFPNet
http://dx.doi.org/10.1109/TGRS.2014.2358934
http://dx.doi.org/10.1016/j.xinn.2020.100038
http://dx.doi.org/10.1016/j.isprsjprs.2020.02.012
http://dx.doi.org/10.1109/LGRS.2018.2795531
http://dx.doi.org/10.1016/j.isprsjprs.2017.12.007
http://dx.doi.org/10.1109/MGRS.2019.2912563
http://dx.doi.org/10.1109/TGRS.2004.831865
http://dx.doi.org/10.1109/TPAMI.2017.2699184
http://dx.doi.org/10.3390/rs9050446


Remote Sens. 2020, 12, 3501 32 of 34

13. Cheng, G.; Wang, Y.; Xu, S.; Wang, H.; Xiang, S.; Pan, C. Automatic road detection and centerline extraction
via cascaded end-to-end convolutional neural network. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3322–3337.
[CrossRef]

14. Cheng, W.; Yang, W.; Wang, M.; Wang, G.; Chen, J. Context aggregation network for semantic labeling in
aerial images. Remote Sens. 2019, 11, 1158. [CrossRef]

15. Li, P.; Lin, Y.; Schultz-Fellenz, E. Contextual Hourglass Network for Semantic Segmentation of High
Resolution Aerial Imagery. arXiv 2018, arXiv:1810.12813.

16. Yang, X.; Yang, J.; Yan, J.; Zhang, Y.; Zhang, T.; Guo, Z.; Sun, X.; Fu, K. Scrdet: Towards more robust detection
for small, cluttered and rotated objects. In Proceedings of the IEEE International Conference on Computer
Vision, Seoul, Korea, October 27-November 2, 2019; pp. 8232–8241.

17. Sebastian, C.; Imbriaco, R.; Bondarev, E.; de With, P.H. Adversarial Loss for Semantic Segmentation of Aerial
Imagery. arXiv 2020, arXiv:2001.04269.

18. Dong, R.; Pan, X.; Li, F. DenseU-net-based semantic segmentation of small objects in urban remote sensing
images. IEEE Access 2019, 7, 65347–65356. [CrossRef]

19. Du, Y.; Song, W.; He, Q.; Huang, D.; Liotta, A.; Su, C. Deep learning with multi-scale feature fusion in remote
sensing for automatic oceanic eddy detection. Inf. Fusion 2019, 49, 89–99. [CrossRef]

20. Jain, S.; Wallace, B.C. Attention is not explanation. arXiv 2019, arXiv:1902.10186.
21. Wang, X.; Girshick, R.; Gupta, A.; He, K. Non-local neural networks. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 7794–7803.
22. Fu, J.; Liu, J.; Tian, H.; Li, Y.; Bao, Y.; Fang, Z.; Lu, H. Dual attention network for scene segmentation.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA,
16–20 June 2019; pp. 3146–3154.

23. Zhu, Z.; Xu, M.; Bai, S.; Huang, T.; Bai, X. Asymmetric non-local neural networks for semantic
segmentation. In Proceedings of the IEEE International Conference on Computer Vision, Seoul, Korea,
October 27-November 2, 2019; pp. 593–602.

24. Oktay, O.; Schlemper, J.; Folgoc, L.L.; Lee, M.; Heinrich, M.; Misawa, K.; Mori, K.; McDonagh, S.; Hammerla,
N.Y.; Kainz, B.; et al. Attention u-net: Learning where to look for the pancreas. arXiv 2018, arXiv:1804.03999

25. Huang, Z.; Wang, X.; Huang, L.; Huang, C.; Wei, Y.; Liu, W. Ccnet: Criss-cross attention for semantic
segmentation. In Proceedings of the IEEE International Conference on Computer Vision, Seoul, Korea,
October 27-November 2, 2019; pp. 603–612.

26. Zhang, F.; Chen, Y.; Li, Z.; Hong, Z.; Liu, J.; Ma, F.; Han, J.; Ding, E. ACFNet: Attentional Class Feature
Network for Semantic Segmentation. In Proceedings of the IEEE International Conference on Computer
Vision, Seoul, Korea, October 27-November 2, 2019; pp. 6798–6807.

27. Sindagi, V.A.; Patel, V.M. Multi-level bottom-top and top-bottom feature fusion for crowd counting.
In Proceedings of the IEEE International Conference on Computer Vision, Seoul, Korea, October
27-November 2, 2019; pp. 1002–1012.

28. Niu, R. HMANet: Hybrid Multiple Attention Network for Semantic Segmentation in Aerial Images. arXiv
2020, arXiv:2001.02870

29. Guo, C.; Fan, B.; Zhang, Q.; Xiang, S.; Pan, C. AugFPN: Improving Multi-scale Feature Learning for Object
Detection. arXiv 2019, arXiv:1912.05384.

30. Jin, X.; Lan, C.; Zeng, W.; Zhang, Z.; Chen, Z. CaseNet: Content-adaptive scale interaction networks for
scene parsing. arXiv 2019, arXiv:1904.08170.

31. Li, X.; Zhao, H.; Han, L.; Tong, Y.; Yang, K. GFF: Gated Fully Fusion for Semantic Segmentation. arXiv 2019,
arXiv:1904.01803.

32. Tarabalka, Y.; Benediktsson, J.A.; Chanussot, J. Spectral–Spatial Classification of Hyperspectral Imagery
Based on Partitional Clustering Techniques. IEEE Trans. Geosci. Remote Sens. 2009, 47, 2973–2987. [CrossRef]

33. Archibald, R.; Fann, G. Feature Selection and Classification of Hyperspectral Images With Support Vector
Machines. IEEE Geosci. Remote Sens. Lett. 2007, 4, 674–677. [CrossRef]

34. Sun, S.; Zhong, P.; Xiao, H.; Wang, R. Active Learning With Gaussian Process Classifier for Hyperspectral
Image Classification. IEEE Trans. Geosci. Remote Sens. 2015, 53, 1746–1760. [CrossRef]

35. Chen, Y.; Nasrabadi, N.M.; Tran, T.D. Hyperspectral Image Classification Using Dictionary-Based Sparse
Representation. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3973–3985. [CrossRef]

http://dx.doi.org/10.1109/TGRS.2017.2669341
http://dx.doi.org/10.3390/rs11101158
http://dx.doi.org/10.1109/ACCESS.2019.2917952
http://dx.doi.org/10.1016/j.inffus.2018.09.006
http://dx.doi.org/10.1109/TGRS.2009.2016214
http://dx.doi.org/10.1109/LGRS.2007.905116
http://dx.doi.org/10.1109/TGRS.2014.2347343
http://dx.doi.org/10.1109/TGRS.2011.2129595


Remote Sens. 2020, 12, 3501 33 of 34

36. Makantasis, K.; Karantzalos, K.; Doulamis, A.; Doulamis, N. Deep supervised learning for hyperspectral
data classification through convolutional neural networks. In Proceeding of the Deep Supervised Learning
for Hyperspectral Data Classification Through Convolutional Neural Networks, Milan, Italy, 26–31 July
2015; pp. 4959–4962.

37. Zhao, W.; Du, S. Spectral–Spatial Feature Extraction for Hyperspectral Image Classification: A Dimension
Reduction and Deep Learning Approach. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4544–4554. [CrossRef]

38. Luo, Y.; Zou, J.; Yao, C.; Li, T.; Bai, G. HSI-CNN: A Novel Convolution Neural Network for Hyperspectral
Image. In Proceedings of the 2018 International Conference on Audio, Language and Image Processing
(ICALIP), Shanghai, China, 16–17 July 2018.

39. Li, Y.; Zhang, H.; Shen, Q. Spectral–Spatial Classification of Hyperspectral Imagery with 3D Convolutional
Neural Network. Remote Sens. 2017, 9, 67. [CrossRef]

40. Paoletti, M.; Haut, J.; Plaza, J.; Plaza, A. A new deep convolutional neural network for fast hyperspectral
image classification. ISPRS J. Photogramm. Remote Sens. 2018, 145, 120–147. [CrossRef]

41. Chen, Y.; Jiang, H.; Li, C.; Jia, X.; Ghamisi, P. Deep Feature Extraction and Classification of Hyperspectral
Images Based on Convolutional Neural Networks. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6232–6251.
[CrossRef]

42. Zhao, G.; Liu, G.; Fang, L.; Tu, B.; Ghamisi, P. Multiple convolutional layers fusion framework for
hyperspectral image classification. Neurocomputing 2019, 339, 149–160. [CrossRef]

43. Gong, Z.; Zhong, P.; Yu, Y.; Hu, W.; Li, S. A CNN With Multiscale Convolution and Diversified Metric for
Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 3599–3618. [CrossRef]

44. Imani, M.; Ghassemian, H. An overview on spectral and spatial information fusion for hyperspectral image
classification: Current trends and challenges. Inf. Fusion 2020, 59, 59–83. [CrossRef]

45. Haut, J.M.; Paoletti, M.E.; Plaza, J.; Plaza, A.; Li, J. Visual Attention-Driven Hyperspectral Image
Classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 8065–8080. [CrossRef]

46. Mei, X.; Pan, E.; Ma, Y.; Dai, X.; Huang, J.; Fan, F.; Du, Q.; Zheng, H.; Ma, J. Spectral-Spatial Attention
Networks for Hyperspectral Image Classification. Remote Sens. 2019, 11, 963. [CrossRef]

47. Xu, Q.; Ouyang, C.; Jiang, T.; Fan, X.; Cheng, D. DFPENet-geology: A Deep Learning Framework for High
Precision Recognition and Segmentation of Co-seismic Landslides. arXiv 2019, arXiv:1908.10907.

48. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation.
In Proceedings of the International Conference on Medical Image Computing And Computer-Assisted
Intervention, Munich, Germany, 5-9 October 2015; pp. 234–241.

49. Lin, D.; Shen, D.; Shen, S.; Ji, Y.; Lischinski, D.; Cohen-Or, D.; Huang, H. ZigZagNet: Fusing Top-Down and
Bottom-Up Context for Object Segmentation. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 7490–7499.

50. Zhen, M.; Wang, J.; Zhou, L.; Fang, T.; Quan, L. Learning Fully Dense Neural Networks for Image Semantic
Segmentation. In Proceedings of the AAAI Conference on Artificial Intelligence, Hilton Hawaiian Village,
Honolulu, Hawaii, USA, January 27-February 1, 2019; Volume 33, pp. 9283–9290.

51. Zhang, Z.; Zhang, X.; Peng, C.; Xue, X.; Sun, J. Exfuse: Enhancing feature fusion for semantic segmentation.
In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8-14 September
2018; pp. 269–284.

52. Zhou, Z.; Siddiquee, M.M.R.; Tajbakhsh, N.; Liang, J. UNet++: Redesigning Skip Connections to Exploit
Multiscale Features in Image Segmentation. IEEE Trans. Med. Imaging 2019, 39, 1856–1867. [CrossRef]
[PubMed]

53. Zhao, H.; Zhang, Y.; Liu, S.; Shi, J.; Change Loy, C.; Lin, D.; Jia, J. Psanet: Point-wise spatial attention
network for scene parsing. In Proceedings of the European Conference on Computer Vision (ECCV), Munich,
Germany, 8-14 September 2018; pp. 267–283.

54. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

55. Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image database.
In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA,
20–25 June 2009; pp. 248–255.

56. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv
2014, arXiv:1409.1556.

http://dx.doi.org/10.1109/TGRS.2016.2543748
http://dx.doi.org/10.3390/rs9010067
http://dx.doi.org/10.1016/j.isprsjprs.2017.11.021
http://dx.doi.org/10.1109/TGRS.2016.2584107
http://dx.doi.org/10.1016/j.neucom.2019.02.019
http://dx.doi.org/10.1109/TGRS.2018.2886022
http://dx.doi.org/10.1016/j.inffus.2020.01.007
http://dx.doi.org/10.1109/TGRS.2019.2918080
http://dx.doi.org/10.3390/rs11080963
http://dx.doi.org/10.1109/TMI.2019.2959609
http://www.ncbi.nlm.nih.gov/pubmed/31841402


Remote Sens. 2020, 12, 3501 34 of 34

57. Yang, M.; Yu, K.; Zhang, C.; Li, Z.; Yang, K. Denseaspp for semantic segmentation in street scenes.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT,
USA, 18–22 June 2018; pp. 3684–3692.

58. Srivastava, N.; Hinton, G.E.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to
prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

59. Volpi, M.; Tuia, D. Dense semantic labeling of subdecimeter resolution images with convolutional neural
networks. IEEE Trans. Geosci. Remote Sens. 2016, 55, 881–893. [CrossRef]

60. Lin, G.; Milan, A.; Shen, C.; Reid, I. RefineNet: Multi-Path Refinement Networks for High-Resolution
Semantic Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
CVPR, Honolulu, HI, USA, 21–26 July 2017.

61. Audebert, N.; Le Saux, B.; Lefèvre, S. Beyond RGB: Very high resolution urban remote sensing with
multimodal deep networks. ISPRS J. Photogramm. Remote Sens. 2018, 140, 20–32. [CrossRef]

62. Badrinarayanan, V.; Kendall, A.; Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture for
image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [CrossRef] [PubMed]

63. Marmanis, D.; Schindler, K.; Wegner, J.D.; Galliani, S.; Datcu, M.; Stilla, U. Classification with an edge:
Improving semantic image segmentation with boundary detection. ISPRS J. Photogramm. Remote Sens. 2018,
135, 158–172. [CrossRef]

64. Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid scene parsing network. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2881–2890.

65. Sherrah, J. Fully convolutional networks for dense semantic labelling of high-resolution aerial imagery.
arXiv 2016, arXiv:1606.02585.

66. Pan, B.; Shi, Z.; Xu, X.; Shi, T.; Zhang, N.; Zhu, X. CoinNet: Copy initialization network for multispectral
imagery semantic segmentation. IEEE Geosci. Remote Sens. Lett. 2018, 16, 816–820. [CrossRef]

67. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TGRS.2016.2616585
http://dx.doi.org/10.1016/j.isprsjprs.2017.11.011
http://dx.doi.org/10.1109/TPAMI.2016.2644615
http://www.ncbi.nlm.nih.gov/pubmed/28060704
http://dx.doi.org/10.1016/j.isprsjprs.2017.11.009
http://dx.doi.org/10.1109/LGRS.2018.2880756
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Proposed Spatial-Spectral FFPNet 
	Overview 
	Region Pyramid Attention Module
	Region Pyramid
	Self-Attention on The Regional Representation

	Multi-Scale Attention Fusion 
	Higher- and Lower-scales
	Attention Fuse Module

	Adaptive-ASPP Module
	Heavy-Weight Spatial FFPNet Model 
	Spatial-Spectral FFPNet Model 
	Light-Weight Spatial Feature Fusion Pyramid Module
	Spectral Feature Fusion Pyramid Module
	Merge


	Experiments 
	Dataset Description and Baselines
	High-Resolution Datasets
	Hyperspectral Datasets
	Baselines

	Evaluation Metrics
	 Heavy-Weight Spatial FFPNet Evaluation on High-Resolution Datasets
	Implementation Details
	Experiments on Vaihingen Dataset 
	Experiments on Potsdam Dataset

	 Spatial-Spectral FFPNet Evaluation on Hyperspectral Datasets
	Implementation Details
	Ablation Study
	Comparison with Existing CNN Methods


	Conclusions 
	Code and Model Availability
	References

