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Abstract: Visible and near-infrared reflectance (VIS-NIR) spectroscopy is widely applied to estimate
soil organic carbon (SOC). Intense and diverse human activities increase the heterogeneity in the
relationships between SOC and VIS-NIR spectra in anthropogenic soil. This fact results in poor
performance of SOC estimation models. To improve model accuracy and parsimony, we investigated
the performance of two variable selection algorithms, namely competitive adaptive reweighted
sampling (CARS) and random frog (RF), coupled with five spectral pretreatments. A total of
108 samples were collected from Jianghan Plain, China, with the SOC content and VIS-NIR spectra
measured in the laboratory. Results showed that both CARS and RF coupled with partial least squares
regression (PLSR) outperformed PLSR alone in terms of higher model accuracy and less spectral
variables. It revealed that spectral variable selection could identify important spectral variables that
account for the relationships between SOC and VIS-NIR spectra, thereby improving the accuracy and
parsimony of PLSR models in anthropogenic soil. Our findings are of significant practical value to
the SOC estimation in anthropogenic soil by VIS-NIR spectroscopy.

Keywords: anthropogenic soil; spectral variable selection; soil organic carbon; visible and
near-infrared spectroscopy

1. Introduction

Soil holds the most massive storage of organic carbon in the terrestrial ecosystems [1,2]. Natural soil
may transform into anthropogenic soil by long-term human activities [3]. Soil organic carbon (SOC)
storage has also been altered due to this transformation [4]. Given that SOC plays a pivotal role in
global warming [5,6], carbon cycle [7,8], and food security [6,9], changes of SOC storage may influence
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the balance of ecosystem service. Therefore, monitoring SOC content in anthropogenic soil becomes a
critical and urgent task [10,11].

Visible and near-infrared (VIS-NIR) spectroscopy serves as a time-saving and cost-effective
proximal soil-sensing technique to estimate SOC content [12–15]. VIS-NIR spectra can be measured in
situ or the lab [16]. However, VIS-NIR spectra measured in situ easily suffer from the influences of
soil surface roughness, soil moisture, water vapor, light intensity, and other external environmental
interference [17]. The measurement of VIS-NIR spectra performed in the lab could effectively avoid
these influences.

Intensive human activities increase the heterogeneity in the relationship between SOC and VIS-NIR
spectra, which leads to a new challenge to apply VIS-NIR spectroscopy for SOC estimation [18].
Several soil spectral libraries (SSLs) have been established to cover the heterogeneous spectral
characteristics of different soil types as comprehensive as possible, thereby improving the accuracy of the
SOC estimation. Existing SSLs include ICRAF-ISRIC world soil spectral library [19], European spectral
library [20], Brazilian soil spectral library [21], Australian soil spectroscopic database [22], China soil
spectral library [23], etc. These soil samples in the spectral libraries are collected on a large scale
with low sampling density. For example, the mean soil sampling density of the European spectral
library is 77 samples per 10,000 km2 [24]. It is not enough to reveal the heterogeneous relationship
between the VIS-NIR spectra and SOC on a small scale [25]. Therefore, many researchers made
efforts on small-scale studies with soil samples collected from farmland, when VIS-NIR spectroscopy
showed good performance [26–30]. These farmlands are continuous and have a large area with similar
human activities. However, the heterogeneity in the relationship between SOC and VIS-NIR spectra is
more complex in the highly fragmented farmland with various human activities, which can weaken
the performance of the SOC estimation model by VIS-NIR spectra. To improve model performance,
previous studies adopted the strategy of using representative calibration samples [26–29]. Nevertheless,
the efficiency of this strategy is susceptible to sample size [30]. Therefore, it is essential to investigate
other approaches that may improve model accuracy. Besides, VIS-NIR spectra featured by high spectral
resolution may contain abundant spectral information, which may complicate the SOC estimation
models [31,32]. Thus, it is necessary to establish new approaches to improve model parsimony.

Spectral variable selection aims to select the optimal variable subset from the full spectra [33–35].
This strategy can eliminate uninformative and noisy variables [31,32]. Several spectral variable selection
methods have been proposed in previous studies. These methods can be categorized broadly into
two categories [33]: (1) Methods that use regression coefficients, latent variables, and t-statistic of the
full spectra, such as variable importance in projection (VIP) [34], uninformative variable elimination
(UVE) [35], successive projections algorithm (SPA) [36], and competitive adaptive reweighted sampling
(CARS) [37]; (2) methods that search for the optimal variable subset from the full spectra until the
prediction error is minimum, such as genetic algorithm (GA) [38], simulated annealing (SA) [39],
random frog (RF) [40], and ant colony optimization (ACO) [41]. In the first category, CARS is one of
the most common methods to select soil spectral variables [33,42]. This algorithm is designed by the
principle of ‘survival of the fittest’, which gradually eliminates unimportant variables when extracting
the optimal variable subset according to the variable regression coefficient. In the second category,
RF, proposed by Li et al., searches variable subset from global variables by reversible jump Markov
Chain Monte Carlo technique [40]. This algorithm selects spectral variables by considering joint effects.
It has been applied to soil total nitrogen spectra and plant spectra, showing good performance [43–45].
However, the effectiveness of this algorithm for SOC estimation by VIS-NIR spectroscopy is not yet
clear. Therefore, the performance of CARS and RF is selected in this study.

In addition, spectral pretreatment is an important step in soil spectra analysis [46,47]. The raw full
spectra may be influenced by instrument condition, measurement environment, and sample conditions.
Pretreatment removes extraneous interference and enhances spectral information, which improves the
performance of estimation models [48]. Common spectral pretreatments for VIS-NIR spectra include
scattering correction, spectral derivatives, transformation, and range scaling [49]. Scatter correction,
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including multiplicative scatter correction (MSC) and standard normal variate (SNV), could reduce the
effects of soil particle size, surface roughness, and surface scattering. The first derivative (FD) and
second derivative (SD) are typical methods of spectral derivatives, which could remove vertical offsets,
linearly sloping baselines, and additive and multiplicative effects [50]. Log (1/R) is used to transform
the reflectance spectra to absorption spectra, which can highlight the position with obvious absorption
characteristics. Besides, it can increase the linearization between spectra and SOC to fit a better
linear regression model. Mean centering (MC), belonging to range scaling methods, can eliminate the
difference between each spectrum and improve the stability of the regression model [51]. It has been
recognized that spectral pretreatment could influence the performance of VIS-NIR estimation models.
However, the performance of different pretreatments with spectral variable selection algorithms
remains unclear, and this necessitates further research.

This paper aimed to (1) explore the effect of CARS and RF spectral variable selection algorithms
on the accuracy and parsimony of PLSR models to estimate SOC in anthropogenic soils; (2) compare
spectral variable selection models with the full-spectrum model; and (3) test the performance of spectral
pretreatments with spectral variable selection techniques.

2. Materials and Methods

2.1. Sampling Area and Soil Samples

The study area is located in the Jianghan Plain, China. It is known as ‘Land of Fish and Rice’.
The elevation changes from 22 m to 28 m. The study area is under a subtropical warm monsoon
climate. The mean annual temperature is 16.10 ◦C, the mean annual precipitation is 1154 mm, and the
mean annual relative humidity is 80%. The land-use types include cropland, woodland, and meadows.
Cropland patches are highly fragmented, and some of them are close to settlements and various water
bodies (breeding, ponds, irrigated canals, lakes, and rivers) [52]. Diverse land management practices
are carried out in our study area according to our field survey. Intensive human activities have led to
the heterogeneity of the relationship between VIS-NIR spectra and SOC [18].

A total of 108 topsoil samples (0–15 cm) were collected from 20 December 2011 to 21 December
2011. Each soil sample was a mix of five soil subsamples, which were collected from the center and
four corners in a square of 1 m2 [53]. The geographical coordinates of these samples were recorded
by a hand-held global positioning system, and the geographical distributions are shown in Figure 1.
The total collected soil samples (Dataset 0) were divided into three datasets according to sampling
locations, land use and land cover types (Dataset 1, Dataset 2, and Dataset 3, respectively). Samples of
the three datasets were collected from three sites with different human activities on a small scale [18].
Samples of Dataset 1 was collected from cropland that was adjacent to a breeding pond. Dataset 2
was sampled from cropland that was surrounded by cropland. Dataset 3 included samples of various
land-use types (cropland, artificial forest, meadows, and breeding ponds). These samples were
put in sealed plastic bags with sampling sequence labels and then were sent to the laboratory at
room temperature on 22 December 2011. After a principle components analysis and a 3σ standard,
five outliers were discarded, and 103 samples were retained for further data analysis in this study.

2.2. VIS-NIR Spectral Measurement and SOC Analysis

In the laboratory, soil samples were air-dried at 20–30 ◦C for 1 week, then ground, and passed
through a 2-mm sieve [54]. An ASD FiledSpec 3 portable spectro-radiometer with a spectral range of
350–2500 nm, and a spectral resolution of 1 nm was used to scan soil samples in a dark room to avoid
stray light interference. All samples were put separately in dishes with a 20-cm diameter. A halogen
lamp placed at 30 cm distance and an angle of 45◦ was used to illuminate soil samples. The detection
fiber probe was placed vertically to soil samples at 12 cm distance. A white Spectralon panel was used
to calibrate the spectrometer before measuring spectrum of the first soil sample and repeated every
six soil samples [53]. A total of 10 scans were recorded for each soil sample, which were averaged in
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one sample spectrum [55]. Through these procedures, the reflectance spectra of the 108 samples were
obtained. The spectra in the range of 350–399 nm and 2450–2500 nm were removed due to serious
noises. The remained spectra (400–2449 nm) were further resampled to 10 nm to extract 205 wavebands.

The SOC content was measured by wet oxidation at 180 ◦C with a mixture of potassium dichromate
and sulfuric acid [18]. It should be noted that the oxidation of active organic carbon by this approach is
incomplete, which underestimates the SOC content. A “standardized” corrective factor ranging from
1.10 to 1.40 could be used in practice [56]. In our study, we used the “raw” SOC content without using
a “standardized” corrective factor. This allowed comparing the results of our study with other studies
that also use the “raw” SOC content.Remote Sens. 2020, 12, x FOR PEER REVIEW 4 of 19 
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2.3. Spectral Pretreatment

We selected five commonly used pretreatments for raw spectra, which included FD, Log (1/R),
MC, MSC, and SNV. All the spectral pretreatments were performed in Matlab (R2014b, MathWorks,
Inc., Natick, MA, USA) with the PLS toolbox (Version 7.9.3, Eigenvector Research, Inc., Wenatchee,
WA, USA).

2.4. Spectral Variable Selection

CARS and RF were chosen to achieve spectral variable selection in our study. CARS is designed
on the principle named ‘survival of the fittest’ [16,37]. When using this algorithm to select the spectral
variables, each spectral waveband is treated as an individual. The adaptive individuals are left behind
as the final spectral variable subset, while the maladaptive individuals are eliminated. The scheme of
the CARS algorithm can be summarized as five steps: (1) utilize the Monte Carlo algorithm to randomly
choose n samples and build Partial least squares regression (PLSR) models for these subsets; (2) retain
variables with high regression coefficients and remove variables with low regression coefficients
through a exponentially decreasing function and adaptive reweighted sampling algorithm; (3) build
PLSR model and compute the root mean square error of cross validation (RMSEcv) with the retained
variables as a new variable subset; (4) repeat steps 1–3 for N runs to obtain N new variable subsets;
and (5) choose the new subsets with the lowest RMSEcv as the optimal variable subset [41]. The run
times (N) was set to 50 in this study.

Random frog (RF) is also a variable selection algorithm, which is inspired by the reversible
jump Markov Chain Monte Carlo (RJMCMC) technique [40]. It is mathematically easier and more
computationally efficient than RJMCMC. RF searches for the best variable subset from a full variable
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set by considering the interaction between spectral variables. Five steps are needed to realize this
algorithm: (1) randomly initialize variable subset K0 consisting of Q variables; (2) obtain new variable
subset K* using the way of the normal distribution, then update the variable subset K0 as K1 through
the cross-validated misclassification errors of K0 and K*; this step needs to be iterated many times;
(3) compute each variable selection probability after the iterations finish, and variables with same
selection probability are selected as variable subsets; (4) build PLSR model with each variable subset,
and compute RMSEcv; and (5) choose the variable subset with the lowest RMSEcv as the optimal
variable subset. X (m×n), Y (n×1), N, and Q are the key input parameters for this algorithm, where X is
the spectral variables, and Y is the SOC content, in which m is the number of samples, and n is the
number of spectral variables. N is the number of iterations, and Q is the number of variables consisting
of the initialized variable subset [44]. The number of iterations (N) was set to 50 in this study. In this
study, CARS and RF were performed in Matlab (R2018b, MathWorks, Inc., Natick, MA, USA) with the
libPLS toolbox (Version 1.98), which was available at http://www.libpls.net/download.php.

2.5. Model Calibration and Validation

The 103 samples were divided into calibration and validation datasets using the concentration
gradient method [16]. According to the SOC values, the 103 samples were sorted in ascending order.
Then, the 103 samples were divided into a total of 35 groups. The last group included one sample,
and the other groups had three samples. In each group, the first and third samples were selected and
added into the calibration dataset, whereas the second sample was added into the validation dataset.
Thus, the calibration dataset contained 69 samples, and the validation dataset contained 34 samples.

Partial least squares regression (PLSR) was chosen to develop regression models between SOC and
VIS-NIR spectra variables, which is proposed by Wold et al. [57]. It creates a linear regression model by
projecting the independent and dependent variables into a new space [58]. This method integrates the
advantages of principal component analysis, canonical correlation analysis and linear regression. It can
overcome the multicollinearity problem and improve model performance. In this study, the PLSR
models were built on the calibration dataset and the performance of the PLSR models was evaluated
on the validation dataset. The coefficient of determination (R2), the root mean squared error (RMSE)
and the residual prediction deviation (RPD) were calculated using Equations (1)–(3) [57]. A desirable
PLSR estimation model should have high R2 and RPD with a low RMSE on the validation dataset.

R2 =

∑n
i=1(ŷi − y)2∑n
i=1(yi − y)2 (1)

RMSE =

√
1
n

∑n

i=1
(ŷi − yi)

2 (2)

RPD =
SD

RMSEP
(3)

where i is the ith soil sample, n is the number of soil samples, y is the mean of the measured SOC
content, yi is the measured SOC content for the ith soil sample, ŷi is the predicted SOC content for the
ith soil sample, SD is the standard deviation of the measured SOC content of the validation dataset,
and RMSEP is the root mean square error of the validation dataset.

3. Results

3.1. Statistical Description of Soil Samples

Table 1 describes the statistics of soil samples for the total, calibration and validation datasets.
The SOC content of the total and the calibration datasets ranged from 2.35 g/kg to 33.95 g/kg, whereas the
range of SOC content of the validation dataset was smaller. This indicated that the calibration dataset
covered representative samples for successful model calibration establishment. The coefficient of

http://www.libpls.net/download.php
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variation (CV) values of the total, calibration and validation datasets were 40%, 40%, and 39%,
respectively, indicating moderate variability. The coefficient of skewness (CS) values were −0.04,
0.04, and −0.23, respectively, whereas the coefficient of kurtosis (CK) values were 2.32, 2.46, and 1.93,
respectively. It can be reported that these datasets were approximately of normal distribution with
small dispersion.

Table 1. Descriptive statistics of soil organic carbon (SOC) of soil samples (Dataset 0).

Samples N a
SOC (g/kg)

SD d CV e CS f CK g

Min b Max c Mean

Total 103 2.35 33.95 16.05 6.35 40% −0.04 2.32
Calibration 69 2.35 33.95 16.14 6.46 40% 0.04 2.46
Validation 34 3.30 26.23 15.85 6.20 39% −0.23 1.93

a Sample numbers; b Minimum; c Maximum; d Standard deviation; e Coefficient of variation; f Coefficient of
skewness; g Coefficient of kurtosis.

3.2. Raw Spectra and Pretreated Spectra

Figure 2 shows raw spectra and pretreated spectra with different pretreatments. In Figure 2a,
raw spectra had a similar shape for all samples, whose reflectance rose rapidly before 850 nm and
slowly after 850 nm. There were three absorption peaks with different depths distinguishable in
the near-infrared region, which are attributed to the hydroxyl group of free water (1410 nm and
1920 nm) and the Al-OH group of clay minerals (2210 nm) [59]. After FD, the most spectral values
tended to approach zero, highlighting the bands where the curvature of raw spectra changed greatly.
Spectra after Log (1/R)) pretreatment showed typical decline in absorption at different rates with the
range of 400–2449 nm. After MC, spectral values were between −0.15 and 0.15. There was still a
significant fluctuation at around 1410 nm, 1920 nm, and 2210 nm. The spectra after MSC and SNV had
similar shapes, but with different ranges.Remote Sens. 2020, 12, x FOR PEER REVIEW 7 of 19 
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3.3. Correlation Analysis

The differences in the correlation coefficient curves reveal heterogeneous relationships between
raw VIS-NIR spectra and SOC (Figure 3). In Figure 3, blue ‘+’, green ‘+’, and magenta ‘+’ symbols
refer to locations of VIS-NIR spectral variables having significant correlations for Dataset 1, Dataset 2,
and Dataset 0, respectively (at a significance level of 0.05). It was revealed that SOC had a significantly
negative correlation with raw VIS-NIR spectra in the region of 400–2449 nm for Dataset 1 and Dataset
0. The spectral variables with significant negative correlations distributed in the region of 480–900 nm
and 1170–1870 nm for Dataset 2, whereas no significant correlations were observed for Dataset 3.
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Dataset 1 had the strongest correlations among these four datasets. The absolute correlation
coefficients slowly decreased as the wavelength increases after 670 nm. The correlation coefficients
of Dataset 2 had a faint change in the spectral range of 870–2449 nm. Dataset 0 was the combination
of Dataset 1, Dataset 2 and Dataset 3. Absolute correlation coefficients for Dataset 0 increased in the
range of 400–570 nm, which was a different trend compared to Dataset 1, Dataset 2 and Dataset 3.
The highest absolute correlation coefficients of Dataset 1 (670 nm), Dataset 2 (570 nm), Dataset 3 (660 nm),
and Dataset 0 (730 nm) were of different magnitudes. This provides vivid evidence that a heterogeneous
relationship exists between VIS-NIR spectra and SOC for soils with intensive human activities.

3.4. Spectral Variable Selection

Figure 4 shows details of spectral variables selected by CARS, taking the Log (1/R) spectra
as an example. Figure 4a shows the number of selected spectral variables during 50 iterations.
As the number of iterations increases, the selected spectral variables first decreased sharply and
then gradually. Figure 4b shows the change of 5-flod RMSEcv during the 50 iterations. As the
number of iterations increased, the RMSEcv value first declined and then ascended. At 21 iterations,
RMSEcv reached a minimum. Figure 4c shows the regression coefficient path of all spectral variables
(regression coefficient path: the changing trend of regression coefficient values during the 50 iterations).
At iteration one, the regression coefficients of spectral variables were similar. With the increase of
iterations, the regression coefficient of some spectral variables gradually increased, while they remained
zero for others. According to Figure 4a–c, at iteration 21, the selected spectral variables were the
optimal subset that helped to achieve the best model performance.
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Figure 4. Competitive adaptive reweighted sampling (CARS) variable selection of Log (1/R) spectra:
(a) the number of sampled variables; (b) 5-Fold root mean squared error of cross-validation (RMSEcv)
values; and (c) regression coefficient path of each spectral variable during the 50 iterations.

For the other spectral pretreatments, the number of selected spectral variables also decreased
with iterations. Different iterations were required to reach the minimum RMSEcv for spectra with
different pretreatments (e.g., 25, 23, 25, 25, and 28 for the pretreatments of None, FD, MC, MSC,
and SNV, respectively).

Figure 5 shows the spectral variables selected by the CARS method with different spectral
pretreatments. A total of 21, 26, 31, 21, 21, and 16 spectral variables were selected as the optimal
spectral subset for the pretreatments of None, FD, Log (1/R), MC, MSC, and SNV, respectively. Most of
the selected spectra variables were concentrated in the 1800–2449 nm spectral range. Only one spectral
variable was selected in the range of 400–780 nm for MSC and SNV. No spectral variable was selected
in the range of 1200–1800 nm for FD and SNV, and neither in the range of 780–1200 nm for MSC.

Remote Sens. 2020, 12, x FOR PEER REVIEW 9 of 19 

 

Figure 5 shows the spectral variables selected by the CARS method with different spectral 
pretreatments. A total of 21, 26, 31, 21, 21, and 16 spectral variables were selected as the optimal 
spectral subset for the pretreatments of None, FD, Log (1/R), MC, MSC, and SNV, respectively. Most 
of the selected spectra variables were concentrated in the 1800–2449 nm spectral range. Only one 
spectral variable was selected in the range of 400–780 nm for MSC and SNV. No spectral variable was 
selected in the range of 1200–1800 nm for FD and SNV, and neither in the range of 780–1200 nm for 
MSC. 

 
Figure 5. The distributions of spectral variables selected by competitive adaptive reweighted 
sampling (CARS) with different spectral pretreatments. 

Figure 6 shows the probability that each spectral variable is repeatedly selected during the 50 
iterations. With the increase of selection probability, the number of selected spectral variables 
reduced. For different spectral pretreatments, each spectral variable had different selection 
probability. The number of selected spectral variables was the least when spectral pretreatment was 
FD. Figure 7 shows the change of 5-Flod RMSEcv in different spectral variable selection probability. 
Spectral variables were selected as the optimal subset with the lowest 5-Flod RMSEcv. According to 
Figure 7, RMSEcv had minimum values when the probability was 0.8, 0.8, 0.3, 0, 0.4, and 0.5 for the 
spectral pretreatments of None, FD, Log (1/R), MC, MSC, and SNV, respectively. 

Figure 5. The distributions of spectral variables selected by competitive adaptive reweighted sampling
(CARS) with different spectral pretreatments.



Remote Sens. 2020, 12, 3394 9 of 18

Figure 6 shows the probability that each spectral variable is repeatedly selected during the
50 iterations. With the increase of selection probability, the number of selected spectral variables
reduced. For different spectral pretreatments, each spectral variable had different selection probability.
The number of selected spectral variables was the least when spectral pretreatment was FD. Figure 7
shows the change of 5-Flod RMSEcv in different spectral variable selection probability. Spectral variables
were selected as the optimal subset with the lowest 5-Flod RMSEcv. According to Figure 7, RMSEcv had
minimum values when the probability was 0.8, 0.8, 0.3, 0, 0.4, and 0.5 for the spectral pretreatments of
None, FD, Log (1/R), MC, MSC, and SNV, respectively.Remote Sens. 2020, 12, x FOR PEER REVIEW 10 of 19 
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pretreatments. (a) probability without pretreatment; (b) probability with first derivative (FD);
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multiplicative scatter correction (MSC); and (f) probability with standard normal variate (SNV).
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Figure 8 shows spectral variables selected by RF with different spectral pretreatments. A total of
39, 21, 83, 101, 106, and 63 spectral variables were selected as the optimal subset for the pretreatments
of None, FD, Log (1/R), MC, MSC, and SNV, respectively. More spectral variables were selected in the
400–780 nm spectral range for MC and MSC spectra pretreatments.
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3.5. Accuracy of Estimation after Different Pretreatment and Variable Selection Techniques

To evaluate the effectiveness of different variable selection methods and the influence of different
pretreatments tested, PLSR was used to establish a series of SOC models, whose results are shown in
Table 2 and Figure 9.

Table 2. Accuracies of soil organic carbon (SOC) estimation using full-spectrum-based partial least
squares regression (PLSR) models, competitive adaptive reweighted sampling (CARS)-based PLSR
models, and random frog (RF)-based PLSR models after different spectral pretreatments.

Spectral Variable
Selection

Spectral
Pretreatments

N a LVs b Calibration Dataset Validation Dataset
RPD RPD c

Rc
2 RMSEc Rp

2 RMSEp

Full Spectra

None 205 9 0.79 2.93 0.70 3.60 1.72

1.81

FD 205 7 0.78 3.01 0.80 3.17 1.96
Log(1/R) 205 11 0.86 2.44 0.76 3.37 1.84

MC 205 10 0.86 2.36 0.75 3.24 1.92
MSC 205 8 0.78 3.02 0.70 3.66 1.70
SNV 205 8 0.78 3.02 0.70 3.66 1.69

CARS

None 21 8 0.85 2.45 0.78 3.05 2.03

1.94

FD 26 7 0.85 2.44 0.73 3.42 1.81
Log(1/R) 31 8 0.84 2.53 0.81 3.02 2.05

MC 21 8 0.87 2.35 0.78 3.04 2.04
MSC 21 6 0.79 2.91 0.77 3.49 1.78
SNV 16 6 0.83 2.66 0.77 3.23 1.92

RF

None 39 10 0.83 2.61 0.72 3.34 1.86

1.94

FD 21 14 0.84 2.53 0.76 3.14 1.97
Log(1/R) 83 11 0.86 2.42 0.83 2.94 2.11

MC 101 10 0.85 2.45 0.77 3.18 1.95
MSC 106 11 0.89 2.16 0.76 3.28 1.89
SNV 63 8 0.81 2.83 0.77 3.31 1.87

a Number of selected spectral variables; b Number of latent variables; c Mean of ratio of prediction deviation (RPD).
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Figure 9. (a) Ratio of prediction deviation (RPD) difference between competitive adaptive reweighted
sampling (CARS)/random frog (RF) and full spectrum SOC models after the same spectral pretreatments
(spectral pretreatments include non-pretreatment (None), first derivative (FD), Log (1/R), mean centering
(MC), multiplicative scatter correction (MSC), and standard normal variate (SNV)); (b) RPD difference
between non-pretreated and pretreated SOC models after the same variable selection algorithms
(variable selection algorithms include full spectrum, CARS, and RF).

Both CARS and RF could enhance the performance of PLSR models (except for the combination of
CARS and FD, Figure 9a), compared to the full-spectrum models. The RPD of the full-spectrum models
was 1.81, while the RPDs of CARS and RF models were of equal value of 1.94 (Table 2). The best Rp

2 in
each spectral variable selection category slightly increased from 0.80 (Full spectrum) to 0.81 (CARS)
and 0.83 (RF), and RPD increased from 1.96 (Full spectra) to 2.05 (CARS) and 2.11 (RF).

Spectral pretreatments have different effects on the full-spectrum PLSR models and the PLSR
models obtained after spectral variable selection (Table 2 and Figure 9b). For the full-spectrum PLSR
models, FD, Log (1/R) and MC had positive effects, as Rp

2 increased from 0.70 to 0.80; RMSEp decreased
from 3.60 g/kg to 3.17 g/kg; and RPD increased from 1.72 to 1.96. MSC and SNV had negative effects,
as Rp

2 remained 0.70; RMSEp increased from 3.60 g/kg to 3.66 g/kg; and RPD decreased from 1.72 to
1.69. Full-spectrum PLSR model with FD had the largest RPD difference (0.23), and that with MSC and
SNV had the lowest RPD difference (−0.03).

For the CARS + PLSR models, the spectral pretreatments of Log (1/R) and MC enhanced the
PLSR model performance, but the spectral pretreatments of FD, MSC and SNV weakened PLSR
model performance. The best Rp

2, RMSEp and RPD values were 0.81, 3.02 g/kg and 2.05, respectively.
The worst Rp

2, RMSEp and RPD values were 0.73, 3.42 g/kg and 1.81, respectively. CARS + PLSR model
with MSC had the largest RPD difference (−0.25), and that with MC had the lowest RPD difference
(0.01).

For the RF + PLSR models, all spectral pretreatments had positive effects. Rp
2 increased from 0.72

to 0.83; RMSEp decreased from 3.34 g/kg to 2.94 g/kg; and RPD increased from 1.86 to 2.11. The RF +

PLSR model with Log (1/R) had the largest RPD difference (0.23), and that with SNV had the lowest
RPD difference (−0.03).

Therefore, the Log (1/R) was the best pretreatment for spectral variable selection. Log (1/R) +

CARS/RF + PLSR models provided the best performance (Log (1/R) + CARS + PLSR model: Rp
2 = 0.81,

RMSEp = 3.02 g/kg, and RPD = 2.05, Log (1/R) + RF + PLSR model: Rp
2 = 0.83, RMSEp = 2.94 g/kg,

and RPD = 2.11).
The number of selected spectral variables after RF was larger than that after CARS. For RF,

the minimum and maximum numbers of selected spectral variables were 21 and 106, respectively,
whereas there were 16 and 31 for CARS. Besides, the number of latent variables after RF was larger
than that after CARS.
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4. Discussion

4.1. The Effect of Spectral Variable Selection Techniques on Model Accuracy

Numerous studies have proven that SOC estimation by VIS-NIR spectra is efficient and accurate.
Nevertheless, it remains a challenge to apply VIS-NIR spectroscopy to estimate SOC in anthropogenic
soils that are characterized by high heterogeneity in the relationship between VIS-NIR spectra and
SOC. The study area, Jianghan plain, has been under a long-term period of human activities with
a highly fragmented landscape [52,60]. Our study reported that there was strong heterogeneity in
the relationship between SOC and VIS-NIR spectra. With soil samples collected from the study area,
we investigated the effect of two spectral variable selection techniques to improve the performance of the
PLSR models in SOC estimation in anthropogenic soils. Our results demonstrated that spectral variable
selection could improve the accuracy of PLSR models, wherein RPD increased by 0.13 (without spectral
variable selection: the best R2 = 0.80, RPD = 1.96 and RPD = 1.81; with spectral variable selection:
the best R2 = 0.83, RPD = 2.11 and RPD = 1.94). This is because that spectral variable selection could
eliminate unimportant information, reserve relevant information, and reduce spectral collinearity [37].
The performance of the proposed spectral variable selection was comparable to other strategies that
aimed to improve the accuracy of PLSR models for anthropogenic soil. Liu et al. compared a variety of
sample selection algorithms, which aimed to develop a representative calibration dataset for SOM
estimation [18]. The best RPD achieved in their study was lower than the RPD in this study. Liu et al.
further combined the Kennard–Stone algorithm and spectral pretreatment to choose representative
calibration samples, and achieved an RPD of 1.85, which was still poorer than that obtained in the
current study [59]. Wang et al. proposed the MVARC-R-KS method to select representative calibration
samples (not spectral variables as in the current study), which has resulted in good accuracy of PLSR
models [61]. They reported that the best RPD was 1.81, which was also lower than the RPD in this
study. These mentioned strategies mainly focus on the selection of representative calibration samples
to improve the accuracy of PLSR models, while our strategies focus on the selection of representative
spectral variables. A combination of these two strategies to further improve the performance of PLSR
models in SOC estimation could be explored in future rese arch.

We also tested the performance of spectral pretreatments with spectral variable selection techniques.
The PLSR models performed differently using different selected spectral variables after different spectral
pretreatments. For the CARS-based models, Log (1/R) and MC enhanced the accuracy of PLSR models,
while FD, MSC and SNV led to accuracy deterioration. FD has not improved the estimation performance
of the PLSR model. This might be due to the lack of variables in the spectral region of 1200–1800 nm,
a spectral range that contains relevant overtones and combinations of fundamental bonds of O–H and
C–O groups that are associated with SOC. The amplification of noise may also hinder useful signals [62].
MSC has failed to improve model performance as only one variable was selected in the visible region of
400–780 nm, which is an important region associated with soil color variation in the blue band around
450 nm. The darker the soil color, the higher the SOC content [63]. This single selected variable may
not have accounted for sufficient information to capture variation in soil darkness that could be linked
with variation in SOC. The number of selected spectral variables with SNV was large than that with
MSC, which explains why the PLSR model with SNV outperforms that with MSC. For the RF-based
models, all pretreatments enhanced the accuracy of PLSR models. It could be attributed to the fact that
RF could select important spectral variables as comprehensively as possible while reducing collinearity
between spectral variables. Among them, Log (1/R) + CARS/RF + PLSR models provided the best
estimation accuracy. Since SOC absorbs energy at specific frequencies in VIS-NIR, Log (1/R) enhanced
its absorption feature [64].

It should be noted that the effects of spectral pretreatments are determined by the quality of
raw spectra. In other words, spectral pretreatments would be necessary in the case that raw spectra
are influenced by variable soil physical conditions and by the surrounding environment during
measurement (e.g., temperature, ambient light). In this study, however, all the samples were air-dried,
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ground and passed through a 2-mm sieve, and VIS-NIR spectra were measured in a well-controlled
environment. Therefore, both CARS and RF could develop satisfactory SOC estimation models without
spectral pretreatments. Meanwhile, this study provided that Log (1/R) should be adopted to further
improve the accuracy of SOC estimation models.

4.2. The Effect of Spectral Variable Selection Techniques on Model Parsimony

Model parsimony is an important issue that has been less investigated in previous studies.
With the demand for advanced regression algorithms, fewer spectral variables are desired for SOC
estimation and mapping when using spectra data. This study demonstrated fewer spectral variables
were needed to build PLSR models by CARS and RF algorithms, as the numbers of selected variables
were 31 and 83 for CARS and RF, respectively.

The search mechanism of spectral variables by CARS and RF algorithms is different, which results
in a different number of selected spectral variables and their distributions. CARS selects spectral
variables that have the largest regression coefficient through continuous iterations. In our study,
the selected spectral variables were mainly concentrated in the spectral region around 540 nm and
1800–2400 nm. This result was similar to that of Vohland et al. and Hong et al. [16,33,42]. Vohland et al.
selected variables at 1875 nm, 2205–2220 nm, and 2330–2345 nm to successfully estimate SOC content
in the Eifel-Moselle-Hunsr-ück region. Hong et al. reported spectral variables at 400–800 nm and
2000–2400 nm to be associated with SOC. It should be noted that sensitive spectral variables for SOC
may differ from one dataset to another. This explains why the selected spectral variables by CARS are
not the same in different studies. The number of the selected spectral variables by RF is larger than that
by CARS, and the distribution of its selected spectral variables is sparser. It can be explained by the fact
that RF globally searches the optimal variable combination based on random frog leaping. The selected
spectral variables by RF were mainly distributed around 430 nm, 610 nm, 800 nm, 1000 nm, 1100 nm,
1200 nm, 1420 nm, 1500 nm, 1800 nm, 1920 nm, 2000 nm, 2100 nm, 2200 nm, and 2350 nm.

In summary, the selected spectral variables in the visible region by both methods are mainly
concentrated in the locations of 400 nm, 530 nm and 610 nm. These wavelengths are associated with
variation in chromophores and the darkness of humic acid (e.g., due to blue absorption band at 450 nm
and perhaps red color absorption band at 680 nm) [65]. Spectral variables in the near-infrared region
are chosen because some fundamental vibrational bonds are associated with SOC. These bonds mainly
include C–H, N–H, C–O, C–O, O–H, and Al–OH [54,66]. Table 3 shows the possible assignments of
fundamental bonds, absorption wavelength, and related soil constituents for the main selected spectral
variables in the near-infrared region by RF and CARS. Some selected spectral wavelengths in this study
do not coincide with possible wavelengths of fundamental vibrational bonds. It could be attributed to
slight shifts in wavelength locations due to inharmonic molecules vibrations [54].

Table 3. Possible assignments of fundamental bonds, absorption wavelength, and related soil constituent
for the selected spectral variables in the near-infrared region by competitive adaptive reweighted
sampling (CARS) and random frog (RF) [54,66].

Locations of Selected
Spectral Variables (nm) Possible Fundamental Bonds Possible Wavelength (nm) Possible Related Soil Constituents

800 C–H 825 Organics (aromatics)
1000 N–H 1000 Organics (amine)
1100 C–H 1100 Organics (aromatics)

1200 C–H 1170 Organics (Alkyl
asymmetric-symmetric doublet)

1420 O–H 1380 Water
1500 C–O 1524 Organics (amides)

1800 C–H 1754 Organics (Alkyl
asymmetric-symmetric doublet)

1920 O–H 1915 Water
2000 C–O 2033 Organics (amides)
2100 N–H 2060 Organics (amine)
2200 Al–OH 2230 Clay minerals
2350 C–O 2381 Organics (Carbohydrates)
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4.3. The Implication of the Proposed Strategy

Accuracy and parsimony of PLSR models could be improved by the proposed modeling approach
investigated in this study, but could not be optimal at the same time. The more spectral variables,
the more complex PLSR models and vice versa. However, the inclusion of a larger number of input
spectral variables could be redundant, while a smaller number of spectral variables could cause loss
of significant spectral information related to SOC. Both cases will result in low accuracy of PLSR
models. An optimal number of selected spectral variables could balance the model parsimony and
accuracy. Nevertheless, an optimal number of spectral variables is difficult to determine and varies
from one dataset to another. Therefore, it is essential to search for the best pretreatment to obtain the
most appropriate number of spectral variables. For the CARS algorithm, the PLSR model achieved
the best accuracy when a total of 31 spectral variables were selected after the Log (1/R) spectra
pretreatment. The number of selected spectral variables were smaller with other spectral pretreatments,
which resulted in deteriorated accuracy of PLSR models due to the exclusion of significant variables
related with SOC. For the RF algorithm, selected spectral variables with Log (1/R), MC, MSC, and SNV
were of similar distribution. The PLSR model with Log (1/R) outperformed the models using the other
three spectral pretreatments. This is possibly because of the redundant information that resulted from
the larger number of selected spectral variables obtained with MC and MSC compared to that with
Log (1/R). The number of spectral variables selected with SNV was smaller than that with Log (1/R),
which may indicate the loss of important spectral information by SNV. Since the Log (1/R) has resulted
in selecting an appropriate number of spectral variables, the best PLSR models could be established for
SOC estimation using both spectral variable selection techniques (RF: R2 = 0.83 and RPD = 2.05; CARS:
R2 = 0.81, and RPD = 2.11).

5. Conclusions

In this study, competitive adaptive reweighted sampling (CARS) and random frog (RF) algorithms
in combination with five different spectral pretreatments were used to select spectral variables,
which were used as input in partial least squares regression (PLSR) to estimate soil organic carbon
(SOC) in the Jianghan Plain of China. According to our results, the following conclusions can be
made: (i) Both spectral variable selection algorithms (e.g., CARS and RF) could improve the accuracy
and parsimony of PLSR models; (ii) the accuracy of the PLSR model obtained after RF is better than
that with CARS, although the parsimony of the latter model was worse (the best models with RF:
R2 = 0.83, RPD = 2.11, and the number of spectral variables = 83; the best models with CARS: R2 = 0.81,
RPD = 2.05, and the number of spectral variables = 31); (iii) the effects of spectral pretreatments vary
among spectral variable selection algorithms. All FD, Log (1/R), MC, MSC, and SNV could improve the
accuracy of PLSR models with RF, whereas only Log (1/R) and MC could slightly improve the accuracy
of PLSR models with CARS; and (iv) appropriate number and distribution of spectral variables could
be selected by Log (1/R) after both CARS and RF.

Although our study improved the accuracy and parsimony of PLSR models for SOC estimation
using two spectral selection algorithms in anthropogenic soil, laboratory non-imaging sensors were
adopted. Future researches should focus on airborne and satellite sensors to explore their potential for
estimation and mapping topsoil SOC.
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47. Vašát, R.; Kodešová, R.; Klement, A.; Borůvka, L. Simple but Efficient Signal Pre-Processing in Soil Organic
Carbon Spectroscopic Estimation. Geoderma 2017, 298, 46–53. [CrossRef]

48. Gholizadeh, A.; Carmon, N.; Klement, A.; Ben-Dor, E.; Boruvka, L. Agricultural Soil Spectral Response and
Properties Assessment: Effects of Measurement Protocol and Data Mining Technique. Remote Sens. 2017,
9, 1078. [CrossRef]

49. Rinnan, Å.; Berg, F.V.D.; Engelsen, S.B. Review of the Most Common Pre-Processing Techniques for
Near-Infrared Spectra. Trac. Trends Anal. Chem. 2009, 28, 1201–1222. [CrossRef]
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