
remote sensing  

Article

Using the MODIS Sensor for Snow Cover Modeling
and the Assessment of Drought Effects on Snow
Cover in a Mountainous Area

Pouya Aghelpour 1 , Yiqing Guan 2, Hadigheh Bahrami-Pichaghchi 3 , Babak Mohammadi 2 ,
Ozgur Kisi 4,5 and Danrong Zhang 2,*

1 Agricultural Meteorology, Department of Water Engineering, Faculty of Agriculture, Bu-Ali Sina University,
Hamedan 65178-38695, Iran; aghelpoor_p68@yahoo.com

2 College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China;
yiqingguan@hhu.edu.cn (Y.G.); Babakmohammadi@aol.com (B.M.)

3 Agricultural Meteorology, Department of Water Engineering, Faculty of Agricultural Engineering,
Sari Agricultural Sciences and Natural Resources University, Sari 48181-68984, Iran;
hadigheh.bahrami70@gmail.com

4 Department of Civil Engineering, Ilia State University, 0162 Tbilisi, Georgia; ozgur.kisi@iliauni.edu.ge or
ozgurkisi@duytan.edu.vn

5 Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
* Correspondence: danrong_zhang@hhu.edu.cn

Received: 25 August 2020; Accepted: 14 October 2020; Published: 19 October 2020
����������
�������

Abstract: Snow is one of the essential factors in hydrology, freshwater resources, irrigation, travel,
pastimes, floods, avalanches, and vegetation. In this study, the snow cover of the northern and southern
slopes of Alborz Mountains in Iran was investigated by considering two issues: (1) Estimating
the snow cover area and the (2) effects of droughts on snow cover. The snow cover data were
monitored by images obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS)
sensor. The meteorological data (including the precipitation, minimum and maximum temperature,
global solar radiation, relative humidity, and wind velocity) were prepared by a combination of
National Centers for Environmental Prediction-Climate Forecast System Reanalysis (NCEP-CFSR)
points and meteorological stations. The data scale was monthly and belonged to the 2000–2014
period. In the first part of the study, snow cover estimation was conducted by Multiple Linear
Regression (MLR), Least Square Support Vector Machine (LSSVM), Group Method of Data Handling
(GMDH), Multilayer Perceptron (MLP), and MLP with Grey Wolf Optimization (MLP-GWO)
models. The most accurate estimations were produced by the MLP-GWO and GMDH models.
The models produced better snow cover estimations for the northern slope compared to the southern
slope. The GWO improved the MLP’s accuracy by 10.7%. In the second part, seven drought
indices, including the Palmer Drought Severity Index (PDSI), Bahlme–Mooley Drought Index
(BMDI), Standardized Precipitation Index (SPI), Multivariate Standardized Precipitation Index (MSPI),
Modified Standardized Precipitation Index (SPImod), Joint Deficit Index (JDI), and Standardized
Precipitation-Evapotranspiration Index (SPEI) were calculated for both slopes. The results showed
that the effects of a drought event on the snow cover area would remain up to 5 (or 6) months in the
region. The highest impact of drought appears after two months in the snow cover area, and the
drought index most related to snow cover variations is the 2–month time window of SPI (SPI2).
The results of both subjects were promising and the methods can be examined in other snowy areas
of the world.

Keywords: MODIS data; snow cover area; snow modeling; machine learning; bio-inspired
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1. Introduction

Snow cover in many regions around the world has a direct impact on human life, including
engineering, irrigation, travel, recreation, and hydrology. Additionally, floods and avalanches are
important natural hazards, which are strongly associated with snow [1]. Another major aspect of snow
is its interaction with vegetation. The melting of this water source contributes to vegetation survival
and fertility, and has a profound effect on the phenomenon of soil frost and plant chilling injury [2–4].

The snow cover area is one of the most important parameters of the hydrological and climate
cycles. Field measurements can provide clues for observable changes in much of our knowledge on the
cryosphere. Over the last 20 years, due to the lack of appropriate accessibility, the influence of various
topographic and physiographic features on the estimation of cryosphere hydrological parameters,
and the insufficiency of meteorological stations at a high altitude have made the necessity of using
indirect methods more prominent at regional and global scales. Moreover, the snowmelt process has a
high energy requirement that results in atmospheric warming. Therefore, any change in snow cover
has a direct impact on the variability of the water and energy cycle [3,4].

Snow cover can be estimated using modeling, measurement stations, and remote sensing
applications [5]. Various satellite data have been used to identify the extent of snow cover and,
in recent years, the Moderate Resolution Imaging Spectroradiometer (MODIS) has been one of the
most commonly used approaches for snow cover monitoring [6–10]. The disadvantage of this method
is that the MODIS sensor was established in 2000, and before that, there were no images available
for snow cover monitoring. An alternative method is the use of estimation models, which can use
meteorological datasets (which are available for periods before 2000) for snow cover estimation.

Statistical models and artificial intelligence-based methods have been widely used in hydrological
modeling studies [6]. However, there are relatively few studies on the application of these methods for
modeling snow parameters [7]. Tabari et al. (2010) compared snow depth and snow water equivalent
(SWE) estimations of multivariate linear regression (MLR), discriminant function analysis, ordinary
kriging, ordinary kriging-multivariate linear regression, the artificial neural network (ANN), and the
neural network-genetics algorithm (NNGA). The results indicated that the NNGA, ANN, and MLR
methods were able to predict SWE at the desirable level of accuracy [8]. Lee et al. (2019) used ANN to
estimate the maximum daily fresh snow accumulation (MDFSA) in South Korea. The results showed
that the ANN model has an acceptable performance [9]. Khadka et al. (2014) studied the impact
of climate change on snow and glacier melting and its subsequent runoff in the Tamakoshi Basin
located in the Hindu Kush Himalaya region. They used HADCM3, CGCM3, SDSM, and SERES to
predict snow cover changes for the future, based on temperature and precipitation data and MLR [10].
From the literature review, it could be observed that there is no published study related to estimating
the snow cover area using meteorological variables. Therefore, in the current study, machine learning
and regression models were used for this issue for the first time.

Furthermore, the surface features of snowfall from a hydroclimatic perspective play a major
role in various areas, such as flood control, watershed management, the water supply, soil erosion,
and droughts. A drought affects almost all of the hydrological and agricultural sections and their own
related index clarifies each of them. For example, a meteorological drought is shown by the Percent
of Normal Precipitation Index (PNPI) and Rainfall Anomaly Index (RAI). The Surface Water Supply
Index (SWSI) is commonly used for hydrological drought monitoring. Furthermore, the Standardized
Precipitation Index (SPI) is an index that can be related to all of the drought types, in its different time
windows. For example, SPI’s 1-month time window is related to a meteorological drought and its 3–
and 6–month time windows are related to drought conditions from the perspective of soil moisture and
surface streamflow, respectively [11]. Moreover, the 9–month to 12–month time windows of SPI show
agricultural droughts and those of 12–month to 24–month relate to droughts from the perspective
of the groundwater level [11–13]. As another investigation of the current study, the researchers will
evaluate the effect of drought on snow cover variations and try to find the index most related to the
snow cover area.
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2. Materials and Methods

2.1. Area of Study

Central Alborz is part of the interconnected Alborz range. It has the highest convexity and
transverse thickness and height and extends from the Karaj valley to Semnan fault. The Central Alborz
range is divided into the northern and southern slopes and has three walls. At the northern wall,
there are limited altitudes in Tehran and Semnan provinces and the rest are situated in Mazandaran
province. Secondly, the middle wall forms the northern boundary of Tehran province and is the highest
part of the central Alborz range. The highest point of Alborz is Mount Damavand, with a 5671 m
height. This massive mountain wall continues to form the Kandovan Mountain and then the Taleghan
Mountain in the northwest, to the point where the Alamut river connects to the Taleghan river. To the
northeast, this wall extends to Firuzkuh and Savadkuh altitudes to the Firuzkuh river valley (the main
branch of Hablehroud), which runs south of its eastern slopes. It continues to the Shahmirzad altitude
and Semnan city. Thirdly, the south wall is the third part of the central altitude, with rivers such as
Jajrood, Karaj, Hablehrud, and Golrudbar cutting through it and creating gates along the north and
south. Topographically, it includes mountains and plains. In this region, snow plays a key role in the
hydrological and hydroclimate cycles, and a significant portion of the total annual runoff in the area
results from snowmelt. The geographical location of the northern, central, and southern Alborz range
and the distribution of the stations under study are shown in Figure 1.
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2.2. Data

2.2.1. Snow Cover Data

To monitor snow cover, MODIS model and Digital Elevation Model (DEM) images were used.
To that end, the MOD10A1 and MOD10A2 of MODIS data were first obtained from the NASA National
Snow and Ice Data Center (NSIDC) database with a spatial resolution of 500 × 500 m in HDF format.
Heavy snowfall in central Alborz usually occurs from early November to May and the snow cover
persists until June. For this area, images were available for the 15 years from 2000 to 2014. To process the
images, first, a preprocessing operation including geometric, radiometric, and atmospheric corrections
was applied to them in ENVI 5.3 software. This operation included calibrating images, converting
image coordinates to real terrain coordinates (WGS84 UTM 39N), and removing clouds from images.
The following provides a description of the MODIS sensor’s usage applied in the current study to
monitor the snow cover area.

One of the five sensors on the Terra satellite is the MODIS sensor, which was launched on
December 18, 1999. This sensor’s coverage significantly increased with the launch of the Aqua satellite
on May 4, 2002. The MODIS sensor has a spatial resolution (250, 500, and 1000 m), 12-bit radiometric
resolution, high temporal resolution (1 to 2 days), and 36-band spectral separation of bands 20 to
23, excluding radiation bands and bands 1 to 7, which are reflective. It covers wavelengths from
0.4 microns (visible light) to 14.4 microns (thermal infrared). The MODIS sensor provides snow cover
detection maps using the Normalized Difference Snow Index (NDSI) on a macro-scale and provides a
rapid application in regional studies [13]. NDSI is a spectral measure of the relative magnitude of the
characteristic reflectance difference between the visible and short-wave infrared reflectance of snow
in the MODIS sensor, employed to detect changes in snow cover using the Normalized Difference
Vegetation Index (NDVI) algorithm [14]. NDSI uses snow spectral reflectance advantages that exist in
the visible band with a high reflectance and infrared spectrum with a low reflectance, and NDSI as an
algorithm for detecting snow from clouds and snow-covered areas with a set of thresholds applied and
calculated pixel to pixel [14]. In the first method, the dual reflectance criteria (i.e., the pixel reflectance
values in band 6 > 11% and the pixel reflectance values in band 4 ≥ 10%) are applied if NDSI > 0.4,
based on Equation (1). In the next step, three conditional tests are performed to extract the NDSI
values, according to Equation (1). Similar to many spectral rationing methods, this index reduces
atmospheric effects [15]. Applying the NDSI will result in the formation of pixels with a value of −1 to
+1, for which values ranging from −1 to 0 indicate areas where there is no snow and those from 0 to +1
indicate areas where snow has positive coefficients due to its lightness and heaviness (depending on
its depth). When the snow depth is higher, the number is closer to one, and for a lower depth of snow,
the number tends toward zero. The MODIS snow map algorithm from bands 4 and 6 of this sensor is
automatically implemented to extract the Normalized Difference Snow Index (NDSI) and is calculated
based on Equation (1) [16].

NDSI =
MODISBand4 −MODISBand6

MODISBand4 + MODISBand6
=

green− SWIR
green + SWIR

(1)

In this equation, green is the green coverage, which is obtained from band 4 (0.545–0.665 µm) and
has a reflectance ≥ 10%. Band 6 (0.841–0.876 µm) has a reflectance > 11% and relates to Short-Wave
Infrared (SWIR).

2.2.2. Meteorological Data

In this study, the combined use of the National Centers for Environmental Prediction-Climate
Forecast System Reanalysis (NCEP-CFSR) database and observations due to insufficient meteorological
stations located at altitude (from the Iranian Meteorological Organization) is provided. The NCEP-CFSR
points and the ground stations are specified in Figure 1. The meteorological variables used include the
minimum temperature (Tmin), maximum temperature (Tmax), global solar radiation (GSR), relative
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humidity (RH), precipitation (P), and wind velocity (W), and their units are ◦C, ◦C, MJ
m2·day , %, mm, and m

s ,
respectively. These meteorological data, prepared on monthly scales, belong to the period of 1979–2014
(36 years). These datasets were integrated to be used as inputs for snow cover estimation. As there
was one data series for snow cover for each of the northern and southern slopes, the meteorological
data had to be integrated into one equivalent series for the estimation and investigation. Therefore,
the Thiessen polygon method was used to merge the data into one series, for each of the two slopes
of Alborz mountain (according to Guhathakurta et al.’s [17] study). The statistical characteristics of
Table 1 refer to the equivalent series.

Table 1. Statistical characteristics of the monthly data used in this study.

Variable Slope Mean StDev C.V. Minimum Maximum Skewness Kurtosis

Snow Cover
(SC) (km2)

Northern
Slope 2307 3153 136.65 0.00 14066 1.43 1.40

Southern
Slope 1956 3290 168.23 0.00 13538 1.89 2.68

Minimum
Temperature
(Tmin) (◦C)

Northern
Slope 2.19 7.63 347.90 −19.61 14.09 −0.37 −0.87

Southern
Slope 3.32 8.69 261.81 −20.12 16.72 −0.31 −0.98

Maximum
Temperature
(Tmax) (◦C)

Northern
Slope 14.52 9.93 68.39 −4.43 30.09 −0.11 −1.39

Southern
Slope 15.87 10.78 67.90 −4.48 32.22 −0.13 −1.43

Global Solar
Radiation

(GSR) ( MJ
m2·day )

Northern
Slope 19.37 6.93 35.81 8.35 32.11 −0.01 −1.29

Southern
Slope 20.91 7.12 34.06 9.25 33.05 −0.09 −1.34

Relative
Humidity
(RH) (%)

Northern
Slope 0.59 0.16 26.48 0.27 0.92 0.33 −1.05

Southern
Slope 0.48 0.18 38.31 0.22 0.87 0.65 −0.82

Precipitation
(P) (mm)

Northern
Slope 46.92 32.64 69.55 0.84 160.35 0.74 0.24

Southern
Slope 24.00 19.28 80.36 0.10 81.35 0.97 0.60

Wind Velocity
(W) (m

s )

Northern
Slope 2.64 0.38 14.24 1.62 3.66 0.16 0.00

Southern
Slope 2.86 0.51 17.77 1.64 4.11 −0.01 −0.47

In this investigation, the drought indices were calculated by precipitation and temperature,
recorded during the 1979–2014 period. However, according to the limitation of the snow cover
data (because of the nonexistence of snow cover images before 2000), investigating the relationship
between drought indices and snow cover was conducted for the period of 2000–2014. Furthermore,
the estimation of snow cover was implemented for the 2000 to 2014 period. All of the variables,
including the snow cover area and meteorological variables, were provided at a monthly scale for all
12 months of the years under study (Table 1 relates to the monthly scale data).

2.3. Drought Indices

Drought indices are used to monitor drought events. Droughts usually begin by precipitation
deficit and affect other water resources, appearing as different types, such as meteorological droughts,
agricultural droughts, etc. Different types of droughts can be monitored by special individual indices.



Remote Sens. 2020, 12, 3437 6 of 24

For example, the Bhalme and Mooley Drought Index (BMDI) is a meteorological drought index and
the Palmer Drought Severity Index (PDSI) is an agricultural drought index. On the other hand, there is
the Standardized Precipitation Index (SPI), which refers to different types of drought in its different
time windows [11]. There are also multivariate drought indices, such as the Joint Deficit Index (JDI)
and Multivariate SPI (MSPI), which can monitor different types of drought simultaneously [12,18].

In the current research, seven different drought indices were employed to investigate the effect of
drought on snow cover. Table 2 shows the drought indices used. Additionally, references for their
calculation methods and supplementary information are provided.

Table 2. Brief information about the drought indices employed in this study.

Name Developed by Input
Variable(s) Scale More Information and Details

about the Calculation Steps

Palmer Drought
Severity Index

(PDSI)
Palmer, 1965 [19] Precipitation;

temperature Monthly Palmer, 1965 [19];
Van Der Schrier et al., 2011 [20]

Bahlme and
Mooley Drought

Index (BMDI)

Bahlme and Mooley,
1980 [21] Precipitation Monthly Bahlme and Mooley, 1980 [21]

Standardized
Precipitation Index

(SPI)

McKee et al.,
1993 [22] Precipitation Monthly McKee et al., 1993 [22];

Svoboda et al., 2012 [11]

Multivariate
Standardized

Precipitation Index
(MSPI)

Bazrafshan et al.,
2014 [23] Precipitation Monthly

Bazrafshan et al., 2014 [23];
Bazrafshan et al., 2015 [18];
Aghelpour et al., 2020 [12]

Modified
Standardized

Precipitation Index
(SPImod)

Kao and
Govindaraju,

2010 [24]
Precipitation Monthly Kao and Govindaraju, 2010 [24]

Joint Deficit Index
(JDI)

Kao and
Govindaraju,

2010 [24]
Precipitation Monthly Kao and Govindaraju, 2010 [24];

Bazrafshan et al., 2015 [18]

Standardized
Precipitation-

Evapotranspiration
Index (SPEI)

Vicente-Serrano et al.,
2010 [25]

Precipitation;
temperature Monthly Vicente-Serrano et al., 2010 [25]

2.4. Applied Models

2.4.1. Multiple Linear Regression (MLR)

Multiple linear regression is a linear model implemented between one or more independent
variables (input variables) and one dependent variable (target variable). This model is based on the
regression coefficients for input variables, which are optimized by the least squares algorithm. In the
current research, the inputs were the meteorological variables and the target was the snow cover area.
The mathematical form of this model is as follows:

y = a + b1x1 + b2x2 + · · ·+ bnxn + e, (2)

where y is the target (dependent) variable, a is the model’s constant coefficient or intercept of the
regression line, bi represents the regression coefficients, x represents the input (independent) variables,
and e is the model’s error.
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2.4.2. Least Square Support Vector Machine (LSSVM)

Originating from support vector machines (SVMs), LSSVM is a powerful approach for solving
nonlinear classification problems, function estimation, and regression. The SVM, developed by Cortes
and Vapnik [26], is based on the principle of construction risk minimization (SRM), which reduces the
overestimation of the model [27]. The parameters of this model are γ, representing the adjustment
constant, and σ2, representing the radial basis function (RBF) kernel width optimized by the least
squares algorithm in this study [6].

2.4.3. Group Method of Data Handling (GMDH)

Ivakhnenko presented GMDH in 1970 at the Ukrainian Institute of Technology. This is a nonlinear
multivariate statistical analysis method that can be used to determine the complex structure of
input–output relationships in complex systems [28]. GMDH is based on the separation of second-
or third-order nested polynomials to simulate regression and classification topics [28]. GMDH is a
multilayer network in which each layer is composed of multiple nodes. The results from each layer are
transferred to the next layer; in fact, the results of one layer are used as inputs for the next layer [29,30].

2.4.4. Multilayer Perceptron (MLP)

The concept of the perceptron was first introduced by McCulloch and Pitts [31] as an artificial
neuron. An MLP network provides a nonlinear relationship between the input and output vectors.
This is accomplished by connecting neurons from one layer to another one (previous or next layer).
The output of each neuron is multiplied by weight coefficients and given as the input for a nonlinear
excitation function [32]. In the training phase, the training data are given to the perceptron, and the
grid weights are then adjusted to minimize the error between the target and output of the model,
or to reach the default number of training times. Then, like all modeling processes, different inputs
(not present in the training phase) are used for model validation. The training of neural networks
is generally very complex and can be stated to be an optimization problem with a large number of
variables [33].

2.4.5. Multilayer Perceptron-Grey Wolf Optimization (MLP-GWO)

This model results from the integration of the MLP model and the GWO algorithm. The GWO
algorithm is a population-based meta-heuristic algorithm that is inspired by the behavior of gray
wolves during hunting [34]. This algorithm consists of three main steps: (1) Tracking and approaching;
(2) pursing and encircling; and (3) attacking. There are four types of wolf in this algorithm. The alpha
wolf is the main driver of the algorithm, the beta and delta wolves act as assistants to the alpha wolf,
and the omega wolf follows both the alpha and beta wolves. Gray wolves hunt their prey through
surrounding them. At the hunting stage, the gray wolf attacks the surrounded prey. The alpha wolf
follows the hunting process, and the beta and delta wolves sometimes participate. For mathematically
simulating wolf hunting behavior, it is usually assumed that alpha, beta, and delta wolves have better
information on the location of prey [35]. Gray wolves attack and hunt when the target stops moving
(see [34] for more information on this optimization algorithm). A schematic diagram of the models
used to estimate the snow cover area is shown in Figure 2.
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Figure 2. Schematic diagram of the models’ approaches.

2.5. Model Performance Criteria

Several statistical criteria are used in each study to evaluate the performance of the models.
These criteria for current research include the Root Mean Square Error (RMSE), the Normalized Root
Mean Square Error (NRMSE), Nash–Sutcliff (NS), and the Willmott Index (WI). The mathematical
equations of these indices are as follows:

RMSE =

√
1
n

∑
n
i=1(Oi − Ei)

2, (3)

NRMSE =

√
1
n
∑ n

i=1(Oi − Ei)
2

Omax −Omin
, (4)

NS = 1−

∑N
i=1(Oi − Ei)

2∑N
i=1

(
Oi −O

)2 , (5)

WI = 1−

∑N
i=1(Oi − Ei)

2∑N
i=1

(∣∣∣Ei −O
∣∣∣+ ∣∣∣Oi −O

∣∣∣)2 . (6)

In these equations, Oi represents the observational data, Ei represents the estimated data,
Ō represents the average observational data, Omax represents the maximum observational data,
and Omin represents the minimum observational data. The closer values of WI and NS are to 1,
and RMSE and NRMSE are to 0, the better the performance of the models.

3. Results

3.1. Investigating the Relationship between Changes in the Snow Cover Area and Drought Indices

The seven drought indices of PDSI, BMDI, SPI, MSPI, SPImod, JDI, and SPEI were initially
calculated. Then, the relationship between these indices and the snow cover area for both the
northern and southern slopes of the Alborz Mountains was evaluated by the Spearman correlation test.
The results of the Spearman test are presented in Tables 3 and 4.
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Table 3. Spearmen correlation test results on the relationship between the indexes and snow cover for the northern slope.

Index SPI1 SPI2 SPI3 SPI4 SPI5 SPI6 SPI7 SPI8 SPI9 SPI10 SPI11 SPI12
Correlation coefficient 0.622 ** 0.723 ** 0.720 ** 0.641 ** 0.503 ** 0.327 ** 0.157 0.001 −0.100 −0.128 −0.111 −0.024

Index SPI13 SPI14 SPI15 SPI16 SPI17 SPI18 SPI19 SPI20 SPI21 SPI22 SPI23 SPI24
Correlation coefficient 0.112 0.241 ** 0.319 ** 0.332 ** 0.280 ** 0.194 * 0.075 −0.045 −0.137 −0.177 * −0.138 −0.053

Index SPEI1 SPEI2 SPEI3 SPEI4 SPEI5 SPEI6 SPEI7 SPEI8 SPEI9 SPEI10 SPEI11 SPEI12
Correlation coefficient 0.094 0.097 0.062 0.036 0.010 −0.015 −0.008 −0.020 −0.008 −0.007 −0.006 0.007

Index SPEI13 SPEI14 SPEI15 SPEI16 SPEI17 SPEI18 SPEI19 SPEI20 SPEI21 SPEI22 SPEI23 SPEI24
Correlation coefficient 0.017 0.011 0.020 0.005 0.005 −0.006 −0.015 −0.014 0.013 0.014 0.038 0.043

Index SPImod1 SPImod2 SPImod3 SPImod4 SPImod5 SPImod6 SPImod7 SPImod8 SPImod9 SPImod10 SPImod11 SPImod12
Correlation coefficient 0.129 0.131 0.070 0.017 −0.019 −0.028 −0.015 −0.022 −0.010 −0.014 −0.015 −0.011

Index SPImod13 SPImod14 SPImod15 SPImod16 SPImod17 SPImod18 SPImod19 SPImod20 SPImod21 SPImod22 SPImod23 SPImod24
Correlation coefficient 0.007 0.002 0.008 −0.009 −0.015 −0.026 −0.036 −0.023 −0.007 0.003 0.022 0.031

Index MSPI1-3 MSPI1-6 MSPI1-9 MSPI1-12 MSPI3-6 MSPI3-12 MSPI6-12 MSPI12-24 MSPI24-48 JDI BMDI PDSI
Correlation coefficient 0.085 0.041 0.039 0.018 −0.005 −0.002 −0.021 −0.028 0.037 0.008 0.024 −0.034

* Correlation is significant at the level of 0.05. ** Correlation is significant at the level of 0.01. The bold numbers are the significant correlations.
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Table 4. Spearmen correlation test results on the relationship between the indexes and snow cover for the southern slope.

Index SPI1 SPI2 SPI3 SPI4 SPI5 SPI6 SPI7 SPI8 SPI9 SPI10 SPI11 SPI12
Correlation
coefficient 0.617 ** 0.638 ** 0.577 ** 0.441 ** 0.272 ** 0.058 −0.122 −0.267 ** −0.328 ** −0.305 ** −0.198 * −0.041

Index SPI13 SPI14 SPI15 SPI16 SPI17 SPI18 SPI19 SPI20 SPI21 SPI22 SPI23 SPI24
Correlation
coefficient 0.120 0.222 ** 0.252 ** 0.209 * 0.115 −0.010 −0.136 −0.246 ** −0.300 ** −0.274 ** −0.188 * −0.078

Index SPEI1 SPEI2 SPEI3 SPEI4 SPEI5 SPEI6 SPEI7 SPEI8 SPEI9 SPEI10 SPEI11 SPEI12
Correlation
coefficient 0.019 −0.079 −0.186 * −0.190 * −0.165 * −0.124 −0.085 −0.044 −0.033 −0.024 −0.046 −0.032

Index SPEI13 SPEI14 SPEI15 SPEI16 SPEI17 SPEI18 SPEI19 SPEI20 SPEI21 SPEI22 SPEI23 SPEI24
Correlation
coefficient −0.026 −0.044 −0.051 −0.065 −0.101 −0.100 −0.105 −0.087 −0.033 0.074 0.020 0.017

Index SPImod1 SPImod2 SPImod3 SPImod4 SPImod5 SPImod6 SPImod7 SPImod8 SPImod9 SPImod10 SPImod11 SPImod12
Correlation
coefficient 0.081 0.047 −0.001 −0.065 −0.097 −0.128 −0.100 −0.091 −0.063 −0.039 −0.030 −0.021

Index SPImod13 SPImod14 SPImod15 SPImod16 SPImod17 SPImod18 SPImod19 SPImod20 SPImod21 SPImod22 SPImod23 SPImod24
Correlation
coefficient −0.020 −0.023 −0.041 −0.070 −0.090 −0.101 −0.096 −0.069 −0.049 −0.035 −0.013 −0.005

Index MSPI1-3 MSPI1-6 MSPI1-9 MSPI1-12 MSPI3-6 MSPI3-12 MSPI6-12 MSPI12-24 MSPI24-48 JDI BMDI PDSI
Correlation
coefficient 0.029 –0.027 –0.031 –0.016 –0.061 –0.023 –0.007 –0.017 0.010 –0.040 0.022 –0.064

* Correlation is significant at the level of 0.05. ** Correlation is significant at the level of 0.01. The bold numbers are the significant correlations.
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Here, 24 time windows of the indices SPI, SPEI, and SPImod were calculated for each slope.
The results indicate a significant relationship (p = 0.01) between the snow cover area and SPI for
both the northern and southern slopes of Alborz and some SPEI time windows for the southern
slope. The highest correlation coefficients were observed in SPI 1-, 2-, 3-, 4-, 5-, and 6-month time
windows and accordingly, MSPI was calculated in time windows of 1–3 months (MSPI1–3), 1–6 months
(MSPI1–6), 1–9 months (MSPI1–9), and 1–12 months (MSPI1–12). The five main time windows mentioned
in the introduction of MSPI [23] were also calculated and investigated (including MSPI3–6, MSPI6–12,
MSPI3–12, MSPI12–24, and MSPI24–48). The drought indices, including SPImod (in all time windows),
MSPI (in all time windows), JDI, BMDI, and PDSI, were not significantly related to snow cover
variations. The highest correlation coefficients for the northern slope were 0.723 and 0.720, which were
reported for SPI2 and SPI3, respectively. For the southern slope, the highest correlation coefficients
were 0.617 and 0.638, which respectively belong to SPI1 and SPI2. The most important reasons for this
are the higher humidity and cloudiness and consequently lower evaporation rates of the northern
slopes, and conversely, the higher received radiation rates for the southern slopes. This causes the
snow to melt later on the northern slopes. Therefore, the effects of snow cover on droughts will remain
longer and consequently, larger time windows of SPI can be related to the snow cover area for the
northern slopes. As a result, SPI2 can be identified as the best time window of SPI and the drought
variable (among these indices) most related to the snow cover variations in this region. In general,
it can be reported that the drought status will be most effective during the increasing and decreasing of
the snow cover area with a two-month time lag, remaining for up to five (or six) months.

3.2. Results of Snow Cover Estimation

3.2.1. Input Selection

Prior to modeling, the correlation matrix was used at the input selection stage. The correlation
results of the variables are shown in Figure 3.

There is a rational and strong negative correlation between the maximum and minimum
temperatures, as well as between radiation and snow cover areas, for both slopes. Moreover,
in terms of the positive correlations, the relative humidity has a strong correlation with the snow cover
and precipitation has a weaker positive correlation coefficient, but both of them are significant at the
0.01 level. The variable wind speed had the weakest correlation for both slopes, being significant at the
0.05 level for the northern slope and insignificant for the southern slope. The opposite direction of
the wind speed’s correlation for these two slopes can be related to the influential synoptic systems.
The northern slope of Alborz Mountains is affected by the fronts from the Mediterranean Sea, Black Sea,
and Caspian Sea. The absolute majority of rainfall due to these systems falls at the northern slope
and a much smaller amount falls in the southern zones, which causes a big difference between these
two areas’ climates (north of these mountains, there are humid and super-humid climates and, to the
south, there is an arid climate). The wind speed close to the earth’s surface, especially at altitude and
in mountainous regions, is significantly related to the atmospheric fronts’ speed. Therefore, when the
wind speed increases, a front transfers the moisture to altitude and causes snowfall, so the snow cover
area will increase. However, the front loses its humidity and after descending the altitudes in the
southern part, it usually produces chinook wind. This phenomenon causes snowmelt and decreases
the snow cover area, so there will be a negative relation between snow cover and wind speed in
this region.

In these datasets, the precipitation refers to rainfall data. Also at high altitudes, the snowfall
events are transformed into water equivalents of snow and count as rainfall. It is obvious that snowfall
can increase the snow cover and causes a positive correlation with the snow cover area. In contrast,
warm precipitation causes a negative correlation. As we can see for the correlations, there are positive
correlations (+0.333 for the southern slope and +0.479 for the northern slope) between the snow cover
area and precipitation. To extend this issue, it can be stated that, at lower altitudes, warmer seasons
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have warm precipitation, which melts the snow and causes a negative correlation with the snow
cover area, and colder seasons have both cold and warm precipitation. However, almost all of the
precipitation at high altitudes occurs in the form of snowfall, which increases the snowy area and has
a positive correlation with the snow cover area. Since the snow cover area exists at higher altitudes,
cold precipitation and snowfall will be more effective in terms of the snow cover. Therefore, in the
general form of this region, precipitation will be positively correlated with the snow cover area.
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slopes of Alborz Mountains.

The correlation of snow cover with meteorological variables is somewhat stronger for the northern
slope, because the standard deviation, skewness, and coefficient of variation of this phenomenon
(snow cover area) are lower for the northern slope, so it is somewhat closer to exhibiting a normal
distribution. This phenomenon can lead to less variability and, consequently, greater consistency with
other meteorological variables. To select the inputs, the meteorological variables for each slope were
sorted separately by the correlation coefficients, and the input scenarios were selected as given in
Table 5.

Therefore, input scenarios, inputs (meteorological variables), and the target (snow cover area)
were arranged, and in each scenario, 75% of the number of months was selected for training and 25%
for the test. Then, five methods, including MLR, LSSVM, GMDH, MLP, and MLP-GWO, were used for
estimating the snow cover.
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Table 5. Input scenarios of the models for each slope.

Zone
Name of the

Input Scenario
Input Variables

Scenarios for the Models

MLR SVM GMDH MLP MLP-GWO

Northern
Slope

Scenario 1 Tmin MLR1 SVM1 GMDH1 MLP1 MLP-GWO1
Scenario 2 Tmin; Tmax MLR2 SVM2 GMDH2 MLP2 MLP-GWO2
Scenario 3 Tmin; Tmax; RH MLR3 SVM3 GMDH3 MLP3 MLP-GWO3
Scenario 4 Tmin; Tmax; RH; GSR MLR4 SVM4 GMDH4 MLP4 MLP-GWO4
Scenario 5 Tmin; Tmax; RH; GSR; P MLR5 SVM5 GMDH5 MLP5 MLP-GWO5
Scenario 6 Tmin; Tmax; RH; GSR; P; W MLR6 SVM6 GMDH6 MLP6 MLP-GWO6

Southern
Slope

Scenario 1 Tmin MLR1 SVM1 GMDH1 MLP1 MLP-GWO1
Scenario 2 Tmin; RH MLR2 SVM2 GMDH2 MLP2 MLP-GWO2
Scenario 3 Tmin; RH; Tmax MLR3 SVM3 GMDH3 MLP3 MLP-GWO3
Scenario 4 Tmin; RH; Tmax; GSR MLR4 SVM4 GMDH4 MLP4 MLP-GWO4
Scenario 5 Tmin; RH; Tmax; GSR; P MLR5 SVM5 GMDH5 MLP5 MLP-GWO5
Scenario 6 Tmin; RH; Tmax; GSR; P; W MLR6 SVM6 GMDH6 MLP6 MLP-GWO6

3.2.2. Models’ Performances

This section only covers the test part, and the results are listed in Table 6. It can be observed that
the MLR model is the weakest model in most cases.

Table 6. Results of snow cover estimation by the models.

Slope Input Scenario
Train Test

NRMSE RMSE
(km2) WI NS NRMSE RMSE

(km2) WI NS

Northern
Slope

MLR1 0.116 1631.166 0.914 0.746 0.152 1386.662 0.939 0.762
LSSVM1 0.097 1366.625 0.948 0.822 0.175 1601.406 0.937 0.683
GMDH1 0.105 1475.582 0.931 0.792 0.133 1216.993 0.956 0.817

MLP1 0.100 1402.681 0.948 0.812 0.158 1440.066 0.948 0.744
MLP-GWO1 0.100 1403.624 0.943 0.812 0.128 1170.852 0.961 0.831

MLR2 0.115 1621.970 0.916 0.749 0.154 1405.929 0.939 0.756
LSSVM2 0.083 1169.151 0.964 0.870 0.170 1551.450 0.939 0.702
GMDH2 0.095 1338.373 0.948 0.829 0.127 1161.180 0.961 0.833

MLP2 0.088 1239.241 0.958 0.853 0.144 1314.323 0.953 0.786
MLP-GWO2 0.091 1285.300 0.953 0.842 0.138 1264.108 0.956 0.802

MLR3 0.110 1544.673 0.927 0.772 0.145 1329.095 0.944 0.782
LSSVM3 0.081 1144.194 0.965 0.875 0.139 1271.612 0.955 0.800
GMDH3 0.084 1179.983 0.963 0.867 0.107 980.987 0.971 0.881

MLP3 0.093 1314.088 0.949 0.835 0.111 1017.925 0.968 0.872
MLP-GWO3 0.092 1296.527 0.948 0.840 0.094 859.117 0.973 0.909

MLR4 0.110 1543.266 0.927 0.773 0.145 1323.238 0.945 0.784
LSSVM4 0.077 1077.685 0.969 0.889 0.126 1151.492 0.959 0.836
GMDH4 0.080 1120.458 0.967 0.880 0.089 816.011 0.979 0.918

MLP4 0.075 1051.216 0.971 0.895 0.118 1077.687 0.961 0.856
MLP-GWO4 0.068 956.988 0.977 0.913 0.092 839.345 0.977 0.913

MLR5 0.110 1541.353 0.927 0.773 0.147 1338.466 0.944 0.779
LSSVM5 0.075 1058.106 0.971 0.893 0.133 1214.064 0.953 0.818
GMDH5 0.077 1087.333 0.969 0.887 0.097 887.575 0.976 0.903

MLP5 0.078 1096.451 0.966 0.885 0.118 1078.002 0.958 0.856
MLP-GWO5 0.071 996.632 0.974 0.905 0.116 1059.867 0.963 0.861

MLR6 0.107 1501.507 0.932 0.785 0.103 937.472 0.971 0.891
LSSVM6 0.088 1236.120 0.958 0.854 0.106 972.237 0.972 0.883
GMDH6 0.080 1119.229 0.966 0.880 0.091 829.099 0.978 0.915

MLP6 0.083 1171.790 0.962 0.869 0.096 881.555 0.975 0.904
MLP-GWO6 0.086 1204.090 0.959 0.862 0.083 754.711 0.980 0.930
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Table 6. Cont.

Slope Input Scenario
Train Test

NRMSE RMSE
(km2) WI NS NRMSE RMSE

(km2) WI NS

Southern
Slope

MLR1 0.148 1999.178 0.876 0.637 0.147 1885.137 0.882 0.646
LSSVM1 0.124 1678.581 0.921 0.744 0.109 1392.661 0.941 0.807
GMDH1 0.129 1748.936 0.923 0.722 0.104 1328.284 0.950 0.824

MLP1 0.128 1726.925 0.923 0.729 0.111 1429.751 0.943 0.797
MLP-GWO1 0.124 1679.358 0.927 0.744 0.105 1351.662 0.949 0.818

MLR2 0.146 1975.748 0.882 0.645 0.145 1861.597 0.879 0.655
LSSVM2 0.125 1688.168 0.919 0.741 0.116 1486.640 0.923 0.780
GMDH2 0.128 1726.927 0.921 0.729 0.103 1321.075 0.946 0.826

MLP2 0.126 1709.780 0.923 0.734 0.102 1311.089 0.943 0.829
MLP-GWO2 0.126 1709.434 0.913 0.734 0.098 1261.877 0.953 0.842

MLR3 0.146 1974.002 0.890 0.646 0.121 1557.307 0.917 0.759
LSSVM3 0.110 1484.501 0.941 0.800 0.130 1661.526 0.913 0.725
GMDH3 0.112 1512.714 0.937 0.792 0.110 1406.948 0.935 0.803

MLP3 0.116 1574.361 0.933 0.775 0.114 1460.509 0.940 0.788
MLP-GWO3 0.118 1595.235 0.939 0.769 0.107 1377.436 0.945 0.811

MLR4 0.146 1982.769 0.889 0.643 0.123 1581.594 0.914 0.751
LSSVM4 0.102 1379.232 0.950 0.827 0.125 1607.478 0.916 0.743
GMDH4 0.095 1286.933 0.960 0.849 0.105 1341.722 0.947 0.821

MLP4 0.103 1393.533 0.952 0.823 0.111 1422.194 0.948 0.799
MLP-GWO4 0.105 1414.971 0.949 0.818 0.102 1302.612 0.953 0.831

MLR5 0.147 1987.693 0.888 0.641 0.129 1649.801 0.905 0.729
LSSVM5 0.100 1358.052 0.952 0.832 0.131 1676.468 0.916 0.720
GMDH5 0.101 1369.514 0.950 0.830 0.114 1462.780 0.930 0.787

MLP5 0.117 1587.929 0.923 0.771 0.112 1442.699 0.932 0.793
MLP-GWO5 0.120 1629.483 0.924 0.759 0.107 1368.283 0.939 0.814

MLR6 0.146 1978.638 0.889 0.644 0.127 1634.376 0.901 0.734
LSSVM6 0.108 1468.020 0.941 0.804 0.134 1719.101 0.882 0.706
GMDH6 0.094 1266.889 0.960 0.854 0.087 1111.549 0.965 0.877

MLP6 0.113 1535.174 0.940 0.786 0.122 1558.616 0.910 0.758
MLP-GWO6 0.109 1472.911 0.941 0.803 0.115 1477.708 0.922 0.783

Bold numbers are the best estimations.

This indicates that the nonlinear relationships between the meteorological variables and the
snow cover area are stronger than the linear relationships. The best performance in the northern and
southern slopes belongs to the MLR6 and MLR3 scenarios, respectively. The equations derived from
MLR models are given below:

SC = −741.58Tmin + 533.87Tmax + 8990.42RH − 152.77GSR + 8.09P + 1462.76W − 10412.99, (7)

SC = −841.78Tmin + 538.59Tmax + 7151.76RH − 7154.55. (8)

These equations are applicable for these two slopes for estimating the snow cover if no snow
cover data are available. Equation (8) is the best MLR model for southern slopes, as it has the least
error and can also be used with just three variables, including Tmin, Tmax, and RH.

Subsequently, the SVM and MLP artificial intelligence models performed relatively well in terms
of the accuracy. Both of these models displayed their best performance with scenario 6 and the
model performance can be considered very desirable, with NS > 0.75 and NRMSE < 0.10. However,
the NRMSE value for these two models is more than 0.10 for the southern slope.

Among the AI-based models, the GMDH and/or MLP-GWO models produced the best
results in all scenarios. GMDH provided its best estimation with the fourth input scenario
(GMDH4), exhibiting results of RMSE = 816.011 km2, NRMSE = 0.089, NS = 0.918, and WI = 0.979
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for the northern slope, and with the sixth input scenario (GMDH6), displaying results of
RMSE = 1111.549 km2, NRMSE = 0.087, NS = 0.877, and WI = 0.965, for the southern slope. The most
accurate performance of MLP-GWO for the northern slope resulted from the MLP-GWO6 input
scenario, with RMSE = 754.711 km2, NRMSE = 0.083, NS = 0.930, and WI = 0.980. For the southern
slope, the MLP-GWO2 input scenario produced the best estimation, with RMSE = 1261.877 km2,
NRMSE = 0.098, NS = 0.842, and WI = 0.953. The NRMSE < 0.10 and NS > 0.80 for the southern slope
and NS > 0.90 for the northern slope show that the performances of GMDH and MLP-GWO can be
highly desirable and superior to the other models in the estimation of snow cover.

The GMDH model, with many optimization parameters, such as the number of layers and
the number of each layer’s neurons, can provide several make ups to adjust its network structure,
whereas the LSSVM model only uses two parameters for optimization (Table 6). The MLP model
is similar to the GMDH in terms of having several optimization parameters. However, it uses the
GWO algorithm, which can increase the accuracy of MLP (with an average of 10.7% improvement) by
selecting the optimal parameters. The optimal parameters of the machine learning approaches are
provided in Table 7.

Correlation graphs were used to compare the correlation between the snow cover estimation
and the actual values (Figures 4 and 5). Here, the weakest coefficient of determination (for both
slopes) is also reported in MLR estimation. For the northern slope (Figure 4), the highest R2 is
observed in the GMDH outputs (R2 = 0.92 in GMDH4 and GMDH5), and then in the MLP-GWO
model estimation (where R2 reaches 0.91 in MLP-GWO3 and MLP-GWO4). The mean coefficients of
determination are lower for the southern slope (Figure 5). The weakest coefficient of determination
belongs to MLR1 and MLR2, with R2 = 0.68. The strongest result of this slope belongs to GMDH6,
with R2 = 0.88. These values indicate the favorable estimates of the snow cover provided by the GMDH
and MLP-GWO models.

Taylor diagrams were plotted for the models’ outputs, as shown in Figures 6 and 7. As there are
a large number of models, only two Taylor diagrams were plotted for each slope: The first diagram
displays the MLR, SVM, and GMDH outputs, and the second diagram displays the MLP and MLP-GWO
outputs. The weakest estimates (points farthest from Obs) are points G and H, which belong to LSSVM1
and LSSVM2, respectively, for the northern slope (Figure 6). The most accurate estimates are the points
P, Q, u, and x, which were obtained for GMDH4, GMDH5, MLP-GWO3, and MLP-GWO6, respectively.
These points are located closest to the Obs point between the two dashed lines of RMSE = 1000 km2

and RMSE = 500 km2 and below the R = 0.95 line. For the southern slope (Figure 7), the weakest
estimates were obtained for points A and B, which belong to MLR1 and MLR2, and they are close to
the R = 0.80 line. The most accurate estimation for this slope is the R point of GMDH6. This point
is the closest mode to the R = 0.95 line and RMSE = 1000 km2 dashed line. The effect of using the
GWO algorithm on MLP optimization can be observed for both slopes, where, in all cases (with similar
inputs), the MLP-GWO points are in a better position than the MLP points, indicating the relatively
better performance of this model in estimating snow cover areas.
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Table 7. Parameters of the machine learning models.

Zone Inputs

Models

LSSVM GMDH MLP MLP-GWO

γ σ2

Number of Neurons in
Layers

Number of
HIDDEN layers

Number of
Neurons

Transfer Function
(Input to Hidden

Layer)

Transfer Function
(Hidden Layer to

Output)

Quantities
and Values

L1 * L2 L3 L4 L5

Northern
slope

Scenario 1 19.4 7.9 1 - - - - 1 3 Log-sigmoid Linear Maximum
Number of
Iterations

= 500

Number of
agents
= 30

Best search
agent

= 0.2–1.4

Scenario 2 109.5 1.3 1 - - - - 1 1 Log-sigmoid Linear
Scenario 3 99.2 3.0 3 3 3 3 1 1 3 Log-sigmoid Linear
Scenario 4 234.7 9.8 6 15 35 1 - 1 13 Log-sigmoid Linear
Scenario 5 905.0 22.1 15 15 15 1 - 1 15 Log-sigmoid Linear
Scenario 6 602.8 208.9 15 15 15 1 - 1 23 Log-sigmoid Linear

Southern
slope

Scenario 1 38.6 6.5 1 - - - - 1 8 Log-sigmoid Linear
Scenario 2 117.1 35.8 1 - - - - 1 17 Log-sigmoid Linear
Scenario 3 96.3 3.5 3 3 3 3 1 1 10 Log-sigmoid Linear
Scenario 4 198.7 7.1 6 15 35 35 1 1 12 Log-sigmoid Linear
Scenario 5 613.7 15.3 10 35 35 35 1 1 6 Log-sigmoid Linear
Scenario 6 110.8 29.9 15 35 35 35 1 1 5 Log-sigmoid Linear

* L: Layer, i.e., L1 shows the number of neurons in the first layer.
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In another graphical form, the frequency distribution of the observed and estimated snow cover
data was plotted by a violin plot (Figure 8). Here, the frequency distribution of the most accurate
performances of each model is examined in the form of violins [36]. The similarity of the violins to the
actual snow cover data violins may indicate that the frequency distribution of the estimated data is close
to the actual data. For the northern slope, the GMDH outputs, followed by the MLP-GWO outputs,
have the most curvature similar to the observational data violin (particularly GMDH, which performed
very desirably in showing data curvature greater than the third quartile). The violin of the southern
slope observational data is more complex. This complexity is due to the presence of two months of
snow cover at the upper tail end of the distribution. Among the models, the GMDH model was able
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to estimate one of these two exceptional months, which is beyond the capability of the other four
models, particularly MLR and LSSVM. In estimating the violin curvature of the observational data,
GMDH generally has the closest possible curvature to the observational data.

Remote Sens. 2020, 12, x FOR PEER REVIEW 21 of 24 

 

four models, particularly MLR and LSSVM. In estimating the violin curvature of the observational 
data, GMDH generally has the closest possible curvature to the observational data. 

 

Figure 8. Violin plots for comparing the distributions of outputs and observations. 

4. Discussion 

Due to the lack of studies on snow cover area estimation, we can follow studies on the estimation 
of other snow variables [9], as discussed. Estimates of snow depth in the German Black Forest 
mountains were obtained using inputs similar to this study (except for the fact that the average 
temperature was used instead of the maximum and minimum temperatures) [37]. In the study, the 
MODIS sensor was used to monitor the snow depth and the estimator models were similar to the 
artificial intelligence-based models. The results of this study with 0.83 < R < 0.93, like the current 
study, indicated the accuracy of artificial intelligence models for estimating the desired snow 
variables. The MLP model with precipitation, minimum, and maximum temperature inputs was used 
to estimate the maximum daily fresh snow accumulation (MDFSA) in South Korea [9]. This model 
presented a desirable result, with a correlation coefficient of R = 0.90, which is consistent with the 
results of the present study. Binaghi et al. [38] used the RBF neural network to estimate the thickness 
(depth) of snow in the central Alpine area in Italy. Meteorological inputs (temperature and 

Figure 8. Violin plots for comparing the distributions of outputs and observations.

4. Discussion

Due to the lack of studies on snow cover area estimation, we can follow studies on the estimation
of other snow variables [9], as discussed. Estimates of snow depth in the German Black Forest
mountains were obtained using inputs similar to this study (except for the fact that the average
temperature was used instead of the maximum and minimum temperatures) [37]. In the study,
the MODIS sensor was used to monitor the snow depth and the estimator models were similar to the
artificial intelligence-based models. The results of this study with 0.83 < R < 0.93, like the current
study, indicated the accuracy of artificial intelligence models for estimating the desired snow variables.
The MLP model with precipitation, minimum, and maximum temperature inputs was used to estimate
the maximum daily fresh snow accumulation (MDFSA) in South Korea [9]. This model presented a



Remote Sens. 2020, 12, 3437 22 of 24

desirable result, with a correlation coefficient of R = 0.90, which is consistent with the results of the
present study. Binaghi et al. [38] used the RBF neural network to estimate the thickness (depth) of snow
in the central Alpine area in Italy. Meteorological inputs (temperature and precipitation) were used in
the study and NRMSE ranged from 0.04 to 0.07, indicating a better accuracy than the current study.
This difference may be due to the nature of the variable (snow depth) itself, which can be explained by
the fact that its estimation (based on the normalized RMSE) is more accurate than estimating the snow
cover area.

5. Conclusions

This study investigated the relationships between several drought indexes, including PDSI,
BMDI, SPI, MSPI, SPImod, JDI, and SPEI, and the snow cover area, and compared the accuracies
of the artificial intelligence-based models, MLR, LSSVM, GMDH, MLP, MLP-GWO, and MLR in
estimating the snow cover area using meteorological inputs, precipitation, the minimum and maximum
temperature, the global solar radiation, the relative humidity, and the wind velocity. The evaluation of
the correlations between drought indices and the snow cover area showed that the effect of drought
on snow cover would remain up to 5 (or 6) months in the region. The most related index is the time
window 2 of SPI (SPI2), which shows that the effectiveness of a drought event will appear after two
months based on snow cover variations. The outcomes of this study obtained in the modeling part
confirmed that MLP-GWO and GMDH models can be considered acceptable for estimating the snow
cover area of a region. The application of these data-driven models is significant in the following
cases: (1) Difficulty in field measurements of the snow cover area; (2) a lack of accessibility to satellite
images for monitoring the snow cover area; (3) estimation of the snow cover area in missing months;
and (4) estimation of the snow cover area in years without satellite images. This study was conducted
on a monthly scale, but a limitation for snow studies, at a daily scale, is the separation of snow from
cloud. It can cause errors in monitoring the snow cover area and produces missing daily data. For this
subject, the 8–day images of MODIS, or images of the other sensors such as Landsat, SPOT, ASTER,
etc., can be used. The results of this study in both sections are acceptable and promising, and are well
worth researching elsewhere in the world. They suggest using and testing other types of drought
indices to further investigate snow cover variations’ effects on droughts. Furthermore, other artificial
intelligence-based models, such as ANFIS, RBF, and GRNN, and different optimization algorithms,
such as the Genetic Algorithm, Particle Swarm Optimization, Firefly Algorithm, etc., are suggested for
snow cover estimation.
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