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Abstract: Outlier removal is a crucial step in local feature-based unmanned aerial vehicle (UAV)
image matching. Inspired by our previous work, this paper proposes a method for reliable and
efficient outlier removal in UAV image matching. The inputs of the method are only two images
without any other auxiliary data. The core idea is to design local geometric constraints within
the neighboring structure via the Delaunay triangulation and use a two-stage method for outlier
removal and match refinement. In the filter stage, initial matches are first organized as the Delaunay
triangulation (DT) and its corresponding graph, and their dissimilarity scores are computed from the
affine-invariant spatial angular order (SAO), which is used to achieve hierarchical outlier removal.
In addition, by using the triangle constraint between the refined Delaunay triangulation and its
corresponding graph, missed inliers are resumed from match expansion. In the verification stage,
retained matches are refined using the RANSAC-based global geometric constraint. Therefore,
the two-stage algorithm is termed DTSAO-RANSAC. Finally, using four datasets, DTSAO-RANSAC
is comprehensively analyzed and compared with other methods in feature matching and image
orientation tests. The experimental results demonstrate that compared with the LO-RANSAC
algorithm, DTSAO-RANSAC can achieve efficient outlier removal with speedup ratios ranging
from 4 to 16 and, it can provide reliable matching results for image orientation of UAV datasets.

Keywords: unmanned aerial vehicle; image matching; outlier removal; geometric constraint;
structure-from-motion; Delaunay triangulation

1. Introduction

In recent years, Unmanned Aerial Vehicles (UAVs) have gained extensive attention in the
fields of photogrammetry and remote sensing due to their flexible data acquisition, easiness of use,
and low economic costs. UAVs have been utilized in various applications, including transmission
line inspection [1,2], agricultural management [3], and cultural heritage documentation [4].
Image orientation is a prerequisite for their successful application, and reliable and efficient image
matching ensures the precision of image orientation and the instantaneity of their usage, which aims
to find reliable and accurate correspondences from multiple images with overlap regions [5].
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In the literature, image matching methods can be divided into two groups, i.e., area-based
methods and feature-based methods [6]. For the former, pixel intensity values are used to compute the
similarity scores of correspondences, and widely used similarity measurements include normalized
cross-correlation (NCC), mutual information (MI), and least-square matching (LSM) [7]. As area-based
methods are sensitive to scale and viewpoint changes, recent years have seen the explosive
development of feature-based methods, which describe neighboring regions of feature points with
descriptor vectors and find matches by searching for point pairs with the smallest Euclidean distances
between two descriptor sets. As descriptors are computed from local patches of features, these methods
are also known as local feature-based matching. Generally, local feature-based matching consists of
three major steps: (1) Feature extraction: For individual images, feature points with their descriptor
vectors are extracted and computed from image patches, such as corners, blobs, and regions. (2) Feature
matching: For each image pairs, candidate matches are obtained by searching feature pairs with the
smallest Euclidean distance from two descriptor sets. (3) Outlier removal: For each initial match sets,
geometric or photometric constraints are exploited to eliminate false matches. The first and second
steps generate initial matches, and different solutions have been designed for varying scenes [8–12].
Initial matches, however, are inevitably contaminated by outliers due to the complex photometric
and geometric distortions between image pairs and the only usage of local appearances for feature
description. Therefore, outlier removal plays a important role in local feature-based matching, and this
study would focus on this step.

According to the types of constraints, outlier removal methods can be classified as two groups,
i.e., methods based on geometric and photometric constraints. For the former group, the Random
Sample Consensus (RANSAC) [13] method has been widely used for model estimation because of
its robustness to outliers, and it can cooperate with the fundamental matrix estimation to achieve
global geometric constraint. Its efficiency, however, decreases dramatically with the increase of outlier
ratios. To cope with this situation, many variants of the RANSAC have been designed from aspects
of hypothesis generation and model verification [14]. In contrast to the explicit model estimation
used in the RANSAC, methods based on the idea of Hough transformation (HT) can achieve an
implicit estimation of transformation parameters [15]. Due to the inconsistent voting of false matches
and the direct voting scheme, HT can tolerate higher outlier ratios and achieve higher efficiency for
outlier removal [16–18] . For the above-mentioned methods, a predefined transformation model is
required, and thus they are termed parametric methods as transformation parameters are estimated
in either explicit or implicit manners. For feature matching of image pairs whose transformation
cannot be simply modeled, nonparametric methods are designed by exploiting spatial relationships of
feature points. Graph matching is the extensively used nonparametric technique for outlier removal,
such as the Graph Transformation Matching (GTM) [19] and the Weighted Graph Transformation
Matching (WGTM) [20]. Considering the consistent motion of initial matches, Vector Field Consensus
(VFC) is exploited to establish the geometric constraint used for outlier removal [21]. Compared with
these global geometric constraints, local geometric constraints can fit local deformations well and
tolerate a large fraction of outliers. For outlier removal, existing solutions are usually used in either a
pre-filter step to increase inlier ratios [22] or a post-filter step to refine final matches [23]. In addition,
some research attempts to achieve affine-invariant constraints, including the Spatial Angular Order
(SAO) constraint [24] and the Triangle Area Ratio (TAR) constraint [25].

For methods using photometric constraints, feature descriptors can be considered as the first-order
photometric constraint as only local patches around feature points are used for similarity computation.
This is the main reason causing outliers in initial matches. To achieve further refinement of initial
matches, high-order photometric constraints should be exploited. Obviously, line descriptors
that describe a line-strip region connecting two feature points can be considered as second-order
photometric constraints, e.g., the mean-standard deviation line descriptor (MSLD) [26] and the
multi-scale line band descriptor (LBD) [27]. Among the reported researches, Liu et al. [28] proposed
a virtual line descriptor (VLD) to describe the local region of an image strip between two feature
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points, and outliers are removed by using a semi-local matching method, termed K-VLD. Because of
their high discriminability, photometric constraints are modeled as local constraints and cooperate
with local geometric constraints to achieve reliable outlier removal. In the research of Li et al. [29],
outlier removal was achieved by the combination of a photometric constraint based on support-line
voting and a geometric constraint based on the affine-invariant ratio. Similarly, a region descriptor,
termed the 4FP-Structure, was designed by exploiting a SIFT-like line descriptor [30]. For all these
above-mentioned methods, constructing a neighboring structure is a prerequisite to implement both
local geometric and photometric constraints. To address the neighbor searching issue caused by the
KNN ((K-nearest neighbors)) algorithm, Jiang et al. [31] proposed to use the Delaunay triangulation for
organizing randomly matched points and designed a reliable image matching algorithm that combines
photometric and geometric constraints in the neighboring structure of the Delaunay triangulation.

Consequently, the combination of local geometric and photometric constraints can achieve reliable
outlier removal for both rigid and non-rigid images. However, for UAV image matching the efficiency
issue is not considered and addressed in these methods. Although photometric constraints are usually
achieved in a local manner, the SIFT-like strategy for computing line descriptors would cause high
time consumption. This can be explained in two aspects. On the one hand, image pyramids should
be constructed to achieve the scale-invariant property, such as the LBD and VLD line descriptors;
on the other hand, SIFT-like descriptors are computed for all line strips that form the neighboring
structure of one corresponding point. For UAV images with high resolutions, these two steps would
cause extremely high time costs compared with other steps in the pipeline of local feature-based
matching [32].

Inspired by our previous work [31,33], this study aims to design a reliable and efficient outlier
removal method for UAV images. The main contribution of this paper can be summarized as (1) a
reliable and efficient outlier removal method. For building the reliable neighboring structure, random
feature points of initial matches are first organized by using the Delaunay triangulation and its
corresponding graph; and a local geometric constraint based on the SAO is designed to achieve
hierarchical outlier removal; and (2) the comparison and analysis of the proposed algorithm. By using
four datasets, including one benchmark and three oblique UAV datasets, the performance of the
proposed algorithm has been comprehensively compared with other methods in both feature matching
and image orientation tests.

This paper is organized as follows. Section 2 describes the motivation for the design of the
proposed method. Section 3 presents the spatial angular order based geometric constraint and the
triangulation constrained match expansion. Comprehensive analysis and comparison of the proposed
method in feature matching and bundle adjustment tests are presented in Section 4. Finally, Section 5
presents the discussion for the proposed algorithm, and Section 6 presents the conclusions of this work.

2. Principle for the Design of the Proposed Algorithm

The purpose of the proposed algorithm is to achieve reliable and efficient feature matching for
UAV images. Except for the precision of image matching, the efficiency and reliability should be
considered and addressed for the design of the proposed matching algorithm to processing large-scale
datasets [34,35]. This can be seen from three aspects: First, the number of UAV images is relatively
larger compared with traditional aerial images, and high combinational complexity is observed even
using a carefully designed match pair selection method [36]. Second, for UAV images repetitive
patterns and building occlusions would cause high outlier ratios in initial matches and seriously
degenerate the performance of RANSAC. Third, for initial matches with high outlier ratios, outliers
with high possibility must be removed earlier than other matches to avoid their influence on the
decision of inliers. For these three issues, corresponding solutions have been proposed in our previous
studies and are listed as follows.

• For the first issue, match pair selection before feature matching can be an efficient way to decrease
the number of image pairs. In our previous work [36], the rough POS of images and mean
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elevation of test sites have been utilized to compute the footprints of images and determine
overlapped match pairs. Compared with exhaustive matching strategy, match pair selection can
dramatically decrease the number of match pairs and reduce the total time costs consumed in
the stage of feature matching. However, as demonstrated in the tests [36], the number of selected
match pairs is still very large when only using the overlap criterion, such as 18,283 match pairs
retained for the UAV dataset of 750 images. Thus, the efficiency of feature matching for one image
pair should also be addressed, which relates to the second and third issues for image matching.

• For the second issue, an efficient pre-filter step can be designed to remove obvious outliers
and increase inlier ratios of initial matches. In our previous work [33], a two-stage geometric
verification algorithm was designed for outlier removal of UAV images. In the filtering stage,
obvious outliers are removed by using a local consistency analysis of their projected motions,
which can increase inlier ratios of initial matches; in the verification stage, retained matches are
refined based on the global geometric constraint achieved by fundamental matrix estimation.
This method can be utilized to address the second issue. This method, however, depends on extra
auxiliary information, i.e., rough POS of images and mean elevation.

• For the third issue, Jiang et al. [31] designed an image matching algorithm for both rigid and
non-rigid images, in which a photometric constraint based on the VLD line descriptor and a
geometric constraint by using the SAO is implemented by using neighboring structures deduced
from the Delaunay triangulation. Initial matches are sorted according to their dissimilarity
scores computed using these two constraints, and outlier removal is conducted in a hierarchical
manner where matches with high dissimilarity scores are first removed. However, due to high
resolutions and large dimensions of UAV images, this method causes very high time costs to
achieve scale-invariant photometric constraints.

Combining the hierarchical outlier removal framework [31] and the two-stage match
refinement [33], this study aims to design a UAV image matching algorithm considering both the
reliability and efficiency. The overall workflow of the proposed algorithm is shown in Figure 1.
The input of the proposed algorithm is only one image pair without any other auxiliary data sources.
The overall workflow is divided into two major parts as labeled in Figure 1. In the first part,
initial matches are obtained according to the workflow of local feature-based image matching, and two
strategies, i.e., cross-check and ratio-test [15], are adopted to remove false matches. In the second
part, a reliable and efficient algorithm is designed to remove remaining outliers from initial matches,
which is achieved by using the two-stage strategy. Similar to Jiang et al. [31], initial matches are first
organized by using the Delaunay triangulation and its corresponding graph. Obvious outliers are
then removed hierarchically using the SAO-based geometric constraint in the filtering stage, which is
followed by match expansion to resume as many as missed inliers under the triangle constraint.
In the verification stage, because of the weak discriminability of the SAO constraint, the RANSAC
algorithm with the fundamental matrix estimation is used as the global geometric constraint to refine
the final matches. In this study, the proposed algorithm, namely, DTSAO-RANSAC, is described in the
following sections.
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Figure 1. The overall workflow of the proposed UAV image matching algorithm.

3. UAV Image Matching Based on DTSAO-RANSAC

In this study, only local geometric constraints are used to achieve outlier removal in the filtering
stage because of two reasons. First, local geometric constraints can be implemented with extremely
high efficiency compared with existing photometric constraints. Second, the aim of the filtering stage
is to remove obvious outliers and increase inliers ratios of initial matches, which can be achieved using
the non-rigorous local geometric constraints. In addition, the precision of final matches can be refined
by the subsequent verification stage with rigorous geometric constraints.

3.1. Delaunay Triangulation from Initial Matches

Neighboring structure construction is a prerequisite to creating local geometric constraints.
K-nearest neighbor (KNN) graphs, implemented using the KNN algorithm [37], represent a commonly
used method. However, this strategy has two problems [31]: (1) The number of neighbors is
difficult to determine for varying sets of initial matches, and (2) the even distribution of neighboring
points is difficult to guarantee. Due to the properties of dynamic generation and good geometry,
the Delaunay triangulation is used to organize randomly located feature points of initial candidate
matches. This structure limits insertion and deletion operations to local region updating and maximize
the minimum angle of all triangles to avoid skinny triangles. Thus, the Delaunay triangulation enables
fast updating for frequent vertex deletion and adding and constructs good neighboring structures to
achieve local geometric constraints [31].

The Delaunay triangulation can be considered as a special graph under the empty circle property.
Suppose that the Delaunay triangulation is represented as a graph G = {V, E}, where V and E stand
for the vertex and edge sets, respectively; P and Q represent feature points of image pair (i1, i2),
respectively; C = {(pi, qi)} stands for initial matches with pi ∈ P and qi ∈ Q. Therefore, the Delaunay
triangulation G1 is created from feature points of image i1: one feature point pi defines a vertex vi ∈ V,
such that V = {vi}, and any triangle consisted of three edges in E fulfills the empty circle property.
According to the corresponding relationships of initial matches, the corresponding graph G2 of G1

can also be created. Similarly, a Delaunay triangulation G2 can be created using feature points from
image i2 with its corresponding graph G1 using feature points from image G1. For simplification,
G1 and G2 are respectively defined as the Delaunay triangulation and its corresponding graph in the
following sections.

Figure 2 illustrates the Delaunay triangulation and its corresponding graph generated from initial
matches, where Figure 2a represent initial matches with inliers and outliers rendered by green and
blue lines, respectively; Figure 2b,c indicates the Delaunay triangulation and its corresponding graph,
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respectively. It is clearly shown that for each vertex, its incident neighboring vertices locate evenly
around the target vertex in the angular direction. In addition, as shown in Figure 2b, the Delaunay
triangulation divides the image plane into small patches, and a majority of these patches are non-skinny
triangles, which can facilitate the calculation of transformation parameters to its corresponding triangle
in Figure 2c. These properties would be used to achieve triangle constrained match expansion.

(a)

(b) (c)

Figure 2. The illustration of the Delaunay triangulation and its corresponding graph from initial candidate
matches: (a) initial candidate matches, (b) the Delaunay triangulation, and (c) its corresponding graph.

3.2. Geometric Constraints Structured by Delaunay Triangulation

In this section, two local geometric constraints are used to remove obvious outliers and resume
missed true matches in the filtering stage of the DTSAO-RANSAC. The first local geometric constraint
is achieved by using the affine-invariant spatial angular order (SAO), which assumes that under the
local polar coordinate system with the pole centered on the target vertex and the polar axis in the
horizontal direction, the angular order of neighboring points remains invariant under a similarity or an
affine transformation [24]. By using the formed Delaunay triangulation, incident vertices are utilized
to form the neighboring structure for each target vertex, and a dissimilarity score can be computed
using the difference between their spatial angular orders. The dissimilarity score is used to measure
the possibility of one match being an outlier, and outlier removal can be conducted hierarchically.

The following steps are executed to calculate the dissimilarity score for one target vertex v1i ∈ V1

in graph G1. (1) An incident neighbor list list1i = {v1j : v1j ∈ V1, j 6= i} is determined based on the
connection of graph G1. (2) For each incident neighbor v1j in list1i, its polar angle a1i,1j is computed in
the polar coordinate system. (3) A polar angle list alist1i = {a1i,1j} is obtained and sorted anticlockwise
according to their polar angles. The angular order O1i of vertex v1i is then constructed using the point
number list deduced from list list1i. Similarly, the angular order Oqi of the corresponding vertex qi in
graph G2 can be obtained in the same manner. The dissimilarity score of the match (pi, qi) is calculated
as the mean cyclic edit distance (CED) according to Equation (1),

scoregeo(i) =
1
N

dced(Ov1i , Ov2i ) (1)



Remote Sens. 2020, 12, 3390 7 of 25

where N is the incident neighbor number for vertex v1i, and dced(•) calculates the CED of two angular
orders, which is measured by the minimum number of operations to transform one angular order
to another. In the context of outlier removal, the dissimilarity score scoregeo is used to measure the
possibility of one match to be an outlier. This is the foundation to achieve outlier removal in a
hierarchical manner.

After outlier removal based on the SAO constraints, the second local geometric constraint
is used to exploit missed matches. In the matching stage, one feature descriptor from the first
image would be compared with all feature descriptors in the second image. This global searching
strategy leads to the omission of true matches. On the contrary, the Delaunay triangulation splits the
image plane into near-regular triangle patches, which can be used to build reliable transformations
between corresponding triangles and restrict the searching space of candidate matches. This is the
core idea of triangulation constrained match expansion. In this study, an affine model is used to
build the transformation between corresponding triangles because of two reasons. On the one hand,
three non-collinear points are sufficient to compute parameters of the affine model; on the other hand,
the perspective transformation between two small triangle patches can be approximately modeled as
the affine transformation [38].

Figure 3 illustrates the procedure of match expansion based on the Delaunay triangulation.
Figure 3a,b represent the left and right image, respectively. For simplification, two corresponding
triangles are utilized to describe the pipeline of match expansion, which are indicated by triangles
4abc and 4a

′
b
′
c
′
, respectively. Suppose that feature points inside triangles 4abc and 4a

′
b
′
c
′

are
denoted by P and Q, respectively. Match expansion is achieved based on the following procedure.

• Affine transformation estimation. By using the three nonlinear point pairs of the two
corresponding triangles, the affine transformation matrix H from the left triangle to the right
triangle is estimated.

• Candidate match searching. For one feature point pi ∈ P shown as a red triangle on the left
image, its predicted location pe is computed by H ∗ pi shown as a black circle in the right image.
Feature points C = {cj} inside the dashed red circle with its center pe and radius r are searched
from Q, which are candidate matches of pi.

• Expanded match determination. Feature point pi is compared with each candidate feature cj ∈ C
by computing the SIFT descriptor distance that is defined as the cosine angle of two feature
vectors. Finally, the feature pair (pi, cj) with the smallest distance is labeled as an expanded match
when its distance is not greater than a distance threshold td.

Figure 3. The illustration of the triangle constrained match expansion. (a) Triangle in the left image.
(b) The corresponding triangle in the right image [31].

3.3. Implementation of the DTSAO-RANSAC Method

Based on the SAO geometric constraint and triangulation constrained match expansion, this study
designs and implements a reliable and efficient matching algorithm for UAV images. The hierarchical
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elimination and left-right checking strategies are integrated into these two geometric constraints.
The former strategy is utilized to decrease the influence of false matches on the judgment of
true matches; the latter strategy is adopted to eliminate false matches as many as possible [31].
The implementation of the UAV image matching method is described as follows.

• Initial match generation. For the input images, SIFT features are first detected for each image and
described using 128-dimensional descriptors, and initial matches are then obtained by searching
for the nearest neighbors with the smallest Euclidean distance of SIFT descriptors. Due to the
high resolution of UAV images, the SIFTGPU algorithm [39] with hardware acceleration is used
for the fast computation of initial matches. Default parameters of the SIFTGPU library are used.

• Delaunay triangulation construction. According to Section 3.1, the Delaunay triangulation
G1 and its corresponding graph G2 are constructed using the initial matches. In this study,
the two-dimensional triangulation of Computational Geometry Algorithms Library (CGAL) [40]
is selected to implement the Delaunay triangulation of the initial matches.

• Outlier removal based on the SAO constraint. For one target vertex v1i ∈ V1 in graph G1,
a dissimilarity score s1i = scoregeo(i) is calculated according to Equation (1) after determining two
corresponding angular orders; then, a list of dissimilarity scores slist = {s1i : i = 1, 2, ..., n} can
be obtained from n vertices in G1. The list slist is sorted in descending order of the dissimilarity
score. Assume that the vertex corresponding to the first item in the list slist is denoted as v1∗.
In this study, outlier removal is iteratively conducted using a hierarchical elimination strategy
until the dissimilarity score of v1∗ is less than a specified threshold tgeo: (a) remove the vertex v1∗
from graph G1, and set the dissimilarity score of v1∗ as zero; (b) update the dissimilarity score of
all incident neighbors of the vertex v1∗, and resort the score list slist. With the iterative conduction
of these two steps, an outlier list olist1 is obtained. To remove remaining outliers, a left-right
checking strategy that is implemented by exchanging the roles of graphs G1 and G2 is adopted,
and another outlier list olist2 is obtained. Finally, an initial match is classified as an outlier as long
as it belongs to one of the outlier lists olist1 and olist2.

• Match expansion based on the triangulation constraint. According to Section 3.2, match expansion
is conducted to resume missed true matches. In this study, to achieve the high efficiency
in neighboring point searching, feature points from each image are indexed by using the
K-nearest-neighbors [37] algorithm. Similar to Step 3, the left-right checking strategy is also
used in match expansion. In other words, the point pair (pi, cj) is labeled as a true match if and
only if pi and cj are the nearest neighbors of each other.

• Match refinement based on RANSAC. Retained matches are finally refined based on the rigorous
geometric constraint. In this study, the RANSAC method with the estimation of a fundamental
matrix using the seven-point algorithm [41] is utilized to refine the final matches.

In the workflow of the proposed algorithm, step 1 represents a classical local feature-based
matching solution that is used to generate initial matches; steps 2–4 are combined to achieve outlier
removal in the filtering stage, which aims to increase inlier ratios of initial matches and improve the
performance of the RANSAC method in step 5. In this study, the workflow of steps 2–4 is termed
DTSAO, and steps 2–5 consist of DTSAO-RANSAC as presented in Algorithm 1.
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Algorithm 1 DTSAO-RANSAC
Input: n initial candidate matches C

Output: final matches C f in

1: procedure DTSAO-FILTER
2: Construct the Delaunay triangulation G1 and its corresponding graph G2 using initial candidate

matches C
3: Outlier removal based on the SAO constraint (Csao ← C)
4: Match expansion based on the triangulation constraint (Cexp ← Csao)
5: end procedure

1: procedure RANSAC-VERIFICATION
2: Set the maximum inlier error ε = 1.0
3: RANSAC for rigorous geometrical verification
4: Extract inliers according to the result of the RANSAC C f in ← Cexp
5: end procedure

4. Experimental Results

In this section, four datasets are used for performance evaluate of the proposed algorithm. First,
we analyze the influence of the dissimilarity score threshold scoregeo on image matching. Second,
the robustness to outliers of the proposed algorithm is analyzed in terms of precision and recall. Third,
four UAV image pairs are used to analyze the DTSAO algorithm. Finally, by using three oblique UAV
datasets, DTSAO-RANSAC is compared with other methods in tests of feature matching and image
orientation. In the following tests, the candidate match searching radius r is set as 3 pixels, and the
distance threshold td for accepting candidate matches is configured as 0.7, as suggested in [38].

4.1. Datasets

The first dataset is the Oxford benchmark [42], as shown in Figure 4. It consists of eight image
sequences, and each sequence includes six images with gradually increasing deformations. For the
eight sequences, the homograph transformation between the first and one of the other images is given.
Thus, for each sequence, five image pairs are created for feature matching with ground-truth data.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4. Dataset 1 from the Oxford benchmark. (a) Bark. (b) Bikes. (c) Boat. (d) Trees. (e) Graf. (f) Wall.
(g) Leuven. (h) Ubc.
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(a)

(b)

(c)

Figure 5. The ground details of the three UAV datasets. (a) Dataset 2. (b) Dataset 3. (c) Dataset 4.
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The detailed information of the three UAV datasets is presented in Table 1. The first dataset
is collected from a residual region that is covered by some low buildings, as shown in Figure 5a.
By using a multi-rotor UAV equipped with one Sony ILCE-7R camera of dimensions of 7360 by
4912 pixels, a total number of 157 images are collected with the Ground Sampling Distance (GSD)
value of approximately 4.20 cm. The second dataset is located in a suburban area, as shown in Figure 5b.
For data acquisition, a multi-rotor UAV equipped with one Sony RX1R camera of dimensions of 6000
by 4000 pixels, and a total number of 320 images of GSD 5.05 cm are collected under the flight height
of 165 m. For data acquisition, the pitch and roll angles are set as 25◦ and −15◦, respectively. The third
dataset is collected from an urban region, as shown in Figure 5b. For this test site, a five-camera oblique
photogrammetric system is utilized. It consists of one nadir and four oblique cameras, and the four
oblique cameras are rotated 45◦ with respect to the nadir camera. The imaging system consists of
five cameras of dimensions of 6000 by 4000 pixels. By using a multi-rotor UAV, a total number of
750 images are recorded under the flight height of 175 m. The GSD value is approximately 4.27 cm.

Table 1. Detailed information for data acquisition of the three UAV datasets.

Item Name Dataset 1 Dataset 2 Dataset 3

UAV type multi-rotor multi-rotor multi-rotor

Flight height (m) 300 165 175

Camera mode Sony ILCE-7R Sony RX1R Sony NEX-7

Number of cameras 1 1 5

Focal length (mm) 35 35
nadir: 16
oblique: 35

Camera angle (◦)
nadir: 0
oblique: 45/−45 front: 25, −15

nadir: 0
oblique: 45/−45

Number of images 157 320 750

Image size (pixel) 7360 × 4912 6000 × 4000 6000 × 4000

GSD (cm) 4.20 5.05 4.27

4.2. Analysis of the Influence of the Score Threshold

In the DTSAO, the dissimilarity score threshold tsao is used to terminate the hierarchical outlier
removal procedure. In this section, dataset 1 is used to analyze its influence on image matching.
For performance evaluation, the dissimilarity score threshold is uniformly sampled between 0.1
and 0.9 with an interval value of 0.1, and two criteria, namely, precision and recall, are utilized as
measurements. In this section, only DTSAO is executed in feature matching.

Figure 6 presents the statistical results of precision and recall for the eight sequences of dataset 1.
Noticeably, for the sequences Graf and Boat the precision and recall are smaller than the others mainly
because feature matching fails for the last two image pairs. For each sequence, the average precision
and recall are calculated by using the results of five pairs. It is clearly shown that with the increase of
the score threshold tsao, the precision of the eight sequences decreases gradually, and the recall has an
opposite trend. The main reason is that more matches can surpass the SAO geometric constraint under
a high threshold value. The increase ratio of inliers is less than that of outliers. By further analysis of
the precision, we can find that (a) the threshold tsao has little influence on precision when it increases
from 0.1 to 0.5; (b) the precision decreases when the threshold tsao increases from 0.5 to 0.8; and (c)
when the threshold tsao reaches 0.8, the precision becomes stable. These findings can be explained by
the increasing ratios of inliers and outliers during these three spans. In the first span, the increasing
ratios of inliers and outliers are competitive, which results in a stable precision; in the second span,
the increasing ratio of outliers is larger than that of inliers, and the precision starts decreasing; and in
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the third span, the increasing ratios of inliers and outliers become zero as presented by the stable
precision and recall.

(a)

(b)

Figure 6. The influence of the score threshold on image matching for the eight sequences of dataset 1.
(a) Precision. (b) Recall.

To facilitate the selection of an optimal threshold tsao, Figure 7 presents the overall precision and
recall for image matching of dataset 1. In this study, the overall precision and recall are computed
using the average statistical results of 40 image pairs of eight sequences. It is clearly shown that
the precision and recall have an opposite change trend, which is similar to that of each individual
sequence, as shown in Figure 6. To make a balance between precision and recall, the optimal value of
the threshold tsao is set as 0.6.

Figure 7. The influence of the score threshold on image matching for dataset 1.
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4.3. Analysis of the Robustness to Outliers of DTSAO

In this section, we will generate artificially contaminated matches with specified outlier ratios
using dataset 1 and analyze the algorithm’s robustness to outliers. Similar to Section 4.2, only DTSAO
is executed in feature matching, and the average precision and recall of each sequence are used for
performance evaluation.

To prepare test datasets, each image pair of each sequence of dataset 1 is first matched based
on the local feature-based matching method. Outliers are separated from inliers according to their
transformation errors (greater than five pixels) based on their transformation parameters. Suppose that
the numbers of outliers and initial matches are indicated by Noutlier and N, respectively; the specified
outlier ratio is indicated by Routlier. Thus, the number of randomly selected point pairs Nadd from
unmatched feature points can be computed according to Equation (2). In this test, the outlier ratio
Routlier is uniformly sampled between 0.1 and 0.9 with an interval value of 0.1.

Nadd =
N ∗ Routlier − Noutlier

1− Routlier
(2)

Figure 8 presents the statistical results of precision and recall for the eight sequences in dataset 1,
where Figure 8a,b shows the results of precision and recall, respectively. Similarly, for the sequences
Graf and Boat, feature matching fails for the last two pairs, which results in relatively lower precision
and recall. It is clearly shown that with the increase of the outlier ratio Routlier, the precision and
recall of all sequences gradually decrease, and the decrease ratio of the recall is faster than that of the
precision, which can be observed from the steeper curve as presented in Figure 8b. Except for the Graf
and Boat sequences, the precision of the other sequences is greater than 60% even with an outlier ratio
of 0.9. The recall, however, is not greater than 40% for almost all sequences. The main reason is that for
initial matches with extremely high outlier ratios, inliers rarely exist in the neighboring structure of the
target point. This leads to the high dissimilarity score even though the target point belongs to true
matches. Thus, high outlier ratios cause low recall. However, some of these abandoned inliers can be
resumed from the triangulation constrained match expansion.

(a)

(b)

Figure 8. The influence of outliers on DTSAO-based image matching. (a) Precision. (b) Recall.
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To analyze the performance of the hierarchical elimination strategy, we also conduct experiments
without the hierarchical elimination strategy. The statistical results of the precision and recall are
shown in Figure 9. Similar to the results presented in Figure 8, the precision and recall of all sequences
decrease gradually with the increase of outlier ratios. However, two different findings can be observed:
(1) The decrease ratios of the precision from the DTSAO without the hierarchical elimination strategy
is higher than that of the DTSAO with the hierarchical elimination strategy. This can be deduced
by comparing the curve descent ratios between Figures 8a and 9a. (2) The recall from the DTSAO
without the hierarchical elimination strategy is higher than that of the DTSAO with the hierarchical
elimination strategy. For the former strategy, the recall is larger than 40%, as shown in Figure 9b;
however, it is lower than 40% for the latter strategy, as shown in Figure 8b. By analyzing precision
and recall defined by Equations (2) and (3), we can conclude that the high recall achieved in Figure 9b
is implemented by ignoring more outliers in match results because low precision can be observed in
Figure 9a. In conclusion, higher precision is achieved by using the hierarchical elimination strategy.

(a)

(b)

Figure 9. The influence of outliers on DTSAO-based image matching without the hierarchical
elimination strategy. (a) Precision. (b) Recall.
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(a)

(b)

(c)

(d)

Figure 10. Initial matches of the four image pairs. (a) The first image pair. (b) The second image pair.
(c) The third image pair. (d) The fourth image pair.
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4.4. Outlier Elimination Based on the DTSAO Algorithm

In this section, four image pairs with different configurations between oblique and nadir images
are used for the analysis of the DTSAO method. These four image pairs are selected from dataset
2, which consists of UAV images captured using a nadir-view campaign and a 45◦ oblique-view
campaign. For more details, refer to the work of Jiang et al. [33].

(a) (b)

(c) (d)

Figure 11. DTSAO for outlier elimination of image pair 1. (a) The Delaunay triangulation before outlier
removal. (b) Its corresponding graph before outlier removal. (c) The Delaunay triangulation after
outlier removal. (d) Its corresponding graph after outlier removal.

Initial matches are first extracted for the four image pairs by using the SIFTGPU library. Based on
the pipeline of local feature-based matching, initial matches of each image pair are obtained and
shown in Figure 10, with numbers of 391, 192, 69, and 95 for the four image pairs, respectively.
Noticeably, oblique images are geometrically rectified for a better interpretation, where lines of inliers
are approximately parallel to each other; lines of outliers intersect others. The matching results reveal
that even with the usage of the outlier elimination techniques, i.e., cross-check and ratio-test, a large
proportion of false matches exist in initial matches, especially for the third and fourth image pairs with
larger perspective deformations. The inlier ratios of the four image pairs are approximately 47.1%,
35.9%, 24.6%, and 27.4%, respectively.

In the first step of the DTSAO, the Delaunay triangulation and its corresponding graph are
constructed using feature locations of the initial matches. Figures 11 and 12 show the Delaunay
triangulation and its corresponding graph for the image pairs 1 and 3, respectively. It is clearly shown
that the Delaunay triangulation can split image planes into near-regular triangles, as presented in
Figures 11a and 12a. Because of the existence of outliers, the corresponding graphs do not meet the
empty circle properties of the Delaunay triangulation, which can be observed from the intersected
edges in Figures 11b and 12b. In the second step of the DTSAO, candidate outliers are gradually
detected and removed using the SAO-based geometric constraint. For each vertex of the Delaunay
triangulation, a dissimilarity score is computed. The vertex with the highest score is hierarchically
detected and eliminated. With the execution of outlier removal, the topological structures of the
Delaunay triangulation and its corresponding graph become more and more identical, which is
presented in Figure 11c,d for image pair 1 and Figure 12c,d for image pair 3. For the four image pairs,



Remote Sens. 2020, 12, 3390 17 of 25

the numbers of removed outliers are 14, 34, 51, and 37, respectively, which are 3.6%, 17.7%, 73.9%,
and 38.9% of the corresponding total matches. In the third step of the DTSAO, match expansion is
conducted to resume as many as missed true matches. Finally, the numbers of retained matches are
377, 158, 18, and 58 for the four image pairs, respectively. Figure 13 shows the match results of the
four image pairs after outlier elimination based on the proposed DTSAO algorithm. We can see that
(1) obvious outliers are removed, which can be verified by the intersected lines in Figure 10, and (2)
fewer outliers still exist in the match results of the DTSAO, as shown in Figure 13d.

(a) (b)

(c) (d)

Figure 12. DTSAO for outlier elimination of image pair 3. (a) The Delaunay triangulation before outlier
removal. (b) Its corresponding graph before outlier removal. (c) The Delaunay triangulation after
outlier removal. (d) Its corresponding graph after outlier removal.

(a)

(b)

Figure 13. Cont.
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(c)

(d)

Figure 13. Outlier elimination of the four image pairs. (a) The first image pair. (b) The second image
pair. (c) The third image pair. (d) The fourth image pair.

4.5. Comparison with Other Outlier Elimination Methods

In this section, DTSAO-RANSAC would be compared with other seven algorithms, i.e., LOSAC,
SPRT, PROSAC, USAC [14], GC-RANSAC [15], KVLD-RANSAC [28], and DTVLD-RANSAC [31].
The first four methods are the variants of the RANSAC by integrating optimization processing in the
hypothesis generation or model verification stage: GC-RANSAC uses a Hough transformation-based
voting strategy to filter obvious outliers, KVLD-RANSAC uses the virtual line descriptor (VLD)
to construct a photometric constraint in the filter stage and cooperates with RANSAC for match
refinement, and DTVLT-RANSAC combines the VLD-based photometric constraint and the SAO-based
geometric constraint for outlier removal. In this section, two tests would be conducted for performance
evaluation. In the first test, four image pairs described in Section 4.4 are used to evaluate outlier
removal in the filter and verification stages of GC-RANSAC, KVLD-RANSAC, DTVLD-RANSAC,
and DTSAO-RANSAC. In the second test, image orientation is conducted to assess their performance in
terms of efficiency, completeness, and accuracy. For all evaluated RANSAC-based methods, the number
of iterations is pre-set with the value of 100,000. All these methods are implemented by using the C++
programming language. All experiments are conducted on a Windows PC with a 3.2 GHz Intel Core
i7-8700 CPU and a 6 GB GeForce GTX 1060 graphic card.
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(a) (b)
Figure 14. Comparison of time costs and numbers of inliers in the filter stage. (a) Time costs.
(b) Number of inliers.

4.5.1. Comparison Using Outlier Removal Tests

In this test, time costs and numbers of inliers are used as the criteria. For a fair comparison,
the time costs and numbers of inliers are the average values calculated from the results of 100 times
execution of the corresponding method. The performance is compared in the filter and verification
stages separately. Figure 14 shows the statistical results for the performance comparison in the filter
stage. It is shown that for KVLD-RANSAC and DTVLD-RANSAC, the time costs are near 5 s, which is
approximately 100 times to that used in DTSAO-RANSAC. Although GC-RANSAC achieves the
highest efficiency, its time costs are quadratically correlated to the numbers of matches. On the
contrary, almost constant time costs are observed from DTSAO-RANSAC for the four image pairs.
In addition, a nearly equal number of inliers are obtained for DTVLD-RANSAC and DTSAO-RANSAC,
which is greater than that generated from KVLD-RANSAC for image pairs 1, 2, and 4. Noticeably,
KVLD-RANSAC fails for image pair 4, as shown in Figure 14b, due to larger viewing angles.

(a) (b)
Figure 15. Comparison of time costs and numbers of inliers in the verification stage. (a) Time costs.
(b) Number of inliers.

Figure 15 shows the statistical results for performance comparison in the verification stage. It is
shown that by using the progressive sampling strategy, PROSAC and USAC achieve high efficiency
for image pairs 1, 2, and 4. However, its time costs increase dramatically for image pair 3 because
of higher outlier ratios, and the same results are observed from LOSAC and SPRT. On the contrary,
by using the filter stage to increase inlier ratios, the time costs of GC-RANSAC, KVLD-RANSAC,
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DTVLD-RANSAC, and DTSAO-RANSAC are much less than that of the RANSAC variants when
processing image pair 3 with a higher outlier ratio, as presented in Figure 15a. Besides, the numbers
of inliers are shown in Figure 15b, which are comparative for all the eight methods, except for image
pair 4 processed by KVLD-RANSAC. To verify the validation of retained matches, the Sampson errors
of estimating the fundamental matrix from the retained matches are listed in Table 2. It is clearly
shown that competitive accuracy is achieved for all evaluated methods for image pairs 1, 2, and 4
with relatively higher inlier ratio; with the increase of outlier ratios, the performance of LOSAC, SPRT,
PROSAC, and USAC decrease obviously, such as image pair 3. In conclusion, the proposed method
can achieve high efficiency for outlier removal and obtain comparable and even higher accuracy for
fundamental estimation.

4.5.2. Comparison Using Image Orientation Tests

Image orientation tests are also used for the performance comparison of the eight methods.
Overlapped image pairs are first selected by computing image footprints using on-board Position
and Orientation System (POS) data [36]. For the three UAV datasets, the numbers of selected image
pairs are 4430, 5153, and 18,283, respectively. Image matching is then executed for each image pair,
which is followed by image orientation based on Structure from Motion [36]. In this test, three metrics,
namely efficiency, completeness and accuracy, are used for performance evaluation. The efficiency
is quantified by the time costs in outlier removal of feature matching; completeness is quantified by
the number of connected images and reconstructed 3D points in the SfM-based image orientation;
accuracy is quantified by the re-projection errors in the SfM-based image orientation.

Table 2. The errors of estimating the fundamental matrix (in pixels).

No. LOSAC SPRT PROSAC USAC GC-RANSAC KVLD-RANSAC DTVLD-RANSAC DTSAO-RANSAC

1 0.256 0.271 0.257 0.255 0.252 0.252 0.255 0.257
2 0.240 0.270 0.262 0.244 0.236 0.237 0.240 0.236
3 0.162 0.188 0.195 0.195 0.163 0.068 0.118 0.098
4 0.232 0.271 0.249 0.241 0.224 —— 0.222 0.225

Table 3. Efficiency comparison in SfM-based image orientation.

Item LOSAC SPRT PROSAC USAC
GC-RANSAC KVLD-RANSAC DTVLD-RANSAC DTSAO-RANSAC

Filter Verif Filter Verif Filter Verif Filter Verif

(a) Mean (unit in seconds)
1 0.913 1.608 1.244 1.239 0.056 0.096 14.857 0.011 4.634 0.012 0.049 0.011
2 0.071 0.127 0.287 0.291 0.114 0.012 5.816 0.007 2.883 0.009 0.055 0.009
3 0.924 1.335 0.983 0.982 0.041 0.115 8.390 0.005 2.759 0.007 0.051 0.005
(b) Sum (unit in minutes)
1 67.40 118.75 91.86 91.51 4.11 7.12 1096.95 0.78 342.15 0.92 3.65 0.83
2 6.12 10.86 24.67 25.00 9.81 1.05 499.48 0.63 247.59 0.75 4.76 0.74
3 281.49 406.84 299.49 299.25 12.59 34.93 2556.49 1.45 840.63 2.00 15.51 1.65

Table 3 shows the statistical results of efficiency, and two criteria, i.e., mean and sum, are used for
efficiency comparison. The results reveal that DTSAO-RANSAC achieves the highest efficiency among
the compared methods; for LOSAC, SPRT, PROSAC, and USAC, the time costs involved in datasets
with larger oblique angles are obviously higher than that consumed in datasets with smaller oblique
angles. This can also be verified by the time costs consumed in datasets 1 and 3. The main reason is that
larger oblique angles cause many more outliers and degenerate the performance of the RANSAC-based
methods. Compared with DTSAO-RANSAC, comparative efficiency is observed from the verification
stage of KVLD-RANSAC and DTVLD-RANSAC. However, extremely high time costs are consumed in
the filter stage due to high computational costs of the VLD-based photometric constraint. For efficiency
comparison, performance of GC-RANSAC ranks to DTSAO-RANSAC. However, its efficiency is
dramatically influenced by the number of matches, which can be verified by the mean time costs in the
filter stage. In a word, DTSAO can achieve the highest efficiency for outlier removal.
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Table 4. Completeness and accuracy comparison in SfM-based image orientation (root mean square
error (RMSE) in pixels).

Dataset Item LOSAC SPRT PROSAC USAC GC-
RANSAC

KVLD-
RANSAC

DTVLD-
RANSAC

DTSAO-
RANSAC

1
No. images 157/157 157/157 157/157 157/157 157/157 157/157 157/157 157/157
No. points 70,967 71,515 67,994 69,653 68,783 76,988 76,997 75,720
RMSE 0.537 0.538 0.539 0.539 0.532 0.548 0.548 0.541

2
No. images 320/320 320/320 320/320 320/320 320/320 279/320 320/320 320/320
No. points 136,131 140,475 132,005 139,766 138,829 118,425 163,370 163,245
RMSE 0.591 0.599 0.598 0.595 0.596 0.428 0.618 0.618

3
No. images 750/750 750/750 750/750 750/750 750/750 450/750 750/750 750/750
No. points 267,794 258,192 224,295 222,977 262,837 147,241 292,087 278,429
RMSE 0.670 0.661 0.654 0.647 0.671 0.620 0.683 0.676

(a) (b)

(c) (d)

Figure 16. 3D scene reconstruction of dataset 3. (a) LO-RANSAC; (b) KVLD-RANSAC; (c) DTVLD-RANSAC;
(d) DTSAO-RANSAC.

After feature matching, image orientation is then executed by using the SfM technique. Results are
compared in terms of completeness and accuracy, as shown in Table 4. It is shown that all images
are oriented by using the four methods, except that only 279 and 450 images in the second and third
datasets, respectively, are successfully oriented using KVLD-RANSAC. The main reason is that the
KVLD fails to achieve outlier removal for image pairs with very large perspective deformations,
e.g., the image pairs consisted of one left-viewed and one front-viewed image. This can also be verified
by the 3D reconstruction of dataset 2 in Figure 16 (the local plane coordinate system with its origin
at the center of test sites used as the reference system). For the three datasets, the numbers of points
reconstructed from DTVLD-RANSAC and DTSAO-RANSAC are larger than that from LO-RANSAC,
because of the usage of the triangulation constrained match expansion. Besides, comparing the
results between DTVLD-RANSAC and DTSAO-RANSAC, we find that the number of reconstructed
points from the former method is higher than that from the latter method. This can be explained
by the VLD-based photometric constraint used in DTVLD, which can improve the precision and
recall of initial matches and increase the number of expanded matches. For all the three datasets,
competitive accuracy is obtained from LO-RANSAC, DTVLD-RANSAC and DTSAO-RANSAC.

5. Discussion

This paper proposes and designs an efficient and reliable outlier removal method for large-scale
UAV image matching. It combines the local and global geometric constraints within the neighborhood
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structure that is deduced from the Delaunay triangulation. The experimental results demonstrate
that the proposed algorithm can achieve supervised efficiency for outlier elimination while obtaining
competitive performance in terms of inlier number and precision. Compared with other methods,
including our previous work [31,33], the proposed algorithm has the following advantages for
large-scale UAV images.

For UAV image matching, three issues, i.e., precision, efficiency, and reliability, should be carefully
addressed, which have partially addressed in our previous work. In the work of Jiang et al. [33],
we have used the on-board GNSS/IMU data of UAV platforms and the mean elevation of test sites for
projecting feature points from the image space to the object space and designed an efficient outlier
removal method with a speedup ratio of 100 when compared with the classical RANSAC-like methods.
However, this method depends on the auxiliary data sources, especially for the mean elevation of
test sites. In the work of Jiang et al. [31], we have designed a reliable outlier removal method,
which utilizes the good geometry of the Delaunay triangulation to design a local photometric and
geometric constraints and use a hierarchical strategy for outlier elimination. Although this method
has been tested for feature matching of relatively small-size photos, it would consume high time
costs for UAV images with high spatial resolutions. Considering these issues, this study integrates
the advantages of these previously published work and designed the proposed outlier removal
method, which aims to achieve efficient and reliable feature matching for UAV images and provide
high prevision for image orientation. In conclusion, the proposed algorithm is elegant designed for
processing UAV images with high spatial resolutions.

The robustness to outliers is a crucial measurement for evaluating the performance of outlier
removal methods. In Section 4.3, the image pairs in the Oxford benchmark with ground-truth geometric
transformations are utilized to analyze the robustness to outliers, whose ratios are configured from
0.1 to 0.9. The experimental results show that even though the outlier ratio reaches 0.9, the precision
of image matching is still larger than 60% for all successfully matched image pairs. This result can
ensure the stability and efficiency of the subsequently executed RANSAC-based match refinement,
whose performance would be seriously degenerated when the outlier ratio exceeds 50%. Besides,
it is verified that the high prevision is achieved mainly from the usage of the hierarchical elimination
strategy. This can be observed from experimental tests conducted with and without the hierarchical
elimination strategy. In the tests, the decrease ratios of the precision from the DTSAO without the
hierarchical elimination strategy is higher than that of the DTSAO with the hierarchical elimination
strategy, because more outliers are retained compared with the number of retained inliers without
the hierarchical strategy. This experiments clearly show that the hierarchical elimination strategy can
enhance the stability of the outlier removal method because it can detect and remove the most possible
outliers and decrease the influence of outliers on the checking of remaining inliers.

In Section 4.5, the performance of the proposed DTSAO-RANSAC is evaluated by using feature
matching and image orientation tests. The RANSAC variants and other methods with a similar filter
stage are compared in the comparison evaluation. The results demonstrate that in the filter stage,
DTSAO achieves a 100 times speed-up ratio when compared with KVLD and DTVLD because of the
only usage of the SAO-based local geometric constraint. In addition, the time costs are almost constant
for evaluated image pairs, which indicates that high efficiency can be obtained even for initial matches
with large numbers. The main reason is that the proposed method only needs to calculate the local
geometric constraint, instead of the pairwise relationships among all features such as the GC-RANSAC.
In the verification stage, the advantage of the proposed algorithm can be observed from processing
image pairs with high outlier ratios, such as datasets 1 and 3 with large oblique angles. In the image
orientation tests, the highest efficiency is seen from the proposed DTSAO-RANSAC, which increases
obviously compared with the RANSAC variants and the other two-stage methods. Besides, for the
three datasets, all UAV images are successfully connected in the SfM-based reconstruction. Therefore,
the proposed DTSAO-RANSAC can achieve the highest efficiency and provide comparable precision
for the SfM-based orientation of large-scale UAV images.
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Compared with our previous outlier removal method, namely DTVLD-RANSAC, the main
advantage of the DTSAO-RANSAC is the extremely high efficiency for high resolution UAV images.
DTVLD-RANSAC uses VLD-based descriptors as the second-order photometric constraint to remove
outlier before the execution of SAO-based geometric constraint. Due to the stronger discriminative
power of VLD, DTVLD-RANSAC can improve the precision and recall of initial matches and
increase the number of matches when compared with DTSAO-RANSAC. Thus, in future studies,
some computation efficient photometric constraints can also be integrated into the outlier removal
framework.

6. Conclusions

In this paper, we propose the DTSAO-RANSAC algorithm to achieve reliable and efficient
outlier removal in UAV images matching. The inputs of the proposed method are two only images.
Random feature points of initial matches are first organized by using the Delaunay triangulation,
which is utilized to construct neighboring structures for each point and split image planes into
near-regular triangles. The spatial angular order-based local geometric constraint is then implemented
to achieve outlier elimination with cooperation with a hierarchical elimination strategy. Based on the
triangle constraint between the Delaunay triangulation and its corresponding graph, match expansion
is conducted to resume as many missed inliers as possible, which is followed by the refinement
using a RANSAC-based global geometric constraint. Finally, using four datasets, the performance of
the proposed method is verified and compared with other methods in image matching and image
orientation tests. The results show that the proposed algorithm can achieve efficient outlier removal
and provide reliable matching results for UAV image orientation.
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