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Abstract: In recent decades, technological advancements in sensors have generated increasing interest
in remote sensing data for the study of vegetation features. Image pixel resolution can affect data
analysis and results. This study evaluated the potential of three satellite images of differing resolution
(Landsat 8, 30 m; Sentinel-2, 10 m; and Pleiades 1A, 2 m) in assessing the Leaf Area Index (LAI) of
riparian vegetation in two Mediterranean streams, and in both a winter wheat field and a deciduous
forest used to compare the accuracy of the results. In this study, three different retrieval methods—the
Caraux-Garson, the Lambert-Beer, and the Campbell and Norman equations—are used to estimate
LAI from the Normalized Difference Vegetation Index (NDVI). To validate sensor data, LAI values
were measured in the field using the LAI 2200 Plant Canopy Analyzer. The statistical indices showed a
better performance for Pleiades 1A and Landsat 8 images, the former particularly in sites characterized
by high canopy closure, such as deciduous forests, or in areas with stable riparian vegetation, the
latter where stable reaches of riparian vegetation cover are almost absent or very homogenous, as
in winter wheat fields. Sentinel-2 images provided more accurate results in terms of the range of
LAI values. Considering the different types of satellite imagery, the Lambert-Beer equation generally
performed best in estimating LAI from the NDVI, especially in areas that are geomorphologically
stable or have a denser vegetation cover, such as deciduous forests.
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1. Introduction

Remote sensing is a technique for acquiring information on the Earth using different types of
sensors located at variable distances [1]. Ever since the first remote sensing imagery became available,
it has been used for environmental applications, such as land use, hydrology, geology, weather, climate,
and vegetation studies [2,3]. Satellites and aircrafts equipped with optical, radar, or laser sensors
(i.e., satellite platforms) are the most common means for collecting data on and studying Earth’s
surface [4]. Along with these traditional remote sensing technologies, drones have recently been used
to conduct environmental studies [5–8]. Satellite remote sensing, however, is still used to monitor
large areas at regular intervals of time [9,10]. The main advantages of satellite imagery are that some
platforms offer free access to data and the availability of different spatial and temporal resolutions [11].
The use of satellite imagery is, therefore, essential in contexts where the size of the area makes in-field
monitoring expensive and time-consuming, as in the case of watersheds [12].

There are currently numerous satellite platforms operating; these carry different types of sensors
with spatial and temporal resolutions that range from sub-metric to kilometric and from 30 min to
weeks or months, respectively [13]. AVHRR, Sentinel, MODIS, Landsat, SPOT, Pleiades, and Ikonos are
among the satellite platforms most commonly used to monitor vegetation features [13–16]. Given the
wide variety of satellite imagery, it is important to choose the one most suited to the objectives of
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the study. A fundamental aspect to consider is the scale of the information that will be evaluated.
In general, images with coarser resolutions may be used for regular vegetation patterns, whereas finer
resolutions are required to study complex environments [17,18]. Mixed pixels may be a problem if the
resolution is too coarse [19,20].

Vegetation indices (Vis), defined as algorithms to evaluate differences in plant canopy spectral
characteristics [13], are used to quantitatively and qualitatively assess vegetation features using satellite
remote sensing data. Different Vis may be used, depending on the satellite platform and pixel resolution.
To evaluate their accuracy, Vis must be calibrated/validated with ground data [11]. The Leaf Area
Index (LAI), defined as the one-sided leaf area per unit ground area, is one of the most commonly used
indicators to evaluate leaf density on a horizontal surface area [21,22]. Since photosynthesis occurs in
leaves, LAI is directly correlated with the conservation status of the plant system [23,24]. Moreover,
LAI is indirectly correlated with certain processes that may disturb the state of the ecosystem, such
as lack of nutrients in soil, geomorphological instability, and fires [25–27]. For all these reasons, the
LAI is considered a critical parameter in ecosystem studies [13,28] and one which can be used to
validate remote sensing data with in-field measurements. The LAI can be measured directly in the
field through several methods, or it may be calculated from several Vis. Among the different Vis, the
Normalized Difference Vegetation Index (NDVI) is the one most often used in forestry and agricultural
studies, since it has a high correlation with the LAI [29–32]. One of the main problems in adopting the
LAI-NDVI approach [33] is that there is no single equation to represent this relationship, because these
indices have often been formulated for specific vegetation types [24].

Riparian ecosystems are complex environments characterized by narrow strips of vegetation
with important ecological and ecosystem functions [34–37]. Among the ecosystem services provided
by riparian areas, the maintenance of the geomorphological stability of the channels [38,39], and
the protection of the watercourses against pollution and runoff coming from diffuse sources [40] are
considered of interest inasmuch can support the achievement of the environmental objectives of the
Water Framework Directive [41]. These aspects are more relevant, considering that (especially in the
Mediterranean areas) human pressures, such as grazing, agricultural activities, and urbanization, lead
to reduce riparian areas, negatively affecting the ecosystem services [42]. Satellite imagery can be used
to map riparian ecosystems, as well as to monitor the effects of land management works, such as check
dams and to detect critical sites, in which channel or riverbed erosion is taking place [27,43]. In such
applications, a key point that needs to be deepened is the framework to be adopted, from the sampling
design to the choice of the most appropriate satellite platform.

The aim of this study was to test the performance of three different resolution imagery, Landsat 8,
Sentinel-2, and Pleiades 1A, in detecting the LAI in a Mediterranean area characterized by different
land cover types. LAI measurements were carried out in the field using the LAI 2200 Plant Canopy
Analyzer [44] using a suitable sampling design, while derived LAI values from Landsat 8, Sentinel-2,
and Pleiades 1A imagery were retrieved using the Caraux-Garson, the Lambert-Beer, and the Campbell
and Norman equations. The LAI-NDVI approach was adopted, fixing both the VI variable and the
applied mathematical equations, given its recognized scientific robustness to better focus the analysis
on the issue of the selection of the satellite imagery, which suits most the complex riparian environment.

2. Materials and Methods

2.1. Study Area

Research was conducted in the upper part of the Carapelle watershed, close to the Deliceto
municipality (northwestern Puglia) in Southern Italy (Figure 1). The Carapelle is a typical Mediterranean
watershed that covers an area of about 982.6 km2, with a maximum altitude of 1075 m a.s.l. (average
540 m a.s.l.) and a mean watershed slope of 4.4%. In particular, the studied area has an altitude ranging
from 934 and 284 m a.s.l. with a mean slope of 3.2%. Flysch formations constitute the mountainous
areas, whereas clayey-sandy Plio-Pleistocene sediments characterize the alluvial plain [45]. The climate,
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typically Mediterranean, is characterized by mild, moist winters and warm, dry summers. The
annual rainfall and average monthly temperatures range from 450 to 800 mm y−1 and from 10 to
16 ◦C, respectively [46]. Rainfalls, which are intense, of short duration and are concentrated in the
autumn-spring months, determine the torrential hydrological regime of the main watercourses in the
area [47].
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Figure 1. Reaches (R1–R4) of the Cammarota Stream and reach (R5) of the Vallone della Madonna Stream.

The most frequent tree species in the riparian buffers are elm (Ulmus minor Mill.), hornbeam
(Carpinus orientalis Mill.), and manna ash (Fraxinus ornus L.). Plant formations rich in poplar (Populus
alba L.) and white willow (Salix alba L.) flank the watercourses, where the edaphic moisture conditions
are favorable. Blackberry (Rubus ulmifolius Schott.) and common reed (Phragmites Australis Cav.) are
the most frequently occurring shrubs (Figure 2).Remote Sens. 2020, 12, x FOR PEER REVIEW 4 of 16 
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Vallone della Madonna Stream (R5). The values not specified correspond to 2%.

Downy oak and hardwood (Quercus pubescens Wild and Quercus. Cerris L., respectively), along
with pasture, meadow, and coniferous species, cover the higher slopes. Wheat cultivation, and to a
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lesser extent, agricultural crops and olive groves are the predominant cultivation systems in the plain
and low hilly areas [48].

LAI values were measured in-situ at the Cammarota (CR) and Vallone della Madonna (R5) streams,
both tributaries of the Carapelle Torrent, and in two surrounding areas, one covered by winter wheat
(WW) fields and the other by a deciduous forest (DF). The watercourses, with narrow cross-sections
and stratified vegetation, differ from one another in geomorphological stability, and consequently, in
vegetation density. The CR is characterized by different vegetation patterns and degrees of erosion
and by the presence of numerous check dams, which are severely damaged or destroyed. Along the
monitored transect of the CR, there are 28 check dams, of which 15 are destroyed, 3 are damaged,
and 10 are intact. The destroyed check dams are the main cause of active erosion processes along the
stream [27]. Based on the severity of the erosion and on the conservation state of the check dams, the
stream was divided into four reaches (R1–R4, Figure 1): Their features are described in Table 1. Along
with R5, instead, check dams are intact, and vegetation is denser and well stratified, with no signs of
riverbed erosion.

Table 1. Reaches of the Cammarota Stream based on the degree of channel erosion and on the
conservation state of check dams.

Reach Name Erosion Check Dams Vegetation

R1-Upstream reach Absent Intact or slightly damaged Stratified in a regular pattern
R2-Incipient erosion reach Riverbed Damaged or destroyed From dense to absent

R3-Full erosion reach Riverbed and Banks Destroyed Absent
R4-Downstream reach Very low Slightly damaged and destroyed Stratified in the riverbed

2.2. Field Data and Satellite Imagery

LAI values were measured in the field from May to July 2015, during the growing season and
before crop harvest. A large LAI dataset was collected at each study site using the LAI 2200 Plant
Canopy Analyzer [44], a sensor composed of five concentric rings. Readings were collected along
several cross-sections of the monitored watercourses, for a width ranging from 10 m to 20 m, in one
sensor mode for above and below readings, using a 90◦ view cap to avoid interference caused by
the user’s shadow. One above-canopy reading was detected for every four below-canopy readings.
Moreover, to take into account the slope of the study area the “measuring on slope” protocol was
applied [44]. Other optical corrections were not applied, since the effect on the measurement is
negligible for areas with a slope less than 30◦ [49]. The transects were conducted from one bank to
the other at the site of a check dam and between two consecutive check dams. In the wheat fields
and the forest area, readings were taken along a single direction, to obtain the most suitable overlap
between field measurements and the satellite imagery acquired by the different sensors. A total of 82
field datasets were collected: 53 in CR, 11 in R5, 8 in DF, and 10 in WW. The acronym RV (Riparian
Vegetation) is used henceforth to refer to CR and R5 together. A Garmin GPSMAP 76CSx was used to
register the location of transects and check dam positions.

Multispectral data for this study is from medium- to high-resolution imagery provided by Landsat
8 (L8), Sentinel-2 (S-2), and Pleiades 1A (P1A) satellites. Considering the aims of this study, images
with coarser resolutions were not used because larger pixel sizes could not detect riparian vegetation
features adequately. The adopted L8 (30 m) and S-2 (10 m) medium resolution platforms are open
access and guarantee excellent spatial and temporal coverage (Landsat from 1972, Sentinel from 2015).
For these reasons, this satellite imagery is commonly used to carry out Vis studies and is of particular
interest to both technicians and scientists [50]. In addition, P1A (2 m) high-resolution imagery was also
used because it yields accurate Vis in forest environments [51–53].

The reduction of between scenes variability, due to different sensors acquisitions, was achieved by
converting the imagery spectral digital number to top of atmosphere (TOA) reflectance. The advantages
of using TOA reflectance arise from the necessity of better comparing remote sensing data acquired
by different sensors at different times [48]. Also, TOA reflectance compensates different radiance
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values caused by different spectral bands, and lastly, corrects the variation in the Earth-Sun distance
over the acquisition dates [54]. As suitable atmospheric aerosol data were not available for every
image acquisition, all the sets of image data were not atmospherically corrected to top of canopy
reflectance values.

Landsat data (https://landsat.usgs.gov/landsat-8) has been frequently used for land cover
studies [55], but rarely for the analysis of riparian vegetation in streams with narrow cross-sections [27].
The cloud-free imagery used in this work, acquired by Landsat OLI sensors on 1 June and
3 July 2015, was downloaded using the Earth Explorer Get Data tool of the U.S. Geological
Survey Landsat web page (http://earthexplorer.usgs.gov). L8 imagery data were corrected to
TOA spectral radiance, using the radiance rescaling factors in the MTL file, and then converted
to TOA reflectance, using the rescaling coefficients and the correction for the sun angle (https:
//www.usgs.gov/land-resources/nli/landsat/using-usgs-landsat-level-1-data-product).

The Sentinel satellite is an orbital wide-swath (290 km) imaging mission carrying an innovative
Multispectral Imager (MSI), which provides a versatile set of 13 spectral bands from the visible to
the shortwave infrared at 10 to 60 m spatial resolution. For the present work, a cloud-free Level
1C (Top-of-Atmosphere reflectance) image acquired on 28 July 2015 was downloaded from the ESA
Sentinel-2 Pre-Operations Hub (https://scihub.copernicus.eu). The Level 1C of S2 imagery provided
data already in TOA reflectance along with the parameters to eventually transform them into radiances
(https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi/product-types/level-1c). The SNAP
toolbox was used to process the visible, the near-infrared, and the shortwave infrared bands (10 m,
10 m, and 20 m spatial resolution, respectively) to produce a subset covering 3.7 km × 1.94 km centered
at 41◦12′35′′N, 15◦23′05′′E and to resample all the selected bands to a 10 m pixel size.

The Pleiades constellation provides multispectral data at 2.8 m pixel resolution for the visible
and the near-infrared bands, at 0.7 m pixel resolution for the panchromatic band. A satellite operator
resampled the images to 2 m and 0.5 m, respectively [56]. The satellite imagery used in this work was
acquired by the Pleiades devices on 20 July 2015.

P1-A imagery data were first transformed to exoatmospheric (TOA) radiance using the calibration
coefficients provided in the image metadata. TOA reflectance was then computed in each band
considering the sun-earth distance in astronomical units, the extraterrestrial solar irradiance, and the
solar zenith angle at the center of the image [56].

Considering the smooth slope of the study area and that NDVI is less sensitive to the topographical
features [57,58], the topographic correction was not applied to all of the three satellite imagery.

2.3. LAI Calculation

LAI values were calculated from NDVI data retrieved from the three selected satellite images
using the following Equation (1) [59]:

NDVI =
NIR−Red
NIR + Red

(1)

In the case of L8 imagery, the corrected Normalized Difference Vegetation Index (NDVIc) was
calculated to improve the correlation accuracy between the NDVI and LAI. The NDVIc uses the
mid-infrared band as a filter to eliminate or reduce the contribution of ground vegetation and yields
more accurate canopy values [60]. Although the correction was also tested for S-2, it was not applied
because it yielded very low NDVI, probably due to differences in band wavelengths with respect to
L8 [61]. Moreover, the correction was not performed for P1A data, due to the lack of information in the
shortwave infrared band [62].

LAI values were then calculated using the following three equations (Table 2): Caraux-Garson
(CG, [63]), Lambert-Beer (LB, [64]), and Campbell and Norman (CN, [65]). The accuracy of the results
was assessed using the PBIAS (percent bias, [66]), R2 (coefficient of determination, [67]), and NSE
(Nash–Sutcliffe efficiency index, [68] statistical indices.

https://landsat.usgs.gov/landsat-8
http://earthexplorer.usgs.gov
https://www.usgs.gov/land-resources/nli/landsat/using-usgs-landsat-level-1-data-product
https://www.usgs.gov/land-resources/nli/landsat/using-usgs-landsat-level-1-data-product
https://scihub.copernicus.eu
https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi/product-types/level-1c
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Table 2. Equations used to derive Leaf Area Index (LAI) from Normalized Difference Vegetation Index
(NDVI).

Equation Algorithm Source

Caraux-Garson (CG) LAI = −0.39 + 6·NDVI Caraux-Garson et al. [63] (a)
Lambert-Beer (LB) LAI = − 1

k ln
(

NDVIcan−NDVI
NDVIcan−NDVIback

)
Lacaze et al. [64] (b)

Campbell and Norman (CN) LAI = −2 ln(1− f c) Walthall et al. [65] (c)

NDVIcan (canopy) and NDVIback (background) are the asymptotic value of NDVI corresponding, respectively, to the
higher LAI values and to bare soil; k is the extinction coefficient. In this work NDVIcan = 0.859, NDVIback = 0.224, k =
0.213. fc represents the fraction crop endmember.

3. Results

The observed LAIs (LAIobs) differed significantly at the monitored sites, both in range and median
value (Figure 3). Overall, LAIobs values along RV transects ranged from 0.26 to 5.93. In particular, CR
showed a variation of 5.45 (0.26–5.71 range) and a median value of 2.97. The lower LAI values were
mostly found in R2 and R3, the higher ones in R1, R2, and R4. In contrast, more uniform LAI values
were detected in R5, where the variation was only 1.85 (4.08–5.93 range), and the median was 4.46.Remote Sens. 2020, 12, x FOR PEER REVIEW 7 of 16 
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Figure 3. Ranges and median values of observed LAI values for the studied sites.

The higher LAI values detected in R5 were comparable to those obtained in R1, R2, and R3 of the
CR (Figure 3).

As expected, WW showed the narrowest range of LAIobs (1.11–2.50) and the lowest median value
(1.81). However, values detected in WW are similar to the lower values measured in R2 and R3.
The variability of LAIobs values in DF was 4.26 (1.18–5.44 range). Although this, the median, was in
absolute the highest detected (4.77), which was very similar to the median obtained in R5. Moreover,
the higher DF values were comparable to the higher LAIobs in R1, R2, and R3.

The PBIAS (percent bias), R2 (coefficient of determination), and NSE (Nash–Sutcliffe efficiency
index) statistical indices were used to assess the accuracy of LAI values calculated based on NDVI
values derived from the different remote sensing images (Landsat 8, Sentinel-2, and Pleiades 1A) using
Equations (a)–(c). This analysis was carried out considering the different types of vegetation monitored
(riparian vegetation, deciduous forest, and winter wheat fields). In particular, to determine which
combination of image and equation is most suited to the study of variability in riparian vegetation, the
performance was evaluated for every single reach (R1–R5) of RV. The results are reported in Table 3.
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Table 3. Comparisons between the observed Leaf Area Index (LAIobs) and LAI values retrieved from
remote sensing using three different satellite images and three equations (CG, LB, and CN).

Pleiades-1A Sentinel-2 Landsat 8

LAI CG LAI LB LAI CN LAI CG LAI LB LAI CN LAI CG LAI LB LAI CN

R1 PBIAS 19.52 3.21 52.62 37.09 39.45 71.81 18.45 5.55 77.65
R2 0.44 0.40 0.36 0.36 0.37 0.37 0.80 0.79 0.78

NSE −0.19 0.26 −2.13 −1.55 −2.18 −4.50 −0.16 0.17 −4.25
RMSE 1.39 1.10 2.26 2.04 2.28 3.00 1.43 1.21 3.04

R2 PBIAS 26.40 22.34 61.89 32.81 31.19 69.26 28.33 24.11 85.18
R2 0.34 0.31 0.29 0.01 0.01 0.01 0.04 0.03 0.04

NSE −0.26 −0.03 −2.33 −0.80 −0.81 −3.52 −0.56 −0.43 −5.31
RMSE 2.30 2.22 2.95 1.83 1.84 2.91 1.71 1.64 3.43

R3 PBIAS −67.78 −80.47 9.11 −63.11 −70.58 23.73 −77.42 −91.13 −1.22
R2 0.56 0.56 0.54 0.42 0.43 0.44 0.55 0.58 0.60

NSE −0.55 −0.80 0.38 −0.48 −0.64 0.17 −0.97 −1.22 0.51
RMSE 1.31 1.41 0.82 1.28 1.34 0.95 1.48 1.57 0.73

R4 PBIAS 18.39 1.95 50.91 3.27 −21.45 48.62 18.90 6.40 78.08
R2 0.18 0.24 0.34 0.04 0.04 0.05 0.78 0.78 0.79

NSE −0.20 0.22 −2.39 −0.64 −5.11 −7.40 −0.13 0.50 −5.99
RMSE 1.21 0.98 2.04 1.28 1.49 2.27 1.17 0.78 2.93

R5 PBIAS 28.66 −0.68 46.41 32.30 3.43 58.46 32.64 12.27 75.57
R2 0.50 0.56 0.68 0.40 0.61 0.72 0.61 0.64 0.63

NSE −4.62 0.53 −12.05 −5.82 0.49 −19.51 −6.13 −0.53 −33.38
RMSE 1.47 0.42 2.23 1.62 0.44 2.80 1.65 0.77 3.63

DF PBIAS 20.67 −11.88 35.32 23.22 −7.61 47.46 14.77 −24.05 61.55
R2 0.84 0.85 0.74 0.04 0.07 0.06 0.74 0.71 0.71

NSE 0.24 0.70 −0.19 −0.41 −1.22 −2.19 0.07 0.17 −2.49
RMSE 1.28 0.81 1.61 1.75 2.19 2.63 1.42 1.34 2.75

WW PBIAS 50.92 94.19 86.64 46.52 91.78 81.44 −8.58 18.54 102.91
R2 0.01 0.06 0.01 0.02 0.01 0.02 0.79 0.80 0.80

NSE −4.43 −14.37 −11.99 −3.54 −13.64 −10.51 0.62 0.20 −16.16
RMSE 1.06 1.78 1.64 0.97 1.74 1.54 0.28 0.40 –

LAI CG, LAI LB, LAI CN: LAI values calculated, respectively, using the linear equation proposed by Caraux-Garson,
the logarithmic relationship of Lambert-Beer and the non-linear equation proposed by Campbell and Norman.
(R1–R4), the reaches of the Cammarota Stream (CR); (R5), the Vallone della Madonna Stream; (DF), deciduous forest;
(WW), winter wheat. The most accurate values for each site are highlighted in bold. The incipient erosion reach (R2)
yielded the worst results: Values are indicated in italic.

On the whole, all three satellite images underestimated LAIobs (PBIAS > 0) in R1. The equation
which yielded the best accuracy was LB for L8 and P1A and CG for S-2. In particular, L8 and P1A
performed comparably well, with a slightly finer accuracy for P1A (lower RMSE) and better than S-2.
The extreme variability of LAIs measured in R2 (the incipient erosion reach) was not detected correctly
by any imagery and was generally underestimated. In any case, LB is the equation that performed best
for all the satellite platforms. L8, followed by P1A and S-2, when processed with equation CN, yielded
the best results in R3. In particular, LAIobs values were slightly overestimated by L8 (PBIAS < 0) and
underestimated by P1A and S-2. L8 and equation LB, gave the best results in R4. In this case, the
calculated values slightly underestimated the LAIobs. In R5, the last reach of RV, P1A performed best,
with slight overestimation. S–2 and L8, instead, tended to underestimate the LAIobs. Here, equation
LB yielded the best results for all the satellite platforms. Considering the other two vegetation types,
P1A showed the best statistical indices, followed by L8 and S-2 in DF, when all processed with LB.
In general, all the images overestimated LAIobs values. In WW, both P1A and S-2 performed poorly,
greatly underestimating the LAIobs. L8 performed better statistically, although LAI values were slightly
overestimated. Equation CG worked best.

Figure 4 represents the scatterplots between LAIobs and LAI retrieved values for each satellite
imagery, which give a visual assessment of the validation results reported in Table 3. The plots confirm
a good prediction ability for the LB equation, except for WW in P1A and S-2, while showing a tendency
to underestimate LAI values for the CN and CG equations.
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Figure 4. Scatterplots of observed vs. retrieved LAI from remote sensing data. The blue line represents
the 1:1 line.

For comparison. The ranges and median values of both LAIobs and LAI derived from all three
satellite images (Landsat 8, Sentinel-2, and Pleiades 1A) were plotted using the equation that best
suited each type of vegetation (Table 3), (Figures 5 and 6).
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Figure 6. Ranges and median values of observed LAI (Obs) and LAI retrieved from remote sensing
imagery in the Vallone della Madonna Stream (R5), Cammarota Stream (CR), Deciduous Forest (DF),
and Winter Wheat (WW).

LAIobs values generally showed wider ranges than LAI retrieved from satellite imagery, especially
in the reaches of the CR. None of the three satellite images detected the high variability of the LAIobs

in R1, R2, and R3. In R4, S-2 yielded a value range very similar to that of LAIobs; in particular, the
highest LAIobs and calculated LAI values were 5.60 and 5.68, respectively, whereas the lowest were
2.29 and 2.70, respectively (Figure 5). S-2 also detected ranges well in R5, although with a tendency to
underestimate both higher and lower LAI values (Figure 6). In this reach, P1A yielded a more accurate
minimum (4.08, LAIobs and 4.27, LAI retrieved) and maximum (5.93, LAIobs and 5.68, LAI retrieved)
values (Figure 6). P1A also accurately detected LAI variability in DF. The ranges were quite similar
(4.26 for LAIobs and 3.75 for retrieved LAI), although retrieved LAI values slightly overestimated both
the lower and higher values (Figure 6). WW was the only land use category in which L8 performed best
in terms of both lower and higher values (Figure 6). However, the maximum value was underestimated
(2.50 for LAIobs and 2.37 for retrieved LAI). P1A and L8 median values (3.54 and 3.39, respectively)
were close to the observed one (3.73) in R1 (Figure 5). In R2, instead, none of the satellite platforms
considered yielded median LAI values in good agreement with the median LAIobs (Figure 5). In R3,
both L8 and P1A yielded median LAI values (1.41 and 1.43, respectively) similar to the LAIobs (1.32)
(Figure 5). S-2 also yielded accurate results, although the median LAI retrieved was underestimated
(1.06). In R4, the median LAIobs was 3.13. L8 yielded the best results (3.10), whereas P1A and S-2
tended to overestimate actual values (3.37 and 3.50, respectively) (Figure 5). In R5, where the median
LAIobs was 4.46, P1A yielded the most accurate results (4.76), followed by L8 (4.12) and S-2 (4.86).
As for the two other types of vegetation cover, DF and WW, only L8 yielded a median value comparable
to the observed value. In DF, LAIobs was 4.77, and the retrieved LAI was 5.14 (Figure 6); whereas, in
WW, the LAIobs was 1.81, and the retrieved LAI was 1.97 (Figure 6).

4. Discussion

The LAI of RV was measured in-situ (LAI 2200 Plant Canopy Analyzer) and retrieved from
satellite imagery to test the performance of three satellite images with different spatial resolutions
(Pleiades 1-A, Sentinel-2, and Landsat 8). DF and WW land cover types were also analyzed to compare
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results with those obtained for RV. As the NDVI is one of the Vis most commonly used to detect canopy
cover variability [31], the LAI-NDVI approach was used to derive LAI values using three different
equations (Lambert-Beer, Caraux-Garson, and Campbell-Norman).

The wide variability of in-field LAIobs measurements for RV reflects the composition and structure
of such complex environments. In particular, in R2 and in R3, characterized, respectively, by partially
or totally destroyed check dams, LAIobs values were lower, highlighting a correlation between the
vegetation status and geomorphological channel stability [12,38,69]. R1 and R4, where there is almost
no erosion and vegetation is more stratified, showed a higher maximum LAIobs comparable to the
values measured in the DF. R5, characterized by intact check dams and well-structured riparian
vegetation, has median LAIobs values similar to those detected in R4. Higher values are detected
in DF because the vegetation here is mostly single story, without the presence of ground vegetation.
As expected, LAIobs values for the WW field are low and show less variability, due to the unstratified
cover and the simple leaf structure.

As for the performance of the three satellite images in the study area, L8 and P1A showed similar
results in R1, R3, R4, R5, and DF. Where erosion processes influence the presence of vegetation (R3),
P1A and L8 yielded very similar ranges and median values. In R1 and R4, instead, although statistical
values were similar between L8 and P1A, there was a better match between value ranges for P1A.

In R5 and DF, the better statistical performance of P1A was due to the high-resolution, which
limited the negative influence of “mixed pixels” [70,71], which instead affected L8 [27] (Figure 6),
as well as S-2, whose image resolution (10 m) was too coarse to avoid the “mixed pixels” effect. In R4
and WW, instead, L8 performed better than P1A. In Figures 5 and 6, LAIobs and retrieved LAI show a
better match in terms of median values for both R4 and WW, and the best match of value ranges for
WW. In both cases, P1A underestimated LAI, especially the lower range values.

The reason why P1A show no noticeable improvements with respect to L8, especially considering
R4 and WW, may be due to the different satellite data acquisition period (1 June and 3 July for L8,
20 July for P1A). Satellite imagery are sensible to biological factors [72], such as the phenological phases
of vegetation [73], and imagery acquired at the right time for the purposes of a study can yield better
results, even with images at a coarser scale [74]. At the end of July, the herbaceous plants characterizing
R4 riverbed vegetation were in a water stress phase, and all crops had been harvested in the WW fields.
Moreover, although the higher spatial resolution, P1A is characterized by a lower spectral resolution
with respect to L8 and S-2 (4 bands in P1A) [53]. This means that the P1A red and NIR bandwidth are
greater respect to the same bands of L8 and S-2. Teillet et al. [75] demonstrated that an increase in the
bandwidth is directly related to a decrease in the values of the NDVI.

In general, the statistical performances of S-2 were worse than those of the other sensors, except for
R5, where it performed comparably to L8 and P1A, while it was the only image to capture the extreme
variability of LAIobs values in CR and R5 (Figures 5 and 6). The worse statistical performances of S-2
could depend on several factors. First, as mentioned above, the acquisition date (28 July) certainly
influences the accuracy of results [74]. Moreover, several authors [76–78] highlight that although
NDVI is commonly used to retrieve LAI values, it is not always the VI with the highest correlation.
In particular, for S-2, the newest of the three satellites, alternative Vis may be considered to improve
results [32,79–81].

None of the sensors was a good descriptor of the high variability of LAIobs values in R2, resulting
in a general underestimation. In this reach, where the vegetation was sparse or totally absent [27],
L8 and S-2 were affected by the “mixed pixel” effect [71]. P1A, which is characterized by a lower
spectral resolution, and consequently, by higher bandwidth, suffered a spectral interference of the soil
background, due to the surface heterogeneity [82,83].

As regards the use of different equations to derive LAI from the NDVI, results indicate that,
in almost all cases, the Lambert-Beer (LB) equation was the most suitable. In particular, when the
vegetation was more homogenous (R1, R4, R5, and DF), LB worked best in processing both the L8
and the P1A imagery. Moreover, LB (coupled with P1A) improved the results in R2, although with
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unsatisfactory statistics, confirming that the more complex features in R2 are not easily detected using
satellite imagery (Romano et al., 2020). However, it should be considered that at each specific site,
there may be variations related to canopy characteristics (i.e., density, leaf angle distribution) and soil
optical properties [84,85]. For this reason, the match between the LAIobs and retrieved LAI could still
be improved by modifying the De Jong coefficients [86], generic for Mediterranean areas, used in the
LB equation. In R3, confirming findings by Ricci et al. [27] for L8, the equation CN performed well
also in processing S-2 and P1A. This equation requires identifying two NDVI values representing
the value of bare soil and the maximum value for vegetation [65]. In a complex environment, such
as a Mediterranean watershed that includes different types of vegetation, the first value is easy to
determine, whereas the second is difficult to determine because the maximum value of the vegetation
depends, within the same image, on changes in vegetation type [87,88]. For this reason, CN yielded
acceptable results in R3 only, where only LAIobs values similar to those of the bare soil were estimated
correctly (Figure 5). Linear equation CG yielded the best accuracy for WW because, where the observed
LAI values were lower than 3, results were not affected by the effect of saturation on greenness, which
for higher values determines an asymptotic trend in retrieved LAIs [31,85]. Generally, differences
in results could also be ascribed to the fact that the adopted equations were developed before the
launch of both the P1A and the S-2 missions, so that the correlation coefficients may not be optimal. In
addition, since LAIobs measurements are required to validate retrieved data, the sampling design is an
important aspect to consider [89]. In this work, transects were selected to obtain the most suitable
overlap between field measurements and the spatial resolutions of satellite images. For this reason,
P1A results could be improved using a different sampling design for medium resolution imagery
(L8 and S-2) and high-resolution imagery (P1A). The obtained results, confirm what was observed
by Wang et al. [53], or that the spatial resolution is an important factor to consider when choosing a
satellite product, but to the differences in the satellite sensors bands (spectral resolution) could also
impact the results.

5. Conclusions

This study assessed the potential of three satellite images with different resolutions (Landsat 8,
Sentinel-2, and Pleiades 1A) in studying vegetation features in a mountain riparian environment of
Southern Italy. Pleiades 1A and Landsat 8 imagery yielded values closer to the observed ones. In
particular, the higher spatial resolution of the former limited the influence of the mixed pixel over
the study area and improved the results both in terms of statistics and retrieved LAI value ranges.
However, the lower spectral resolution of the Pleiades 1A leads to spectral interference, due to the
surface heterogeneity, and to an underestimation of the results, especially in the transects where the
vegetation is variable. Sentinel-2 imagery showed poor statistical performances attributable, mainly, to
both the acquisition date of the image and to the vegetation index considered, which may not be the
best for this type of sensor. The results obtained suggest that, apart from the spatial resolution, other
factors have an impact on the LAI retrieval. The spectral resolution could negatively influence the
results, especially when the environment is more complex. The time of acquisition should be as close
as possible to the in-field measurement period, since the satellite multispectral images are sensitive
to the phenology of vegetation. The sampling design could improve the accuracy of the results if it
is specifically designed for the satellite sensor. A cost analysis is another key issue, as some remote
sensing images can be downloaded free of charge (i.e., Landsat 8 and Sentinel 2), while others cannot
(i.e., Pleiades 1A). Future studies could aim to improve the coefficient of the Lambert-Beer equation for
the Mediterranean areas, and/or test the performance of different vegetation indices—especially for the
Sentinel-2 imagery.
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