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Abstract: Urban green spaces provide a host of ecosystem services, the quantity and structure
of which play an important role in human well-being. Rapid urbanization may modify urban
green spaces, having various effects on plant diversity. Tropical coastal cities have urbanized
rapidly in recent decades, but few studies have been conducted with a focus on their green spaces.
We studied the responses of cultivated and spontaneous plants, both key components of urban flora,
to the landscape structure of urban green spaces and possible social drivers. We analyzed existing
relationships between plant diversity indices, urban green space landscape metrics (using Systeme
Probatoire d’Observation de la Terre (SPOT) data,), and social factors, including the type, population
density, construction age, and GPS coordinates of each Urban Functional Unit, or UFU. We found
that UFUs with more green space patches had higher cultivated and spontaneous species richness
than those with fewer green space patches. Spontaneous species richness decreased when green
space patches became fragmented, and it increased when green space patches were more connected
(e.g., via land bridges). Conversely, cultivated species richness increased with green space patch
fragmentation. The phylogenetic diversity of both cultivated and spontaneous plants were weakly
associated with green space structure, which was strongly driven by land use. Old UFUs and those
with larger populations had more green space patches overall, although they tended to be small
and fragmented. Green space patch density was found to increase as the UFU age increased. From
the viewpoint of knowledge transfer, understanding the effects and drivers of landscape patterns of
urban green spaces could inform the development of improved policies and management of urban
green space areas.

Keywords: urban green space; landscape pattern; social factor; plant diversity; spontaneous plant;
cultivated plant
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1. Introduction

Cities often differ greatly in terms of development history, rate and mode of urbanization,
and cultural and social conditions [1,2]. The resulting urban fabric and associated landscape pattern
could mold the distribution, composition, and diversity of urban flora. Landscape pattern refers
to a spatial arrangement of various landscape elements of different sizes and shapes [3]. Recent
studies have reported that landscape pattern plays an important role in influencing local plant
community assemblage and diversity [4]. Spatial relationships among landscape elements present
one of the key drivers of local biodiversity [5,6]. Landscape patterns have been found to explain
much of the variance in species richness observed within forest ecosystems [7]. Several studies
have shown that landscape pattern is an important determinant of species diversity through patch
fragmentation and habitat modification [8]. Furthermore, landscape pattern influences many ecological
processes, such as the distribution of materials and nutrients, and the persistence and movement of
organisms [9,10]. Previous studies have even suggested that landscape patterns could be enlisted as
an effective biodiversity indicator [6,11]. In urban areas, the biodiversity of cultural zones depends
notably on land use [9,12], and especially on green space availability. The overall biodiversity in a city
is contingent upon the size, quantity, and quality of urban green spaces [13], which are crucial for
nurturing and protecting plant diversity [14].

Urban green spaces include natural, semi-natural, and artificial ecological systems within and
around a city [15], such as the formal green infrastructure of public parks and gardens, and other green
patches, such as remnant natural vegetation, urban waste-lands and vacant lots, and private gardens
and yards [14]. Urban green spaces are key components of urban ecosystems, playing an important role
in complex ecological processes [16] and providing significant ecosystem services, such as purifying air,
reducing noise [17], mitigating urban heat island effects [18], and furnishing habitats for wildlife [19].
The diverse green spaces found within cities represent a gradient of economic and management
inputs [12,20]. In modern times, the intensive anthropogenic impacts in urban regions necessitate
an understanding of the key socioeconomic factors, such as land use pattern and structure [9], as well
as other factors, such as population density, demographic profile, building age, and property price.
The high land value in cities often restricts the provision of green space, especially in densely developed
precincts. If a landowner can benefit notably from the use of urban land for commercial, industrial,
and residential purposes, then that land is unlikely to be assigned to green infrastructure [21]. Moreover,
the maintenance of urban green space is costly, and funding can become limited especially in times of
economic stringency [22]. To ensure a sufficient supply of urban green spaces in conjunction with new
developments and redevelopments, and to provide adequate maintenance to the existing stock, it is
important to find persuasive justifications in their provision of multiple ecosystem services. Identifying
the ecological role and conservation value of urban green space is therefore of critical importance to
promote their protection, maintenance, and development [20].

Urban vegetation can be divided into two major categories: (1) cultivated vegetation in managed
areas, including parks and street trees, and (2) spontaneous vegetation with growth and reproduction
regulated by natural ecosystem processes independent of human inputs [23,24]. The management
strategy of cultivated and spontaneous plants is markedly different; therefore, the response of these
two types of plant diversity to urban landscape patterns may differ. Few studies have investigated
the impact of different urban landscape patterns on the diversity of cultivated and spontaneous plant
species. In addition, most studies on urban plant diversity were conducted in developed countries
outside of the tropics. Tropical cities characterized by high inherent and modified biological diversity
and in a densely-packed compact development mode have been neglected [25]. A recent study
in Haikou, a tropical city in China, found that plant diversity was affected by land use and land cover,
but it did not assess the effects of landscape patterns and different plant types [26]. It is necessary to fill
this knowledge gap by conducting landscape ecology assessments of urban green space in tropical
compact cities [16].
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This study was carried out in the tropical coastal city Zhanjiang, located in Guangdong Province,
south China. This city has undergone rapid urbanization in recent decades, bringing drastic
landscape changes from natural to artificial. The changes in landscape patterns could be evaluated
as transformations in the shape, area, quality, arrangement of green space patches, and distribution
of individual landscape components [27]. The aims of this study were: (1) to identify the response
of cultivated and spontaneous plants to the landscape pattern of urban green spaces; and (2) to
determine the importance of social factors in relation to the landscape pattern of urban green spaces
and in molding urban plant species diversity.

2. Materials and Methods

2.1. Study Area

Zhanjiang city (109°40’-110°58’E, 20°13’-21°57’N) is located within the Leizhou Peninsula at
the western end of Guangdong Province on the south China coast (Figure 1). It covers a total area of
2217 km?2, an urban area of 226 km?, and has a coastline of 1243.7 km—the third longest coastline of
Chinese cities [28]. Average annual precipitation is between 1396 mm and 1723 mm, and the mean
annual temperature is 23.4 °C. In 2018, the total population of Zhanjiang was 7.33 million, and in 2019,
the gross domestic product (GDP) was about 306.47 billion Yuan (RMB) according to Zhanjiang’s
government report. With competitive industries, Zhanjiang has become an important economic zone
of the Beibuwan Region. With both rapid economic development and population growth, large tracts
of agricultural land have been converted to nonagricultural and urban uses to accommodate recent
urban expansion. Our study area within Zhanjiang covers 109.85 km?, with a total population of
approximately 0.68 million as of 2018.
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Figure 1. A map of China showing the locations of (a) Zhanjiang city, (b) the study area outlined in red,
and (c) the field survey units within the study area indicated by black dots.

2.2. Floristic Field Survey

A survey of the vascular plant diversity of the study area was conducted from July to August of
2017. The spatial sampling design was hierarchical, with the first step based on a grid of square cells
measuring 0.65 km X 0.65 km, with one Urban Functional Unit (UFU) randomly selected within each
cell. There was a total of 273 grid cells, although only 260 cells were surveyed as 13 cells were excluded
due to a lack of green areas (e.g., areas containing plant life) or inaccessibility. In each selected UFU,
three 20 m X 20 m plots were demarcated for tree diversity surveys (“tree plots”); within the four
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corners and center of each tree plot, five 5 m X 5 m subplots were set up for shrub diversity surveys
(“shrub plots”); and within each shrub plot, a 1 m X 1 m subplot was set up for herb diversity surveys
(“herb plots”). All species of trees, shrubs, and herbs were recorded in their respective sampling plots.
Botanical nomenclature and taxonomy followed the standards of the Flora of China [29] and the Plant
List (http://www.theplantlist.org/).

2.3. Species Richness and Phylogenetic Diversity Calculation

Within each sampling unit, species richness was determined according to the numbers of both
cultivated and spontaneous plant species. For each UFU, three measures of phylogenetic diversity
were calculated: Faith’s phylogenetic diversity (PD), which measures the sum of all phylogenetic
distances; phylogenetic Mean Pairwise Distance (MPD), which measures the differences across the entire
community and the mean distance between all species; and phylogenetic Mean Nearest Taxon Distance
(MNTD), which identifies the similarities between co-occurring species and measures the mean
distance between each species’ closest relative in a community [30,31]. We constructed a phylogenetic
tree including all our vascular species using “Phylomatic” (http://phylodiversity.net/phylomatic/)
and the software “Fig tree”. As a backbone, we used the PhytoPhylo tree of Qian & Jin [32].
Phylogenies generated by Scenario 3 are particularly robust in studies analyzing patterns of phylogenetic
properties [32]. The observed PD, MPD, and MNTD values were compared to their expected values
under a null model using respective standardized effect sizes (ses; PD.ses, MPD.ses, and MNTD.ses)
to obtain phylogenetic diversity metrics that are independent of species richness [33]. We used
the taxa.labels null model to simulate null assemblages (n = 999 randomizations) in the R package
“picante”, which randomizes taxon labels on the phylogeny for the species included in the sampling
pool [34]. MNTD.ses was found to be strongly correlated with PD.ses (cultivated plants Pearson’s
r > 0.81, spontaneous plants Pearson’s r > 0.92) in this study; therefore, MNTD.ses was removed
in further analysis to avoid multicollinearity (Table 1).

Table 1. The correlation coefficients between eight pairs of biodiversity indices. The Mean Nearest
Taxon Distance standardized effect size (MNTD.ses) of cultivated and spontaneous plants were removed
because their correlation coefficients were more than |0.7].

Spon Spon Spon Spon Cul Cul Cul Cul

Ntaxa PD.ses MPD.ses MNTD.ses Ntaxa PD.ses MPD.ses MNTD.ses
Spon ntaxa 1 —-0.62 -0.3 —-0.41 0.097 0.0072  -0.61x 107° 0.029
Spon PD.ses 1 0.73 0.93 0.17 0.17 0.021 0.08
Spon MPD.ses 1 0.7 0.2 0.21 —-0.0071 0.024
Spon MNTD.ses 1 0.28 0.19 —0.0055 0.87
Cul ntaxa 1 —0.058 -0.51 —0.091
Cul PD.ses 1 0.68 0.66
Cul MPD.ses 1 0.84
Cul MNTD.ses 1

If the values of ses are negative, the phylogenetic diversity is lower than random, and if the values
of ses are positive, the phylogenetic diversity is higher than random. Values that are significantly
more negative than random suggest a phylogenetically clustered tendency, whereas those that are
significantly more positive than random indicate an over-dispersed structure [35].

2.4. Landscape Analysis

For this analysis, we used the cloud free Systeme Probatoire d’Observation de la Terre (SPOT)
remote sensing image with a spatial resolution of 15 m taken on 27 November 2016. Supervised
classification by maximum likelihood classifier was adopted for image interpretation. The interpretation
was completed in ArcGIS 10.2, which was developed by Esri (Esri, Environmental Systems Research
Institute, Inc., Redlands, CA, USA) in the USA. The land uses were defined as: green space, road,
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building area, or water area. The overall classification accuracy was up to 85%. The interpreted land
use data was then used to calculate landscape pattern metrics in FRAGSTATS 4.2 [36]. The diversity,
density, splitting, cohesion, and splitting metrics of the landscape, based on the landscape level, were
calculated with FRAGSTATS 4.2 [36] (Appendix A). At last, seven landscape metrics were used for
further analyses based on correlation analysis (Table 2). The variable pairs with a correlation coefficient
greater than 0.6 were removed according to correlation analysis (Table 3).

Table 2. Descriptions of landscape pattern metrics used in this study.

Index Ecological Meaning [37]

Shannon’s evenness index (SHEI) ~ The uniformity of the distribution of different landscapes in a region
Patch number (NP) Number of patches

Patch density (DP) Number of patches per unit area

Splitting index (SPLIT) An index to compare the fragmentation of regions with different total size
Connectance The functional linkages or connectedness of patches

Structural and functional connectedness of patches, to reflect
the connectedness of habitats
Patch richness (PR) The total number of all patch types in the landscape

Patch cohesion index (COHESION)

Table 3. The correlation coefficients between seven pairs of landscape metrics. Seven landscape metrics
were kept because their correlation coefficients were less than [0.6].

NP DP Connectance = COHESION  SPLIT PR SHEI

NP 1 -0.13 -0.42 0.11 0.05 0.32 -0.17
DP 1 0.08 0.005 0.48 0.26 0.48
Connectance 1 -0.11 -0.37 -0.6 0.08
COHESION 1 -0.05 0.57 0.17
SPLIT 1 0.31 0.42
PR 1 -0.03
SHEI 1

2.5. Socioeconomic Variables in Each Urban Functional Unit (UFU)

We chose to investigate UFU type, construction age, housing price, human population, and GPS
coordinates as the key characteristics of each UFU because (1) accurate data of these five factors could be
obtained; (2) UFU types refer to schools, factories, hospitals and so on, which are indicative of different
land uses (Table 4); (3) construction age was previously linked to urbanization history; (4) housing price
and GPS together could serve as a proxy for urbanization level in Zhanjiang, as the property prices at
the city center and along coastal beaches were much higher than other areas; and (5) a large human
population may contribute to more intensive disturbance of urban vegetation. We classified each UFU
as one of the following types: Commercial (C), Institutional (I), Multi-family residential (M), Residential
(R), Transportation (T), Utility (U), Factory (F), or Park (P) (Table 4). Construction age, or the length of
time over which a UFU has been developed, was calculated as 2017 minus the year of establishment;
for example, if established in 2010, a UFU would have a construction age of seven years. The date of
establishment for each UFU was determined by one or more of the following methods: (1) checking
the UFU'’s official website, (2) interviewing the manager(s) of the UFU, and (3) analyzing past aerial
photos compiled from Google Earth. Housing price data were acquired from the Taofang Property
Website (www.taofang.com.cn), with query time from August to September of 2018; if the UFU was not
aresidential area, the housing price of the nearest residential area was assigned. The human population
density of each UFU was calculated by dividing the total human population by the total area of
the UFU (people/km?). We determined the total population of each UFU by (1) interviewing the UFU
manager(s), (2) consulting the UFU’s official website, and (3) estimating the population in residential
areas. In our population estimations, we assumed that if each apartment had an average of four
occupants [38], then the total population of each apartment building would be equal to the number of
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domestic units multiplied by four occupants. The GPS coordinates of each UFU were measured using
a GPS locator.

Table 4. The number of Urban Functional Unit (UFU) types and their categories.

UFU Types Number of Percentage of The Category of Number of UFUs Percentage of

UFUs Per Type UFU Types UFU Types Per Category Category
Enterprise 3 1.73
Commercial (C) 14 8.09 Shop 6 3.47
Hotel 5 2.89
Prlmars}; }2:2;:11 Smlclclle 18 104
Institutional (1) 24 13.87 Research institution 2 116
University 4 2.31
Multi-family High density
residential (M) 18 104 residential area 18 104
Residential (R) 23 13.29 Urban village 23 13.29
Bypath 27 15.61
Main road 13 7.51
: Traffic safety island 3 1.73
T tat T
ransportation (T) 49 28.32 Parking lot 3 1.73
Airport 1 0.58
Bus station 2 1.16
e Government organ 14 8.09
til
Utility (U) 21 12.14 Hospital 7 4.05
Factory (F) 10 5.78 Factory 10 5.78
Park (P) 14 8.09 Park 14 8.09
total 173 100 173 100

2.6. Data Analysis

A correlation analysis was performed among landscape metrics and plant diversity indices to
exclude pairs that were too closely related. This screening permitted the use of seven landscape
metrics and six diversity indices for subsequent data analysis (Table 5). All predictor variables were
log transformed and standardized to achieve normalization. Because the UFU types are categorical
variables, we assigned a numerical value to each UFU type: Commercial area (C) = 1, Factory (F) =2,
Institutional area (I) = 3, Multi-family residential (M) = 4, Park (P) = 5, Residential area (R) = 6,
Transportation area (T) = 7, Utility (U) = 8. In this way, we could introduce UFU types into our model.
We adopted Simple Linear Regression Models (LMs) to test the effect of single predictor variables
on response variables. The predictor and response variables for plant diversity analyses were listed
in Table 5. We then used p-values to select significant predictor variables for further analysis. We used
General Linear Models (GLMs) to analyze how different social factors influence landscape patterns,
and how different landscape patterns influence urban plant diversity. To find the subset of models
that could best explain these landscape and plant diversity patterns, we employed a model selection
procedure based on Akaike information criterion (AICc). Accordingly, we performed all the model
combinations and chose models with the smallest AICc value.
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Table 5. Summary of response and predictor variables used in linear regression models (LM) to analyze
plant diversity and landscape pattern; “spon.” and “cul.” refer to the spontaneous and cultivated
species pools, respectively.

Variable Variable Type Unit Transformation =~ Mean + SD
(@) Response for plant diversity analysis
Species richness (spon.) Discrete number of species 1517 £ 8.9
PD.ses (spon.) Continuous unitless —-0.74 £ 0.93
MPD.ses (spon.) Continuous unitless -0.68 +£0.74
Species richness (cul.) Discrete number of species 16.06 + 11.97
PD.ses (cul.) Continuous unitless —-0.48 +0.83
MPD.ses (cul.) Continuous unitless 0.03 £ 0.87

(b) Predictor for plant diversity analysis
(same as “response for landscape metrics”)
(c) Response for landscape metrics analysis

Patch number (NP) Discrete number of patches log(x) 526 +1.71
Patch density (DP) Continuous density of patches log(x) 8.37 £0.72
Connectance Continuous % log(x) 329 +£1.04
Patch cohesion index (COHESION) Continuous % log(x) 4.6 +0.53
Splitting index (SPLIT) Continuous % log(x) 2.03 +£0.47
Patch richness (PR) Discrete unitless log(x) 1.61 +0.15
Shannon’s evenness index (SHEI) Continuous unitless log(x) 0.61 + 0.09
(d) Predictor for landscape analysis

Construction age Discrete year log(x) 2.84 +0.98
Population density Continuous person/km? log(x) 3.39 £ 1.36
House price Discrete RMB (yuan) log(x) 8.71+0.9
Longitude Continuous degree log(x) 4.71 + 0.0002
Latitude Continuous degree log(x) 3.1 +£0.002
Urban functional unit (UFU) type Categorical (C, I, unitless log(x) 1.74 + 0.44

M, PR, T, U)*

* C: Commercial area, I: Institutional area, M: Multi-family residential area, R: Residential area, T: Transportation
area, U: Utility, F: Factory, P: Park.

3. Results

3.1. Plant Species Richness and Phylogenetic Diversity

The predictor and response variables for plant diversity analysis were listed in Table 5. According
to GLM results, plant diversity was influenced by Patch number (NP), Patch richness (PR), Shannon’s
evenness index (SHEI), Splitting index (SPLIT), and Connectance. NP had a significant positive
influence on the species richness of both cultivated and spontaneous species; for example, the more
fragmented the landscape, the higher the cultivated and spontaneous species richness (cultivated
species p = 0.0043, spontaneous species p = 0.0003). SPLIT had a significant positive influence on
cultivated species richness, and a significant negative influence on spontaneous species richness
(cultivated species p = 0.0137, spontaneous species p = 0.0639). Additionally, cultivated species richness
was significantly negatively influenced by PR (p = 0.0516), and spontaneous species richness was
significantly positively influenced by CONNECT (p = 0.0081) (Table 6).

As shown by the linear regression analysis (Figure 2), the relationships between the phylogenetic
diversity of cultivated and spontaneous plants and the landscape pattern of green space were not
significant. Only PD.ses of spontaneous plants were significantly affected by PR (R? = 0.025; p = 0.0496);
the PD.ses of cultivated plants was not affected by any of the landscape metrics. The MPD.ses of both
cultivated and spontaneous plants were weakly affected by COHESION (cultivated plants R? = 0.022,
p= 0.0619; spontaneous plants R? =0.0231, p = 0.058093).
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Table 6. Top models predicting species richness of spontaneous and cultivated species, and landscape pattern in Zhanjiang, Guangdong province, China. For each

model, we reported the R-squared value (RZ), and for each predictor its estimated coefficient.

8 of 16

Diversity Index NP DP PR SHEI SPLIT Connectance Species Richness (cul.)  Species Richness (spon.)
R? 0.27 0.15 0.27 0.07 0.27 0.13 0.25 0.28
Intercept -0.99 0.52 -2.05*% 2.64 ** -0.12 0.10. 50.19 58.44 ***
Construction age 2.36* 2.05* 226* 0.04 *
Longitude 1.484
Population density 2.81** 4.03 *** 3.28 **
UFU type -290*  -284*  -3.20* -1.86 —-2.86 ** 0.13
House price 0.12
Connectance 2.65 **
NP 2.86 ** 3.63 ***
PR -1.95.
SHEI -1.55
SPLIT 2.47 -1.85
***p <0.001, ** p < 0.01, * p < 0.05, p < 0.1. NP: Patch number; PD: Patch density; PR:
richness (spon.): Spontaneous species richness.

Patch richness; SPLIT: Splitting index; Species richness (cul.) Cultivated species richness; Species
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Figure 2. The results of linear regression modeling (LMs): (a) House price weakly affected patch cohesion;

(b,c) Cohesion significantly affected the Mean Pairwise Distance standardized effect size (MPD.ses) of
both cultivated and spontaneous plants; (d) Patch richness (PR) significantly affected the phylogenetic

diversity standardized effect size (PD.ses) of spontaneous plants. The shaded belt shows the 95%
confidence interval. The trend line illustrates the trend depicted by the regression modeling.

3.2. Landscape Pattern and UFU Characteristics

The landscape metrics, except for COHESION, were significantly affected by all UFU characteristics:
UFU type, construction age, and population density. Most of the landscape metrics were significantly
affected by UFU type. Nearly all landscape metrics were positively affected by construction age and
population density. NP and SPLIT were significantly positively affected by construction age and
population density (construction age p = 0.0203; population density p = 0.006 for NP; construction
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age p = 0.0247; population density p = 0.001 for SPLIT). Additionally, DP was significantly positively
affected by construction age, and PR was significantly positively affected by population density.

The patch SHEI, splitting index, density differences, and connectance among eight types of UFUs
were significant. SHEI was the highest in institutional areas (0.94 + 0.03) and the lowest in parks
(0.78 + 0.12). The splitting index was the highest in residential areas (11.88 + 3.77) and the lowest
in transport areas (4.25 + 1.19). The highest green space patch density was in factories (6931.95 + 1615.52)
and the lowest green space patch density was in parks (2056.62 + 936.69) (Figure 3). Connectance was
the highest in transportation areas (77.58 + 10.76) and the lowest in residential areas (8.64 + 5.24).
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Figure 3. The distribution of the landscape metrics of green space among eight UFU types. Shannon’s
evenness index (SHEI), splitting indeX, patch density, and connectance differed significantly among
these eight UFU types. a, b, ¢, d, e represent significant differences determined by Fisher’s least
significant difference (LSD) tests (p < 0.05) on the same landscape metric for different UFU types.
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4. Discussion

4.1. The Effect of Green Space Landscape Metrics on Cultivated and Spontaneous Plant Diversity

The size, shape, and distribution of urban green space play a decisive role in defining their
ecological and landscape functions, such as biodiversity [39]. The ability of green space to support
high biodiversity can also be affected by the urban structure [20]. The importance of the landscape
context in determining species richness has been demonstrated for multiple taxa of a variety of plant
life forms [40]. Garden management creates diverse vegetation cover, including perennially vegetated
habitats, such as lawns, or annually vegetated habitats, such as vegetable beds [41]. These diverse
microhabitats support urban biodiversity and have the ability to furnish a range of nature’s contributions
to people [42].

Similar to Huston'’s research [43], the species richness of both cultivated and spontaneous plants
has been observed to increase with the number of green space patches available. Urbanization
has induced landscape fragmentation and thus increased patch numbers, which has in turn led to
increasingly smaller yet more numerous habitats for urban plants. In urban areas, man-made vegetation
communities are usually constrained in small patches—it had been found that these small patches are
important for urban biodiversity [44]. Different man-made vegetation communities are commonly
composed of diverse collections of cultivated plant species, bringing high aggregate cultivated plant
diversity as these green space patches increase in number. People tend to plant different cultivated
species within different patches to bring high spatial variation in the aesthetic landscape; thus, the wide
spatial spread of cultivated plant species mostly depends on human activities within urban areas.
Ultimately, connectance among green space patches had no effect on the species richness of cultivated
plant species due to the high intensity of human disturbance (Table 6). COHESION among green
space patches had a weak effect on the phylogenetic diversity of cultivated plant species, such that
the higher the cohesion, the greater the phylogenetic diversity (Figure 2b). This means that an increase
in green space patch cohesion would not affect the species richness, but does have a weak effect on
phylogenetic diversity. This relationship is likely due to the large variety of species that humans
chose to plant in urban green spaces, as it was proven that cultivated non-native species promoted
phylogenetic differentiation [45]. In other words, the cohesion of green space patches had nearly no
effect on the diversity of cultivated plants. Overall, the green space landscape pattern has little affection
on cultivated plant diversity.

Unlike cultivated plants, the species richness of spontaneous plants was significantly positively
related to the patch cohesion index (Table 6). The phylogenetic diversity of spontaneous plants was
weakly positively related to the patch cohesion index (Figure 2c). This means that for spontaneous
plants, the patch cohesion effected species richness more than phylogenetic diversity. Thus, species
richness can be inconsistent with phylogenetic diversity. This is because spontaneous plants in urban
areas are more phylogenetically related, and this phylogenetic relatedness results in more similar
functional traits and environmental adaptations than those exhibited by distant relatives [46]. The patch
cohesion index could directly reflect the natural connectivity of the patches, with a high value indicating
a low degree of fragmentation [47]. The inherent patchiness of land use in cities has generated urban
green spaces that are often small and isolated [48]. The effect of fragmentation on species depends on
their dispersal capacity and other functional attributes [49]. As many spontaneous plants are dispersed
by animals, such species may be more influenced by landscape patterns, because their seeds need to be
transported between habitat patches which may be separated by intervening hostile land use [50]. Some
small annual species may be able to maintain populations in the smallest green space fragments [51].
Connectivity between patches is especially important for spontaneous plants, as the establishment
of annual spontaneous plant assemblages has been attributed to connectivity among urban green
space fragments at fine spatial scales [51]. Proponents of preserving and adding small green spaces
to the urban landscape had expounded their contributions to the maintenance of stepping-stone
connectivity, which benefits otherwise isolated plant populations [52]. Landscape fragmentation
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can impede gene flow, disrupt long-standing spatial genetic patterns, and impose strong structuring
of the genetic diversity of populations and species, including highly mobile ones [53]. Overall,
the magnitude of the contribution of small fragments to connectivity will depend on the characteristics
of individual patches and focal biota [20]. Some research has even shown that the present landscape
connectivity did not influence on plant species richness, while the past connectivity had a positive
effect [44]. Spontaneous species were effectively filtered by urban environmental conditions, thus
their existence depended more on long-lasting disturbances and changing environmental conditions.
On the other hand, the dispersal and reproduction of cultivated plants are more influenced by inherent
habitat traits, because their life cycles and survival are more dependent on human assistance and
associated maintenance practices [54].

4.2. The Relationship between Social Factors and Green Space Landscape Metrics

The modern city is a key example of a human-dominated social-ecological system [55]. In this
context, a green area can be understood as a social-ecological system or subsystem regulated by social
and biophysical factors [56]. The type and magnitude of the human disturbance regimes constitute
the key determinants of urban green space landscape characteristics [16]. In Zhanjiang, UFU type,
construction age, and population density were three main social factors that affected all green space
landscape metrics, with UFU type having a particularly significant effect (Table 6, Figure 3). The SHEI,
SPLIT, DP, and Connectance were significantly different among different UFU types (Figure 3). Cities
consist of a mosaic of individual UFUs that vary spatially by size, shape, and structure in conjunction
with their respective socioeconomic functions. In a given city block, the main traits of UFUs are usually
specific to their spatial constitution and arrangement [57]. Different UFU types have different functions
which can influence differential land use, in turn modifying the composition and configuration of
landscape patterns, [58], whereas the same land use tends to engender similar landscape patterns [59].
Thus, land use could regulate the amount and ecological quality of urban green spaces [16].

Population density positively affected patch number (NP), patch richness (PR), and splitting index
(SPLIT) in the study area. SPLIT, associated with NP and PR, offers an appropriate measure to compare
the fragmentation of regions of different sizes [60]. Higher values of NP and PR can result in higher
SPLIT. Population density is another aspect of human activity which impacts urban greening: green
space coverage declined in proportion to increasing human population density in European cities,
excluding the UK [61]. Research in tropical Southeast Asia and Europe has reported that cities with
higher population densities had less green space overall [59,61].

The construction age of UFUs reflected the effect of urban-development history on urban green
space. Older UFUs within Zhanjiang registered higher values of PR, DP, and SPLIT, and tended
to have more green space patches, which were typically small and highly fragmented. In newer
UFUs, green spaces were installed in recent years and were thus reflective of greater attention to
modern high-quality design standards, including provision of important ecosystem services. Liberal
adoption of enhanced planning policies and management of urban green spaces would contribute
to this enlightened trend [62]. A similar phenomenon was also observed in other tropical Chinese
cities, such as Hong Kong and Shenzhen [16,62], where urban green spaces in old districts were
found to be more fragmented than new ones. The fragmentation of urban green spaces in relation
to urban-development age could thus be attributed to relevant urban-ecological knowledge and its
application to public policies.

5. Conclusions

As some tropical coastal cities are anticipated to develop rapidly in the future, we could expect
notable changes in their urban green space landscape patterns and associated urban plant diversity.
It is necessary to acquire and apply relevant knowledge with the goal of improving spatial patterns of
urban green spaces in fast-expanding metropolises. Uncovering the social drivers of urban green space
landscape patterns and assessing their potential impacts on both cultivated and spontaneous plants is
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critical for optimizing the planning, design, and management of urban green spaces. Developing cities
should aim to protect and ameliorate the quantity and quality of urban green space with a focus on
enhancing their ecosystem services. The findings of this study are useful to inform the development
of comprehensive, ecologically oriented, and socially relevant green space plans. For example,
the landscape pattern of urban green space was significantly associated with UFU type—this means
that UFU function plays an important role in deciding the landscape pattern of urban green spaces.
Species richness was significantly associated with the number of green space patches; therefore,
the more fragmentation of urban green space the greater the cultivated species richness, but the lower
the spontaneous species richness. This phenomenon may depend on certain taxa which don’t need
large habitat, such as cultivated plants and small spontaneous plants. This detailed empirical research
was focused on one city, and it could be surmised that the drivers and effects of changes in green
space patterns may differ in other cities. Further research in other cities within different climate zones,
countries, and continents are therefore needed to validate or corroborate our findings. Although
we were able to detect the above relationships in our data, it should be noted that the R? values in our
models are low. This indicates that there are some additional, important factors at play which may
also affect plant diversity and green space landscape patterns. These factors have yet to be uncovered.
Therefore, future work will also need to address this issue by focusing on some other factors at the city
scale, such as policy, culture, greening investment, and so on.
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