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Abstract: Timely and accurate Land Cover (LC) information is required for various applications,
such as climate change analysis and sustainable development. Although machine learning algorithms
are most likely successful in LC mapping tasks, the class imbalance problem is known as a common
challenge in this regard. This problem occurs during the training phase and reduces classification
accuracy for infrequent and rare LC classes. To address this issue, this study proposes a new method
by integrating random under-sampling of majority classes and an ensemble of Support Vector
Machines, namely Random Under-sampling Ensemble of Support Vector Machines (RUESVMs).
The performance of RUESVMs for LC classification was evaluated in Google Earth Engine (GEE)
over two different case studies using Sentinel-2 time-series data and five well-known spectral
indices, including the Normalized Difference Vegetation Index (NDVI), Green Normalized Difference
Vegetation Index (GNDVI), Soil-Adjusted Vegetation Index (SAVI), Normalized Difference Built-up
Index (NDBI), and Normalized Difference Water Index (NDWI). The performance of RUESVMs
was also compared with the traditional SVM and combination of SVM with three benchmark data
balancing techniques namely the Random Over-Sampling (ROS), Random Under-Sampling (RUS),
and Synthetic Minority Over-sampling Technique (SMOTE). It was observed that the proposed
method considerably improved the accuracy of LC classification, especially for the minority classes.
After adopting RUESVMs, the overall accuracy of the generated LC map increased by approximately
4.95 percentage points, and this amount for the geometric mean of producer’s accuracies was almost
3.75 percentage points, in comparison to the most accurate data balancing method (i.e., SVM-SMOTE).
Regarding the geometric mean of users’ accuracies, RUESVMs also outperformed the SVM-SMOTE
method with an average increase of 6.45 percentage points.

Keywords: Google Earth Engine; Sentinel-2; land cover mapping; support vector machine; imbalanced data

1. Introduction

Land Cover (LC) data are important for various studies, such as climate change, agricultural
monitoring, water resource management, natural hazards, and land change assessment [1–4]. With the
great strides of Remote Sensing (RS) technology towards providing satellite images of high spatial and
temporal resolutions, the corresponding datasets have been effectively applied to classify LC types
at different scales [5,6]. Among the available pool of different RS datasets, Sentinel-2 Multispectral
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Instrument (MSI) provides free global coverage of satellite images with better spatial and spectral
resolutions in comparison with other open-access remotely sensed data (e.g., MODIS, Landsat) and,
consequently, brings a great opportunity for LC classification tasks [7]. Additionally, Sentinel-2 time
series imagery has proven to improve the accuracy of LC mapping through delivering complementary
information to extract temporal–spectral variations of LC classes [8–12]. However, the integration
of multi-temporal Sentinel-2 images is yet in its infancy and requires much more attention from
the researchers.

Improving LC classification accuracy with the help of Machine Learning (ML) algorithms to
meet users’ needs has drawn considerable attention from the RS community [13–16]; however, ML
methods provide inferior performance for the infrequent LC classes [17,18]. This is related to the fact
that most of the ML classifiers try to decrease the overall error rate during the training phase, which
leads to a higher level of accuracy for the main classes and lower level of accuracy for the infrequent
classes [19–21]. This issue is known as the class imbalance problem and is a common challenge in
most of the learning paradigms from decision trees to support vector machines, and (deep) neural
networks [20–22]. An imbalanced dataset for LC mapping defines a dataset in which one/some of
the LC classes gain a large number of instances, known as the majority class(es), while one/some
obtain a few number of instances that are known as the minority class(es) [23,24]. This is mainly
related to the fact that the number of acquired samples for each LC class usually depends on the area
covered by that class. Some classes might only cover a small portion of a given area, while another one
covers a large region, which in turn makes it relatively difficult to obtain the same number of sample
data for all LC classes [25,26]. This issue leads to an imbalanced distribution among the acquired
samples of different LC classes that can potentially influence the accuracy of LC classifications using
ML algorithms [19,27,28].

Several methods have been proposed, ranging from data balancing to cost sensitive and ensemble
techniques, to address the class imbalance problem [19,27,29–31]. Although there is not yet a conclusive
agreement to introduce an optimal method to handle the class imbalance problem thoroughly, it has
been well established that ensemble methods perform well in the classification of imbalanced data [19].
The ensemble learning algorithms combine several single classifiers to boost the accuracy of classification
in comparison to a single classifier. One of the key elements in the success of an ensemble learning
algorithm is the diversity of the base classifiers [32]. In fact, diversity of the base classifiers propagates to
diversity in the possible errors and misclassification patterns of each base classifier. With this diversity,
each of the classifiers eventually alleviates the misclassification of the others. One efficient method to
generate a diverse ensemble learning algorithm is performing a data balancing technique [33], such as
random under-sampling. This is performed on the original training data to construct an independent
sub-training dataset for each base classifier, which, in turn, can further enhance the accuracy of final LC
classification, especially for the minority classes. However, most of the proposed ensemble methods
coupled with under-sampling in the literature [33,34] have been designed for binary class imbalance
problems and try to fully equalize the number of majority instances to the number of minority instances
which could lead to deletion of some of the majority instances that are crucial for the classification task.

To improve LC mapping accuracy, including supplementary datasets such as spectral indices, the LC
classification process has been widely recommended [2,35]. Using spectral features can lead to maximizing
the separation capability between different LC classes, especially in heterogeneous landscapes where the
spectral differences of various LC classes are similar [36,37]. Among the spectral indices, the Normalized
Difference Vegetation Index (NDVI), Normalized Difference Built-up Index (NDBI), Green Normalized
Difference Vegetation Index (GNDVI), Soil-Adjusted Vegetation Index (SAVI), and Normalized Difference
Water Index (NDWI) have been extensively applied to LC classifications [38–40].

In this study, an ensemble learning technique, called Random Under-sampling Ensemble of
Support Vector Machines (RUESVMs), is proposed to address the class imbalance problem in LC
mapping using time series of Sentinel-2 images. The rationale of using Support Vector Machines (SVMs)
as the base classifier is twofold: (1) the robustness for LC mapping even with limited training data has
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been well established in the RS community [41]; (2) its applicability is supported by availability of SVM
in all common data processing platforms, such as Google Earth Engine (GEE) [42]. GEE provides the
possibility for analyzing and managing big sets of satellite data in a seamless manner [43,44] and, thus
the proposed RUESVMs was implemented within this platform. By bringing the RUESVMs method in
a simple to apply methodology in GEE, we aim to both improve the LC mapping accuracy with the
class imbalance problem and facilitate it with time series of Sentinel-2 images.

2. Study Area and Datasets

2.1. Study Areas

Two different sites from Iran and China (Figure 1) were selected to comprehensively evaluate
the proposed method across a range of conditions (e.g., size of the study areas, number of samples,
spatial distributions of LC classes, and landscape types). The Site-1 is located in the central part of the
East Azerbaijan province, Iran, and comprises approximately 3930 km2. It covers a wide range of LC
types and a high diversity of topographic conditions, dominated by agriculture, grassland, and barren.
The plain landscape is the most prominent feature in Site-1. The Site-2 covers an area of approximately
53,336 km2 in the Xinjiang province, China. The northern and southern parts of this site have flat and
mountainous topographies, respectively. The LC of the Site-2 is predominantly agriculture and barren.
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Figure 1. The RGB color composites (R: Band4, G: Band3, B: Band2) of the study areas: Site-1 (a) and
Site-2 (b).

2.2. Satellite Imagery

Sentinel-2 Level 2A images with less than 15 percent cloud coverage, acquired from May to
August 2019, were used for LC mapping in the Site-1 and Site-2. Site-1 is covered by two Sentinel-2
scenes (tile number: 38SNH and 38SPH) and Site-2 is covered with six scenes (tile number: 44TPQ,
44TQQ, 45TUK, 44TPP, 44TQP, and 45TUJ). In total, 88 and 138 Sentinel-2 images were processed
for Site-1 and Site-2, respectively. Although the Sentinel-2 images from May to August were fairly
cloud-free in both sites, Sentinel-2 Band QA60 was used to eliminate cloud and cirrus pixels. From the
available spectral bands of the Sentinel-2 image, ten spectral bands (i.e., Band 2, Band 3, Band 4, Band 5,
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Band 6, Band 7, Band 8, Band 8A, Band 11, and Band 12) were used in this study. The nearest neighbor
algorithm was implemented to achieve same spatial resolution (i.e., 10 m) for all the spectral bands.

2.3. Reference Sample Data

The high-resolution images available in Google EarthTM and raw Sentinel-2 images were visually
interpreted to generate the reference data. After careful investigation of the study areas, seven and
nine main LC classes were, respectively, selected for Site-1 (i.e., agriculture, barren, built-up, grassland,
road, urban-vegetation, and water) and Site-2 (i.e., agriculture, barren, built-up, grassland, road, urban-
vegetation, water, forest, and snow/ice). In the reference sample collection, 1072 and 1408 random pixels
were generated for Site-1 and Site-2, respectively. The number of sampled pixels in given LC classes
was related to their distributions in the study areas, for example, classes covering large proportions
received more instances than others. At least 150 reference sample data for each LC class except for the
minority classes were acquired (see Table 1). Following [45], the sampled data were then randomly
divided into two datasets of training (50%) and validation (50%). The training data were used to train
RUESVMs and the validation data were applied to evaluate the accuracy of the generated LC maps.

Table 1. Information of the reference sampled data for each study area.

LC Class Agriculture Barren Built-Up Grassland Road Urban-Vegetation Water Forest Snow/Ice

Site-1 291 189 184 265 76 46 21 - -
Site-2 403 385 169 153 62 51 60 65 60

3. Methodology

The methodology of the present research contains seven stages (Figure 2) as follows: (1) Acquiring
Sentinel-2 images for the study sites and implementing the preprocessing steps; (2) Calculating spectral
indices and temporal metrics; (3) Analyzing the distribution of LC classes and defining fractions for
different LC classes; (4) Implementing the RUESVMs method to generate LC maps; (5) Calculating the
accuracy assessment metrics; (6) Analyzing the results to select the most useful fractions; (7) Comparing
the performance of RUESVMs with the other state-of-the-art methods (e.g., SVM-ROS, SVM-RUS,
and SVM-SMOTE).Remote Sens. 2020, 11, x FOR PEER REVIEW 5 of 17 
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3.1. Input Features for LC Classification

Five commonly used spectral indices, including the NDVI [46], GNDVI [47], SAVI [48], NDBI [49,50],
and NDWI [51], along with the main spectral bands of Sentinel-2 (see Section 2.2) were used for
LC classification (the corresponding formulas of these indices are provided in Table 2). It has been
demonstrated that the temporal metrics (e.g., the median value) are helpful in filling the gaps due
to missing data and improving the LC classification by considering the phenological differences of
LC types [40,52]. Therefore, the 20th, 50th (i.e., median) and 80th percentiles of ten spectral bands
of Sentinel-2 and the five spectral indices were used in the classification. Instead of minimum and
maximum values, the 20th and 80th percentiles were employed to decrease the effects of atmospheric
contamination, residual clouds, and shadows. In total, 45 temporal metrics (i.e., per-pixel 20th, 50th,
and 80th percentiles composites of each of the spectral bands and spectral indices) for each 10 m
Sentinel-2 pixel location were utilized.

Table 2. Formula of the spectral indices. Band numbers in the formulas refer to the Sentinel-2 bands.
For Site-1 L is equal to 0.5 and for Site-2 L is equal to 0.428.

Spectral Index Formula

NDVI (Band8 − Band4)/(Band8 + Band4)
GNDVI (Band8 − Band3)/(Band8 + Band3)

SAVI ((Band8 − Band4)/(Band8 + Band4 + L)) × (1 + L)
NDBI (Band11 − Band8)/(Band11 + Band8)
NDWI (Band3 − Band8)/(Band3 + Band8)

3.2. RUESVMs

Flowchart of the proposed method (RUESVMs) to address the class imbalance problem in LC
mapping is illustrated in Figure 3. The RUESVMs method is an ensemble-based algorithm, developed
by integrating random under-sampling of majority classes and an ensemble of SVMs. Fully balancing
the original imbalanced data using conventional under-sampling methods may result in removal of
some useful information [28], which can change the decision boundary in an inappropriate way to
make distinction between some classes, which in turn reduces the accuracy. Therefore, the RUESVMs
method, by incorporating the best possible balance between the minority and majority classes, tries
to achieve a high level of accuracy for both categories without losing useful information at the same
time. In order to choose the best balance, it is possible to define some fractions according to which the
majority and minority samples are selected (discussed in Section 3.4).

The RUESVMs method creates an ensemble of SVM classifiers that each is trained by a randomly
under sampled subset of the original imbalanced data based on the defined fractions, and finally
combines the output of the SVM classifiers using majority voting. The main steps in implementing the
RUESVMs are as follows:

(1) The fractions of LC classes are defined.
(2) Based on the fractions, samples of original imbalanced data are randomly and repeatedly (with

replacement) extracted. In this study, 10 different random subsets of the original data are generated
for each fraction.

(3) An SVM classifier is built for each of these 10 subsets. The radial basis function is used as
kernel function, and the values of its parameters (i.e., cost and gamma) are selected after some
preliminary analyses.

(4) Using the built SVM classifiers, 10 LC maps are generated from the Sentinel-2 images.
(5) The produced LC maps are combined using a majority voting strategy and the final LC map

is generated.



Remote Sens. 2020, 12, 3484 6 of 16

The main objective of RUESVMs is to prevent possible information loss, as a common issue in
traditional under-sampling methods, and provide a high level of accuracies for both the majority
and minority classes by building a diverse ensemble of SVM classifiers from a series of independent
random subsets of the original data. The code to apply RUESVMs for LC mapping in the GEE platform
is provided in Supplementary Materials (Supplementary Materials S1).
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3.3. The LC Class Fractions

Within the RUESVMs framework (Figure 3), it is possible to define any desired proportion of
minority and majority classes to include in the random subsets. To be short and concise, 100 different
fractions of LC classes were defined and the performance of RUESVMs with different fractions was
evaluated to find the best possible proportion(s). An overview of the defined fractions is provided
in Table 3 (see Supplementary Materials S2 and S3 for the complete list). Based on the LC classes
distribution for Site-1 (Table 1), the LC classes were divided into three categories: Category-1 (majority
classes), including the agriculture and grassland classes; Category-2 (semi-majority classes) including
the barren and built-up classes; Category-3 (minority classes) including the road, urban vegetation,
and water classes. Since the RUESVMs method is an under-sampling method, different possible
combinations of Category-1 and Category-2 were only investigated in this study, and Category-3
(minority classes) left unchanged. For Site-2, similar to Site-1, different possible combinations of
Category-1 (majority classes: agriculture and barren classes) and Category-2 (semi-majority classes:
built-up and grassland classes) were only investigated, and Category-3 (minority classes: road,
urban-vegetation, water, forest, and snow/ice classes) left unchanged.
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Table 3. An overview of the defined LC class fractions for different categories.

Scenario
LC Class Fractions (%)

Category-1 Category-2 Category-3

1 10 10 100
2 10 20 100
3 10 30 100
4 10 40 100
5 10 50 100
6 10 60 100
7 10 70 100
8 10 80 100
9 10 90 100

10 10 100 100
11 20 10 100
...

...
...

...
99 100 90 100
100 100 100 100

3.4. Accuracy Assessment and Comparison

The confusion matrix was used to evaluate accuracy of the LC maps produced by RUESVMs.
Accordingly, User Accuracy (UA), Producer Accuracy (PA), and Overall Accuracy (OA) were calculated
over the validation datasets. The readers are referred to [53] for the explanation and formula of
these metrics. The Geometric Means of UAs and PAs (GM-UA and GM-PA, respectively) were also
calculated. The rationale of choosing these metrics was that they provide less bias toward majority
classes when evaluating the classification accuracy of imbalanced data and, thus, are more suitable for
the corresponding applications [26,54]. A small geometric mean value shows an inferior performance
of the given classification method for at least one LC class [53].

In this study, the performance of RUESVMs was also compared with the traditional SVM and SVM
combined with the three well-known data balancing techniques, including the Random Over-Sampling
(ROS) [55], Random Under-Sampling (RUS) [56], and Synthetic Minority Over-sampling Technique
(SMOTE) [57]. In the ROS method, as a straightforward oversampling approach, the classes are balanced
by randomly replicating rare instances from the minority classes [55]. RUS, as a non-heuristic method,
addresses the class imbalance problem by eliminating instances from the majority classes [56]. SMOTE
generates new synthetic instances for the minority classes through convex mixtures of neighboring
instances [57]. Along the connecting lines between a given sample and its k nearest neighbors in the feature
space, it randomly creates artificial instances for that class. These three methods were implemented in R
software [58] using the UBL package [59]. Several initial experiments were implemented to find the most
optimum k value for SMOTE when the proposed method was compared with SVM-SMOTE. For Site-1
and Site-2, the best k values were selected as 5 and 7, respectively.

3.5. RUESVSMs Implementation

The procedure of RUESVMs implementation in the GEE platform for LC mapping with Sentinel-2
images in two experiment sites, comprises the following eight main steps: (1) insert the Sentinel-2
images and training data to GEE; (2) define fractions of LC classes; (3) perform random under-sampling
of the original training data according to the defined fractions in step 2; (4) build an SVM classifier
for the sampled data in step 3; (5) classify the Sentinel-2 data by the built SVM; (6) independently
repeat steps 3–5 10 times; (7) conduct decision fusion of the classified labels based on majority
voting to derive the final LC map; (8) perform accuracy assessment and comparison of the results
with those of the traditional SVM, and the three integrated forms of SVM, including SVM-ROS,
SVM-RUS, and SVM-SMOTE. Since an individual random division of the sampled pixels into training
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and validation subsets and implementation of a typical classifier (e.g., RUESVMs) cause a biased
performance, the experiments were repeated 50 times with randomly divided original reference
samples into training (50%) and validation (50%) datasets. Accordingly, the averaged accuracy metrics
of different methods over 50 iterations are finally reported.

4. Results

4.1. Site-1

The RUESVMs method was applied to Site-1 with 100 different fractions, and the corresponding
accuracies were assessed, where the complete results are demonstrated in Supplementary Materials S4.
Comparing the results of 100 different fractions, it was observed that the fraction number 47 (RUESVMs-47)
provided the best performance using 50% of Category-1, 70% of Category-2, and 100% of Category-3.
The second best case was for the fraction number 27 (RUESVMs-27), which included 30%, 70%, and 100%
of Category-1, Category-2, and Category-3, respectively. The three OA, GM-PA, and GM-UA values
obtained from the RUESVMs-47 and RUESVMs-27 were above 89%, indicating high potential of the
proposed algorithm for delineating both the minority and majority classes. According to Table 4,
the results clearly demonstrate that RUESVMs-47 and RUESVMs-27 considerably improved the accuracy
of the minority classes without reducing the accuracy of the majority classes, which is the main aim
of the learning from imbalanced data [54]. Among 100 different fractions (Supplementary Materials
S4), fraction number 1 (RUESVMs-1) provided the worst performance using 10% of Category-1, 10% of
Category-2, and 100% of Category-3.

Table 4. Accuracy assessment (%) of the most accurate RUESVMs fractions and the benchmark methods
over Site-1 (UA = user accuracy, PA = producer accuracy, OA = overall accuracy, GM = geometric
means, RUESVMs = random under-sampling ensemble of support vector machines, SVMs = support
vector machines, SMOTE = synthetic minority over-sampling technique, ROS = random over sampling,
and RUS = random under-sampling).
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RUESVMs-47
UA (%) 93.8 90.9 95.3 83.0 91.4 81.2 99.2

89.8 90.5 90.4PA (%) 95.8 82.6 90.1 92.6 85.8 87.4 100

RUESVMs-27
UA (%) 96.8 88.8 97.1 79.6 89.2 79 99.3

90.7 89.6 90.1PA (%) 95.4 80.8 85.8 92.7 88.3 89.4 100

SVM
UA (%) 88.1 75.9 90.9 79.2 74.7 98.7 100

84.9 86.3 80.6PA (%) 99.0 73.4 82.6 82.9 86.8 51.3 100

SVM-SMOTE
UA (%) 95.9 74.7 94.8 84.5 71.8 66.8 100

85.6 83.2 85.4PA (%) 89.3 78.5 86.1 76.9 86.9 82.3 100

SVM-ROS
UA (%) 97.3 68.4 94.7 83.7 66.5 60.0 100

82.3 80 83.3PA (%) 82.6 80.0 82.5 71.2 86.9 82.3 100

SVM-RUS
UA (%) 93.8 65.4 90.2 66.1 58.4 51.8 100

74.8 73 77.2PA (%) 76.2 63.2 77.1 67.0 87.0 75.7 100

Four different versions of the SVM algorithm, including SVM, SVM-ROS, SVM-RUS, and SVM-
SMOTE, were also implemented and applied to Site-1. As is clear from Table 4, although SVM-SMOTE
provided the best results among these benchmark methods, both the RUESVMs-47 and RUESVMs-27
outperformed SVM-SMOTE. RUESVMs-47, respectively, increased the OA, GM-PA, and GM-UA values
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by approximately 4.2 percentage points, 5 percentage points, and 7.3 percentage points compared to
SVM-SMOTE. More specifically, the UA values obtained from RUESVMs-47 for the classes of road,
urban-vegetation, and water were 91.4%, 81.2%, and 99.2%, respectively, while the UA values of
SVM-SMOTE for these classes were 71.8%, 66.8%, and 100%, respectively. Additionally, the PA values
obtained from RUESVMs-47 for the minority classes were 85.8% (road), 87.4% (urban-vegetation),
and 100% (water), which are considerably higher than those obtained from SVM-SMOTE.

The comparison between RUESVMs-47 and SVM-SMOTE for the majority classes was interesting.
Although RUESVMs-47 yielded 2.1 percentage points and 1.5 percentage points lower UA values
for the agriculture and grassland classes compared to those obtained from SVM-SMOTE, it yielded
16.2 percentage points and 0.5 percentage points higher UA values for the barren and built-up classes
(semi-majority classes). According to the PA values, the results also showed that the RUESVMs-47
method increased the PA values of the agriculture, barren, built-up, and grassland classes by 6.5
percentage points, 4.1 percentage points, 4 percentage points, and 15.7 percentage points, respectively,
compared to SVM-SMOTE.

4.2. Site-2

Similar to Site-1, the proposed method was applied to Site-2 with 100 different fractions and the
relevant accuracies were evaluated against the four different benchmark methods (see Supplementary
Materials S5). It was observed that the fraction number 55 (RUESVMs-55) provided the best performance
using 60% of Category-1, 50% of Category-2, and 100% of Category-3, followed by RUESVMs-56,
which included 60%, 60%, and 100% of Category-1, Category-2, and Category-3, respectively. Both
fractions resulted in high accuracies for the rare classes without reducing the accuracy of majority
classes (see Table 5); all the three OA, GM-PA, and GM-UA values for both fractions were above
85%. Among 100 different fractions (Supplementary Materials S5), fraction number 11 (RUESVMs-11)
provided the worst performance using 20% of Category-1, 10% of Category-2, and 100% of Category-3.

Table 5. Accuracy assessment (%) of the most accurate RUESVMs fractions and the benchmark methods
over Site-2.

Method Per-Class
Metrics

LC Classes Overall Metrics
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RUESVMs-55
UA (%) 90.7 96.9 95.2 94.3 67.9 70.4 76.6 96.3 100

91.2 86.8 89.2PA (%) 97.4 94.5 83.7 82.8 93.7 78.5 86 88.7 100

RUESVMs-56
UA (%) 89.5 95.8 93.1 92.8 65.6 73 77 94.5 99

91.7 85.9 89.2PA (%) 96.7 93.1 81.2 81.2 93.9 79.7 88.6 91 100

SVM
UA (%) 92.2 78.4 79.3 87 63.1 45.0 89.0 83.9 94.6

84.7 77.4 78.3PA (%) 92.1 90.8 71.7 85.5 58.9 47.7 90.2 92 92.3

SVM-SMOTE
UA (%) 99.3 96.4 80.6 86.9 45.5 58.7 94.7 91 100

85.5 81.2 86.7PA (%) 91.8 73.8 71.8 90.1 100 72.4 94.8 95.6 95.9

SVM-ROS
UA (%) 97.3 87.2 85.8 84.8 42 35.4 94.7 87.3 100

82.7 75.1 83.5PA (%) 91.5 74.3 61.8 79.6 94.8 75.8 94.7 90 96.1

SVM-RUS
UA (%) 96.9 85.3 86.8 85.3 39.2 26 94.7 90.5 88

79.6 71.2 82.1PA (%) 91.8 67.7 55.5 79.2 100 75.0 94.7 87.4 100

As illustrated in Table 5, both RUESVMs-55 and RUESVMs-56 outperformed SVM-SMOTE,
as the best performed benchmark method, where RUESVMs-55 improved OA, GM-PA, and GM-UA
values by approximately 5.7 percentage points, 2.5 percentage points, and 5.6 percentage points,
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respectively. In the case of the minority classes, the UA values of RUESVMs-55 for the classes of road,
urban-vegetation, water, forest, and snow/ice were 67.9%, 70.4%, 76.6%, 96.3% and 100%, respectively,
while the UA values of SVM-SMOTE for these classes were 45.5%, 58.7%, 94.7%, 91%, and 100%,
respectively. Furthermore, the PA values of RUESVMs-55 for these minority classes were 93.7%, 78.5%,
86%, 88.7%, and 100%, respectively. These were comparable with those obtained from SVM-SMOTE.

Regarding the majority classes, although RUESVMs-55 resulted in approximately 0.5 percentage
points, 14.6 percentage points, and 7.4 percentage points higher UA values for the barren, built-up,
and grassland classes, it provided 8.6 percentage points lower UA value for the agriculture class
compared to SVM-SMOTE. Moreover, it was observed that RUESVMs-55 increased the PA values of
the agriculture, barren, and built-up classes by 5.6 percentage points, 20.7 percentage points, and 11.9
percentage points compared to SVM-SMOTE, and decreased the PA value of the grassland class by 7.3
percentage points.

5. Discussion

The need for accurate LC classification using remote sensing technology, coupled with the
potential of improving the accuracy using time-series of Sentinel-2 data, increase the need for effective
computational resources and processing methods. The GEE platform, as a cloud-based computing
environment [16,42], efficiently resolves several issues in LC classification using remote sensing data.
Thus, the GEE platform was applied in this study to implement RUESVMs. This enables widespread
availability of the RUESVMs approach and gives users the ability to process long time-series data over
relatively large areas for LC mapping. By using GEE, as a big data processing platform, obtaining
and processing data for each of the experimental sites took only few minutes. Conducting the same
implementations using traditional image acquisition and processing methods would definitely be a
time- and effort-consuming task.

The experiments demonstrated the efficiency of RUESVMs in dealing with class imbalance
problem and improving LC classification accuracy, specifically for the minority classes. Comparing the
results of the most accurate RUESVMs (RUESVMs-47 in Site-1 and RUESVMs-55 in Site-2) and the most
accurate benchmark method (SVM-SMOTE), it was observed that the accuracy assessment metrics
(i.e., OA, GM-PA, and GM-UA) were relatively higher for the proposed method. On average, in Site-1,
RUESVM-47 provided an approximate 5.3 percentage point increase in these metrics in comparison
to SVM-SMOTE, and in Site-2, RUESVMs-55 provided about a 4.6 percentage point increase in these
metrics compared to SVM-SMOTE. Moreover, visual assessment and comparison of generated maps
also showed higher performances of the proposed method than the most accurate benchmark method
(Supplementary Materials S6).

Figures 4 and 5 show the GM-UA and GM-PA values of the RUESVMs method over different
fractions compared to the benchmark methods across the two study sites. As is clear from those
figures, there are repeated patterns of both GM-UA and GM-PA values over almost every ten times of
fractions. Those fractions divide the defined fractions (100) into 10 bunches of fractions, each including
10 individual fractions, and reach to pick points in the middle of every branch. This indicates that a
moderate fraction from the three categories in both datasets results in better accuracy than a biased
exercise of fractions with a very small (or large) number of samples from some categories.

In Site-1, the most accurate LC mapping result was obtained using 50% and 70% of the samples
belonging to the majority classes and all samples of the minority classes. On the other hand, in Site-2,
the best classifier performance was obtained by randomly sampling 60% and 50% of the samples
belonged to the majority classes and 100% of the minority classes. Our experiments showed that
the performance of RUESVMs varies over different fractions and it could not provide a high level
of accuracy for both majority and minority classes in all fractions. For instance, based on Figure 5,
the GM-UA and GM-PA values reach higher values when the fractions of Category-1 and Category-2
are moderate (e.g., RUESVMs-45 and RUESVMs-55); however, when using 10% for Category-2 (e.g.,
RUESVMs-91 and RUESVMs-81), the values of GM-UA and GM-PA decrease sharply. This indicates
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that a moderate fraction from these categories resulted in far better accuracy than a biased exercise
of fractions with a very large number of samples from Category-1 and a small number of samples
from Category-2. Due to the ensemble structure of RUESVMs, coupled with random sampling by
replacement, it is possible to extract almost all the information of samples belonging to the majority
classes, which will eventually lead to the appropriate accuracy. The lowest accuracies in Site-1 and
Site-2 were obtained for scenarios 1 and 11, respectively. Scenarios 1 and 11 were very similar in terms
of the number of samples taken from the majority and semi-majority classes (Categories 1–2), and both
had the almost same number of samples of the majority and minority classes through the random
under-sampling. In fact, using a small fraction of the majority and semi-majority classes led to the
construction of a weak classifier due to the lack of sufficient data. On the other hand, the accuracy of the
minority classes was reduced when a large portion of the samples was used from the majority classes.
In summary, since the sampled reference data for image classification tasks are very different in terms
of the imbalance ratio, number of LC classes, and number of samples per LC class, providing a robust
approach for selecting the optimal fractions for broad settings is a very challenging task. Therefore,
it is necessary to investigate different fractions to achieve the optimal fraction for a given setting.
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methods (i.e., SVM, SVM-SMOTE, SVM-ROS, and SVM-RUS) over Site-1.

Among different LC classes at two study sites, the best result was achieved for the urban-vegetation
class, for which the proposed method provided approximately 14.4 percentage points and 11.7
percentage points higher UA values compared to SVM-SMOTE, for Site-1 and Site-2, respectively
(see Tables 4 and 5). In terms of the PA values, RUESVMs provided 5.1 and 6.1 higher values for the
urban-vegetation class over Site-1 and Site-2, respectively. The reason might be related to the reduction
in the instances of the agriculture and grassland classes, because they have similar spectral responses
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with that of the urban-vegetation class. Therefore, high imbalance ratios among these classes could lead
to low accuracy of the class with lower instances. The lower accuracy of SVM-SMOTE was potentially
related to the fact that the synthetic instances in the SMOTE method [57] might be generated close to
majority instances in the feature space and, thus, misclassification can occur for the minority classes.Remote Sens. 2020, 11, x FOR PEER REVIEW 12 of 17 
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All the classifiers provided good results for the water class in terms of both UA and PA, which
was reasonable because of the distinguishable spectral response of this class from other LC classes
as well as the high ability of the NDWI index in extracting the water class [51]. In Site-2, however,
SVM-SMOTE provided the best results for the water class, which could be linked to the possibility
of creating new and accurate instances in the neighborhood of this class by the SMOTE algorithm.
However, this is not possible for other minority classes, such as roads and urban-vegetation due to
their complexity. In fact, although SVM-SMOTE provided better results for the water class in Site-2,
it exhibited lower accuracies for the road and urban-vegetation classes compared to RUESVMs-55.
The RUESVMs-55 method provided acceptable and balanced results for all the minority classes. It also
provided better accuracy for the majority classes, which can be explained by its ensemble background
and structure.

Based on previous studies, increasing the accuracy of minority classes usually leads to a reduction
in the OA values. For example, previous studies reported an increase in PA without improvement in
UA or OA metrics [18,60]. In contrast, the results obtained in this study demonstrated that the values
for all overall accuracy metrics (i.e., OA, GM-PA, and GM-UA) as well as both UA and PA accuracies
could be further increased by applying RUESVMs. Although a few studies could effectively handle the
class imbalance [61,62], their performances were lower than the proposed method. Additionally, since
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multiple studies [63,64] did not apply the geometric mean metric in the validation step, the findings of
the present work cannot be statistically compared with those of the other works.

Regarding suggestions for further research, we propose studying the performance of the RUESVMs
method in different areas with different LC class distribution, especially for large-scale LC mapping.
Future studies should also evaluate the accuracy of the proposed method when other ML algorithms,
such as decision trees and random forest, are being utilized. Additionally, we recommend investigating
the combination of the RUESVMs and an oversampling algorithm (e.g., SMOTE) for potential
improvement in LC mapping.

6. Conclusions

In this study, the RUESVMs algorithm was proposed and investigated for LC mapping using
time-series of Sentinel-2 images within the GEE platform. The performance of RUESVMs was compared
against four benchmark methods, including traditional SVM, SVM-ROS, SVM-RUS, and SVM-SMOTE
methods. The results revealed that the RUESVMs method considerably outperforms the benchmarks
methods. Specifically, in comparison to the most accurate benchmark method (i.e., SVM-SMOTE),
RUESVMs provided approximately 4.95 percentage points, 3.75 percentage points, and 6.45 percentage
points higher values for OA, GM-PA, and GM-UA, respectively. In summary, three major conclusions
can be drawn from this study. First, with regard to the great ability of the GEE cloud computing platform
in dealing with big time-series data, LC mapping can be accomplished easily in this platform. Second,
applying the RUESVMs method can improve LC classification accuracy. RUESVMs not only increased
the accuracy of minority classes, it also increased the accuracy of majority classes. Third, incorporating
the best possible balance between the minority and majority classes leads to the achievement of the
highest possible accuracy for both minority and majority classes at the same time.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/12/21/3484/s1,
Supplementary Materials include: (1) Scripts for implementing RUESVMs for LC mapping using time-series
Sentinel-2 images in the GEE platform; (2) Complete list of the defined LC class fractions for Site-1; (3) Complete
list of the defined LC class fractions for Site-2; (4) Accuracy assessment results of different RUESVMs scenarios
and the benchmark methods in Site-1; (5) Accuracy assessment results of different RUESVMs scenarios and the
benchmark methods in Site-2; (6) LC maps of the most accurate RUESVMs fraction (i.e., RUESVMs-47) and the most
accurate benchmark method (i.e., SVM-SMOTE) for Site-1; (7) LC maps of the most accurate RUESVMs fraction
(i.e., RUESVMs-55) and the most accurate benchmark method (i.e., SVM-SMOTE) for Site-2; (8) Topographical
characteristics (i.e., Slope angle and aspect) of the Site-1; (9) Topographical characteristics (i.e., Slope angle and
aspect) of the Site-2.
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