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Abstract: Identifying ecologically vulnerable areas and understanding the responses of phenology
to negative changes in vegetation growth are important bases for ecological restoration. However,
identifying ecologically vulnerable areas is difficult because it requires high spatial resolution and
dense temporal resolution data over a long time period. In this study, a novel method is presented to
identify ecologically vulnerable areas based on the normalized difference vegetation index (NDVI)
time series from MOD09A1. Here, ecologically vulnerable areas are defined as those that experienced
negative changes frequently and greatly in vegetation growth after the disturbances during 2000–2018.
The number and magnitude of negative changes detected by the Breaks for Additive Season and
Trend (BFAST) algorithm based on the NDVI time-series data were combined to identify ecologically
vulnerable areas. TIMESAT was then used to extract the phenology metrics from an NDVI time series
dataset to characterize the vegetation responses due to the abrupt negative changes detected by the
BFAST algorithm. Focus was given to Jilin Province, a region of China known to be ecologically
vulnerable because of frequent drought. The results showed that 13.52% of the study area, mostly in
Jilin Province, is ecologically vulnerable. The vulnerability of trees is the lowest, while that of sparse
vegetation is the highest. The response of phenology is such that the relative amount of vegetation
biomass and length of the growing period were decreased by negative changes in growth for dense
vegetation types. The present research results will be useful for the protection of environments being
disturbed by regional ecological restoration.

Keywords: ecologically vulnerable areas; BFAST; negative changes; phenological response; NDVI;
MODIS; time series analysis

1. Introduction

Frequent natural disasters and the irrational exploitation of natural resources by human beings
have led to a gradual increase in ecosystem vulnerability [1–4]. The definition of vulnerability
by Turner et al. is the degree to which a system, subsystem, or system component is likely to
experience harm due to exposure to a hazard, either a perturbation or a stress [5]. In other words,
compared with ecologically stable areas, the normal functions and structures of an ecosystem in
vulnerable areas are more susceptible to damage. Finally, this damage may subsequently trigger
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a chain of responses leading to the loss of species diversity and a decline in land productivity in
vulnerable areas [6]. Consequently, identifying ecologically vulnerable areas has become the first
step in ecosystem restoration projects. Negative changes in vegetation growth are an early sign of
environmental degradation [7]. Vegetation phenology is often considered the “leading indicator”
of ecological responses to environmental changes [8]. Most studies on environmental changes are
directed at land use/land cover (LULC) [9]. However, the relationship between negative changes
in vegetation growth and phenology remain largely unexplored [10]. Identifying the phenological
responses corresponding to negative changes in vegetation growth will be helpful in understanding
the process of vegetation restoration and reconstruction.

According to the definition of vulnerability by Turner et al. [5], vulnerability is characterized
by instability and sensitivity to disturbances [11]. “Stable” means that ecosystem changes, during a
defined period of time, remain constant, oscillate, reach a fixed point, or present some other type
of behavior [12]. Sensitivity is the magnitude of the stressing event that the system will resist or
absorb without significant change [13]. Thus, the areas where ecosystems are most unstable and
sensitive to disturbances are defined as ecologically vulnerable areas. Vegetation growth is a direct
and obvious indicator that describes the condition of the ecosystems experiencing disturbances [14].
Vegetation growth is suddenly disrupted—an abrupt change—when an ecosystem is subjected to an
extreme disturbance beyond its tolerance threshold [15]. The Ministry of Environmental Protection of
China noted in the “National Plan for the Protection of Ecologically Vulnerable Areas” that ecologically
vulnerable areas manifest a decline in biological productivity, are sensitive to environmental changes,
and exhibit significant inter-annual changes in time [16]. Jiang et al. used abrupt negative changes in
vegetation to evaluate the ecological adaptive capacity under drought [17]. Therefore, abrupt changes
in vegetation could be used to evaluate ecosystem instability and sensitivity, which are the key features
for evaluating vulnerability in response to disturbances. In this paper, ecologically vulnerable areas
were identified through instability and sensitivity based on abrupt negative changes in vegetation
growth. The number and magnitude of abrupt negative changes in vegetation indicate instability
and sensitivity, respectively. Therefore, areas featuring frequent and significant abrupt negative
changes in vegetation growth after disturbances during the monitoring period are considered to be
ecologically vulnerable areas. Research on phenological changes mainly focuses on climate change and
phenological influence, while the phenological changes from abrupt negative changes in vegetation
growth have rarely been explored [18,19]. Phenological changes in vegetation experiencing negative
changes helps explain the feedback mechanism of vegetation in response to disturbances, from which
a theoretical basis for ecological resilience research is also provided [20,21].

Remote sensing (RS) imaging allows for wider spatial coverage and access to a broader archive of
historical imagery. The detection of abrupt changes in vegetation involves extracting breakpoints in
time-series trajectories from multitemporal satellite RS imagery. It is applied to detect abrupt changes
in vegetation caused by disturbances, including human activities and natural events [22], such as
fire [23], deforestation [24], droughts [25], and floods [26]. MODIS data are considered an excellent
data source in region vegetation dynamic research because they provide 21 years of accumulated
data with both high temporal resolution and moderate spatial resolution [27–29]. NDVI time series
have been applied to analyze vegetation growth history [30], monitor current growth conditions [31],
and predict future vegetation dynamics [32]. Some researchers have proven that the breakpoints of
NDVI are caused by environmental disturbances. For example, disturbances, such as droughts, floods,
and fires, are in line with the negative changes at NDVI breakpoints [22,33,34]. The definitions of the
ecosystem or environmental disturbances are often taken from White and Picket (1985), who describe a
disturbance as any relatively discrete event that disrupts the structure of an ecosystem, community,
or population and changes resource availability or the physical environment [35]. It can be inferred
that, at the breakpoint, a negative change in the NDVI time series indicates that the vegetation has been
disturbed. The BFAST algorithm detects and identifies the timing and magnitude of breaks in an NDVI
time series, which, in turn, can be used to screen areas with frequent and abrupt negative changes
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and, consequently, identify ecologically vulnerable areas. Several methods have been proposed to
detect abrupt changes in vegetation, such as the Landsat-based Detection of Trends in Disturbance
and Recovery (LandTrendr) [36], the Breaks for Additive Season and Trend (BFAST) algorithm [37],
the Vegetation Change Tracker (VCT) [38], and the Detecting Breakpoints and Estimating Segments
in Trend (DBEST) method [39]. The BFAST algorithm, developed by Versbesselt et al. in 2010,
is used to identify the breakpoints of the trend components and seasonal components in NDVI time
series [40]. With BFAST, high-precision data (with each pixel in the time series fitted individually)
can be analyzed without setting a threshold, while detailed information, including the number, time,
and magnitude of changes, are estimated. BFAST has been applied to monitor vegetation changes
caused by deforestation, forest disturbances, and restoration [41,42]. Considering the phenological
parameters of NDVI and trajectory characteristics, some packages, such as HANTS [43], TiSeG [44],
TSPT [45], and TIMESAT [46], were developed to extract phenological information. Among the
proposed packages, the TIMESAT software package is applied to parameterize the phenological and
temporal behavior of NDVI on a seasonal scale. This package integrates a series of filter functions and
extraction methods for extracting phenological information, which extract phenological information
according to different land types. TIMESAT was developed to generate several seasonal data by fitting
a smooth model function to the upper envelope of the RS time-series data. There are three different
curve-fitting models: Savitzky–Golay (SG) filtering, asymmetric Gaussian (AG), and double logistic
(DL). The SG model has been successfully used for the extraction of phenological parameters due to its
high fitting accuracy [47]. In this paper, TIMESAT is used to extract the phenological indicators of
different vegetation types.

It is necessary to develop a method for identifying vulnerable areas based on negative changes
in vegetation growth and to explore the response mechanisms of the phenology to negative changes.
The objectives of this study were (1) to identify areas where the number of negative changes is greater
than 0 and the change direction is negative in vegetation growth from the NDVI time series trajectory
extracted by the BFAST algorithm in Jilin Province, China during 2000–2018; (2) to compare the
stability and sensitivity of different vegetation types; and (3) to explore the response mechanism of
the phenology to negative changes by analyzing the relationship between the phenological indicators
extracted by TIMESAT and the negative changes decomposed by BFAST.

2. Materials and Methods

2.1. Study Area

Jilin Province is located in the northeast of China (121◦38′–131◦19′ E, 40◦50′–46◦19′ N) and covers
an area of approximately 18.74 × 104 km2. The topography in Jilin Province is rugged in the east and
smooth in the west. The terrain is divided into the southeast Changbai Mountains and the northwest
Songliao Plain, taking the Dahei Mountains as the boundary, as shown in the LULC map. The study
area has a temperate continental monsoon climate. From the southeast to the northwest, the climate
transitions from a humid climate to a semi-humid climate and then to a semi-arid climate. The annual
total precipitation forms a southeast–northwest gradient, decreasing from 800 to 400 mm. The annual
evapotranspiration increases from 1200 to 1800 mm, and the mean temperature decreases from 7
to 3 ◦C. The climate in the eastern region is humid and rainy, where the annual precipitation is 650
mm. The western part is dry, where the annual precipitation is below 500 mm. The average wind
speed is 3.4–3.8 m/s. The natural vegetation of the Jilin Province has been intensively disturbed by
drought, leading to a decline in growth. The dominant vegetation types are trees, herbaceous, cropland,
and grass. The northwest area of the region belongs to one of the most sensitive areas to disturbances
(dominated by drought) in China and plays a vital role in ecological security.
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2.2. Indexes Calculating and LULC Map

MOD09A1, a MODIS reflectance data product with a spatial resolution of 500 m composited over
8 days for the period from April 2000 to September 2018, was used in this study. This product was
downloaded from the NASA website (https:/search.earthdata.nasa.gov/search). The April-September
period was selected because it corresponds to the vegetation growth period for the study area. The raw
sinusoidal projection was converted to an Albers equal area projection with an ellipsoid WGS-84
projection by the MODIS Reprojection Tool (MRT). Pixels contaminated by clouds were masked by the
MODIS quality assurance (QA) band. NDVI time-series were calculated by the Google Earth Engine
(GEE) platform for band 1 (Red 620–670 nm) and band 2 (NIR 841–875 nm) of MOD09A1.

The standardized precipitation evapotranspiration index (SPEI) was calculated to characterize
drought conditions. The SPEI is based on precipitation and temperature data and has the advantage of
combining multi-scalar characteristics with the capacity to include the effects of temperature variability
on drought assessment. Monthly rainfall and temperature levels at Qianan station (45◦ N, 124.01◦ E),
downloaded from the National Meteorological Information Center of China (http://data.cma.cn/),
were used to compute the SPEI time series for 2000–2018 with the R package “SPEI”. The intensity of
drought was classified as in [48]: SPEI ≤ −2 (extreme drought), −2 < SPEI ≤ −1.5 (severe drought),
−1.5 < SPEI ≤ −1 (moderate drought), −1 < SPEI ≤ 1 (near normal), 1 < SPEI ≤ 1.5 (moderately wet),
1.5 < SPEI ≤ 2 (severely wet), and 2 ≤ SPEI (extremely wet). Interested readers are referred to [49] for
more details about the SPEI.

The ESA CCI-LC maps were released as the time series of annual global land cover maps at 300 m
from 1992 to 2018 by merging multiple earth observation products (MERIS, SPOT-VGT, and PROBA-V)
based on the GlobCover products of the ESA, with an overall accuracy of about 80% [50]. Global ESA
CCI-LC maps describing the land surface with 22 classes were provided and were defined using the
United Nations Food and Agriculture Organization’s (UN FAO) Land Cover Classification System (LCCS).
The LULC of Jilin Province in 2018 was downloaded (https://cds.climate.copernicus.eu) and projected into
the Albers equal area projection to remain consistent with the NDVI data. Twelve land types are included
in the study area, including cropland, herbaceous land, mosaic natural vegetation, tree cover, mosaic tree
and shrub, mosaic herbaceous cover, shrub land, grassland, sparse vegetation, bare areas, urban areas,
and water bodies. The mosaic herbaceous cover and mosaic tree/shrub (combined) were removed due to
their small area (the sum of both was 0.6%) and the fact that they also belong to mixed land. The urban
areas and water bodies were omitted, as they were not the focus of this research. Bare areas are areas
with no dominant vegetation cover of at least 90%. Thus, bare land was excluded. Sparse vegetation
included tree, shrub, and herbaceous land <15%. Finally, the seven remaining classes are shown in
Figure 1. Cropland and sparse vegetation are distributed across the northwest area of Jilin Province.
Cropland and herbaceous areas are concentrated and contiguous in the central region. The vegetation
type in the south is dominated by trees, followed by shrubs. We differentiated between the reclassified
land use cover maps in 2000 and 2018 and found that the area of change between the two was less than
5%. This change mainly comes from the conversion of grassland to cropland in Baicheng. Therefore,
it was assumed that the land covers remained essentially unchanged during the study period. The LULC
was used to statistically analyze the changes in information for each type of BFAST and as the input data
of TIMESAT to extract the phenological indicators of different vegetation types.

https:/search.earthdata.nasa.gov/search
http://data.cma.cn/
https://cds.climate.copernicus.eu
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Figure 1. (a) Spatial distribution of land cover types in 2015 in Jilin Province (data from ESA CCI-LC);
(b) the spatial distribution of elevation in Jilin Province (DEM from GDEMDEM data with a 30-m
spatial resolution).

2.3. Ecologically Vulnerable Areas and Phenological Responses Methods

Identifying vulnerable areas and exploring the relationship between negative changes and
phenology were conducted in two steps. In the first step, areas with frequent and large magnitudes of
negative changes in vegetation growth were screened by the number of changes and the magnitude of
changes extracted using BFAST from the NDVI time series. Ecological vulnerability was deduced from
the number of negative changes. In the second step, changes in phenological indicators obtained from
the TIMESAT and NDVI trends decomposed by BFAST were compared by the year of negative change
to explore the response of the phenology to negative changes. The flowchart is shown in Figure 2.

2.3.1. Identifying Ecologically Vulnerable Areas

The abrupt changes in vegetation growth were obtained by BFAST based on the NDVI time series
during 2000–2018. Breakpoints detected by BFAST indicate a sudden change of the NDVI, while the
trend of the NDVI time series is different on both sides of the breakpoint. The number of changes
represents the number of breakpoints in the NDVI trend decomposed by BFAST. The magnitude of
change is the difference between the NDVI values before and after the breakpoint, while the time
of change refers to the year of the change. The frequency of negative changes refers to the pixels
whose numbers of breakpoints are greater than or equal to 1. Great negative changes mean that the
magnitude of change is less than −0.05. Then, pixels with frequent and great negative changes were
superimposed to identify ecologically vulnerable areas, while the vulnerability level was determined
by the number of negative changes in ecologically vulnerable areas. The statistics of the BFAST results
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for different vegetation types according to the ESA CCI-LC and BFAST results were used to explore the
vulnerability of different vegetation types.Remote Sens. 2020, 12, x FOR PEER REVIEW 6 of 22 

 

Identifying Ecologically Vulnerable Areas Phenology Response  to Negative Changes

MOD09A1 NDVI Time Series  

Land Cover 
(ESA CCI-

LC)Number of 
Change 

 Magnitude of 
Change

Frequent Negative 
Change

Great Negative 
Change

Ecologically
Vulnerable areas

Vulnerability
Level

Phenlogical 
Indicators

Sensitive 
Phenology Index

Phenology Response  to 
Negative Changes

Threshold 

Delimitation- grading

TIMESAT Program

Change Analysis at the year 
of negative change

NDVI 
trend

Correlation Analysis

BFAST Algorithm 

Negative 
Changes

Negative Change Drought 
events

Vegetation growth after 
disturbance 

 
Figure 2. Flowchart of the identification of ecologically vulnerable areas and exploration of the 
phenological response mechanism for disturbances using Breaks for Additive Season and Trend 
(BFAST) and TIMESAT from the remote sensing (RS) time series. 

2.3.1. Identifying Ecologically Vulnerable Areas 

The abrupt changes in vegetation growth were obtained by BFAST based on the NDVI time 
series during 2000–2018. Breakpoints detected by BFAST indicate a sudden change of the NDVI, 
while the trend of the NDVI time series is different on both sides of the breakpoint. The number of 
changes represents the number of breakpoints in the NDVI trend decomposed by BFAST. The 
magnitude of change is the difference between the NDVI values before and after the breakpoint, 
while the time of change refers to the year of the change. The frequency of negative changes refers to 
the pixels whose numbers of breakpoints are greater than or equal to 1. Great negative changes mean 
that the magnitude of change is less than −0.05. Then, pixels with frequent and great negative changes 
were superimposed to identify ecologically vulnerable areas, while the vulnerability level was 
determined by the number of negative changes in ecologically vulnerable areas. The statistics of the 
BFAST results for different vegetation types according to the ESA CCI-LC and BFAST results were 
used to explore the vulnerability of different vegetation types.  

BFAST is an iterative algorithm used to detect changes by decomposing time-series NDVI into 
three components: the trend, seasonality, and remainder components. The decomposition model is 
as follows: 

푌푡 = 푇푡 + 푆푡 + 푒푡 (푡 = 1, … , 푝), (1) 

where 푌푡 is the NDVI at time t; and Tt, St, and et, respectively, represent the trend, seasonality, and 
remainder components. p represents the number of observations, which is 380 in this paper. Tt is 
fitted by piecewise linear models with specific slopes βi and intercepts αi on different segments, as in 
formula (2): 

푇푡 = 훼푖 + 훽푖푡 (휏푖−1 < 푡 ≤ 휏푖 , i =  1, . . . , m), (2) 

where m represents the number of breakpoints in the trend component, which is the number of 
changes suffered by the area. 휏푖  is the time at the breakpoint i, and St is fitted as the piecewise 
harmonic on different n + 1 segments as shown in model (3): 

푆푡 = ∑ 훾푗,푘sin (2휋푘푡
푓

) + 휃푗,푘cos (2휋푘푡
푓

)퐾
퐾=1  (휏푗−1 < 푡 ≤ 휏푗 , 푗 =  1, . . . , 푛), (3) 

Figure 2. Flowchart of the identification of ecologically vulnerable areas and exploration of the
phenological response mechanism for disturbances using Breaks for Additive Season and Trend
(BFAST) and TIMESAT from the remote sensing (RS) time series.

BFAST is an iterative algorithm used to detect changes by decomposing time-series NDVI into
three components: the trend, seasonality, and remainder components. The decomposition model is
as follows:

Yt = Tt + St + et (t = 1, . . . , p), (1)

where Yt is the NDVI at time t; and Tt, St, and et, respectively, represent the trend, seasonality,
and remainder components. p represents the number of observations, which is 380 in this paper. Tt is
fitted by piecewise linear models with specific slopes βi and intercepts αi on different segments, as in
formula (2):

Tt = αi + βit (τi−1 < t ≤ τi , i = 1, . . . , m), (2)

where m represents the number of breakpoints in the trend component, which is the number of changes
suffered by the area. τi is the time at the breakpoint i, and St is fitted as the piecewise harmonic on
different n + 1 segments as shown in model (3):

St =
∑K

K=1

[
γ j,k sin

(
2πkt

f

)
+ θ j,k cos

(
2πkt

f

)]
(τ j−1 < t ≤ τ j , j = 1, . . . , n), (3)

where n is the number of breakpoints in the seasonal component, τ j is the time at the breakpoint j,
and k is the order of the harmonic function, which was set as 3 to more accurately detect complex
changes, such as double or even triple-vegetation patterns, within a year. As a result, not only simple
seasonal patterns, such as a yearly growth cycle, but also complex growth patterns could be accurately
detected. The frequency f was set as 20 for annual observations within a year of the time-series
NDVI data. The iteration process was initialized by estimating the seasonal component St with the
STL algorithm.

First, the NDVI time series data were decomposed into their seasonal, trend, and remainder
components with the seasonal–trend decomposition procedure based on Loess (STL). Then, an ordinary



Remote Sens. 2020, 12, 3371 7 of 21

least squares moving sum (OLS-MOSUM) test was used to determine if any breakpoints were present
in the time series. If the OLS-MOSUM test indicated a significant change (p < 0.05), then the numbers
and locations of the breakpoints were estimated separately for the seasonal and trend components
using OLS fitting. A third-order harmonic model was automatically fitted by BFAST. The result was a
set of piecewise season-trend models that minimizes the errors of the whole time series. The difference
between the intercept and slope terms of consecutive models was used to calculate the magnitude of
change between the breakpoints. The number of changes is the count of the breakpoints. The time of
the change is the time corresponding to the breakpoint location.

The BFAST results are shown in Figure 3, which provides an example of the original data (Yt)
and the seasonal (St), trend (Tt), and remainder (et) components of the NDVI time series for a pixel
of grassland (Lat. 46◦39′ N, Lon. 123◦13′ E) from 2000 to 2018 that was decomposed by the BFAST
algorithm. The dashed lines in Tt represent the negative changes in the NDVI trend components.
One breakpoint in the NDVI trend was detected by the OSL-MOSUM algorithm. The trend was fitted
by y = 0.012x + 0.3369 and y = 0.021x − 1.1761. The NDVI change between the two equations at
breakpoint was −0.154. Thus, there was a breakpoint that occurred in 2008, which is, therefore, the year
of change. The magnitude of change was −0.154. At the breakpoint, the multi-year trend of NDVI
changes and the NDVI values experienced a sudden change, which means that the value of NDVI did
not follow the change trend before the breakpoint and manifest as a sudden drop or rise. The number
of changes was 1.
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Figure 3. BFAST detected that one breakpoint and a negative magnitude occurred in 2008 in the
time-series normalized difference vegetation index (NDVI) during 2000–2018.

2.3.2. BFAST Result Verification

The negative abrupt changes in the NDVI trend detected by BFAST were used to represent the
growth change of the vegetation after being disturbed. In this paper, the two drought events detected
by SPEI in 2007 and 2010 are compared with the breakpoints in the NDVI trend obtained from BFAST.
The drought conditions can be characterized by SPEI, which includes the drought events, the trend
of drought, and the relative intensity of the drought in two events. These drought conditions were
compared with the breakpoints, the time of occurrence, the trend, and the magnitude of the change in
the NDVI trend. The negative changes in vegetation growth can be used to indicate the disturbed
changes in vegetation growth.

According to official records, external disturbances in the northwest region of Jilin Province were
dominated by drought during these years, particularly in 2007 and 2010. Therefore, the Qian’an
meteorological station in the northwest was selected to monitor the drought. The precipitation at the
site in 2007 and 2010 was 308.3 and 244.4 mm, respectively, which is lower than the average annual
precipitation of 414.37 mm. The SPEI data over 12 months were computed with the R package “SPEI”,
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and the SPEI values for April to September were selected during 2000–2018. The NDVI trend detected
by BFAST for the pixels near the station was extracted for a comparison with SPEI. The consistency
of the magnitude and time of the negative changes detected by BFAST and the degree and time of
the drought detected by SPEI were compared to verify the relationship between negative vegetation
changes and disturbances. The analysis of this comparison is provided in Section 3.2.

2.3.3. Exploring the Phenological Response Mechanism to Negative Changes

To explore the phenological responses to the negative changes of vegetation, three steps were
implemented. First, based on the year of change extracted by BFAST, the year in which each type
of vegetation had the most negative changes was determined, and the average NDVI time series of
the negative change pixels in that year was calculated. At the same time, the 2000–2018 phenological
indicators of these pixels were extracted. The average value was then calculated to obtain the
phenological indicators of each type of vegetation from 2000 to 2018. Then, the overall time series
similarity of the NDVI trends and the phenological indicators were compared to screen the phenological
indicators related to growth. Finally, the changes in phenological indicators and NDVI trends during
the year of change were compared to explore the responses of the phenology to negative changes.

TIMESAT was developed to extract phenological indicators based on time-series NDVI data
derived from satellite RS images [51]. This process can be summarized in three steps.

(1) The number of seasons and their approximate years were identified. For all vegetation types in
the study area, one year was taken as a growing season. Every interval of 20 data points was
considered a growth cycle, and 19 growth phases were counted between 2000 and 2018.

(2) The best fitting model was selected according to the characteristics of the time-series trajectory.
In TIMESAT, there are three fitting models: double logistic, asymmetric Gaussian, and SG filtering.
The SG method was chosen, with which subtle and rapid changes in the simulation of local
variations can be captured [52]. The expression for SG filtering is as follows:

Y∗j =

∑m
i=m CiY j

N
, (4)

where Y∗j is the reconstructed time-series NDVI data, Ci is the filtering coefficient, Yj is the original
NDVI data, N is the number of data points in the sliding window (N = 2m + 1), and 2m + 1
is the filtering window width. Two parameters are required in SG filtering: the filter window
width and the order of the polynomial for the smooth fitting process. The filter coefficients of the
SG filter were determined by an unweighted linear least-squares regression and a second-order
polynomial model. In this paper, the size of the filter window was set to 5, and the order of the
fitting polynomial was taken as 2.

(3) The time series trajectory characteristics of NDVI were extracted by BFAST and TIMESAT.
The difference is that BFAST detects the inter-annual variation characteristics of the long-term
time series, while TIMESAT detects the local variation characteristics of the NDVI time series
(that is, the seasonal changes). The phenological indicators extracted by TIMESAT were divided
into 3 categories according to their mean growth phase: start of season (SOS) and end of season
(EOS). The maximum during the growth phase is taken as the peak and amplitude, and the
integral during the growth phase includes the large integral (the L. integral) and small integral
(the S. integral). The S. integral is equal to the L. integral minus the integral of the base line from
SOS to EOS. In this study, the SOS and EOS were determined using a fixed threshold approach,
with which the smoothed 8-day NDVI reached 25% of the mean amplitude for each growth phase
for each pixel. The amplitude was calculated as the peak minus the minimum of the smoothed
NDVI values. The minimum of the smoothed NDVI values was set to zero if the smoothed
NDVI values were negative. The length of season (LOS) was calculated as the EOS minus SOS.
The position of each indicator in the time-series trajectory is shown in Figure 4.
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length (length).

3. Results

3.1. Identification of Ecologically Vulnerable Areas by BFAST

The number and magnitude of abrupt changes in vegetation indicate the instability and sensitivity
of the ecosystem, respectively. The number, magnitude, and year of change were detected in the NDVI
trend component decomposed using BFAST for each pixel. The spatial distribution and area percentage
of the number of changes are shown in Figure 5a,g, respectively. The areas that experienced changes
were mainly concentrated in the northwestern part of Jilin Province and accounted for 23.85% of the
total area. This indicates that the ecosystem in the northwest is unstable against environmental changes.
Using numbers from 1 to 5, as the area percentage decreased, the number increased. The areas with a
score of 1 for negative changes were distributed in Siping, Changchun, and Songyuan, accounting
for 55.56% of the changed area. Thus, the ecosystems in these areas are relatively stable compared to
the areas with numbers greater than 1. The areas with numbers greater than 1 were mainly located
in Baicheng city and Songyuan city, as shown in Figure 5d. This suggests that the system stability
levels of Baicheng and Songyuan are the worst in the whole region. The larger the magnitude of
change, the more sensitive the ecosystem is to external changes. The magnitude of change is shown
in Figure 5b,h. The magnitude varied from −2 to 2, within which a magnitude of variation between
−0.4 and 0.4 accounted for 86% of the area of change. The percentage of magnitude close to 0 was the
highest, which indicates that the ecosystems in most areas are not sensitive to environmental changes.
The areas that experienced a negative change, located in Baicheng and Songyuan, occupied 52% of
the area of change, which is greater than the areas of positive change, which were located in Siping
and Tonghua. This suggests that the areas with the worst anti-disturbance ability in the ecosystem
produce a decline in vegetation growth. Figure 5c,i reveal the years of change for the whole region.
The whole change span ranged from 2002 to 2016 and was divided into three segments of 2002 to 2004,
2004 to 2008, and 2008 to 2016, according to the characteristics of changes, with increased changes at
the beginning followed by decreased changes. The peaks were in 2003, 2005, and 2011. The highest
percentage appeared in 2011 (15.4%) in Baicheng and Songyuan. The area of change in 2002 was
the lowest (mainly located in Baicheng). The above results show that the ecologically unstable and
sensitive areas are located in Baicheng and Songyuan, mostly with one change each, and an abrupt
change occurred around 2005 and 2011.
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Figure 5. Abrupt change of the NDVI time series in Jilin Province during 2000–2018: (a) spatial
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Baicheng and Songyuan, respectively; (g) area percentage of the number of changes; (h) area percentage
of the magnitude of change; (i) area percentage of the year of change.

The areas with abrupt declines (negative changes) in vegetation growth after disturbances during
the monitoring period were considered to be ecologically vulnerable areas due to their sensitivity
and instability. Since the negative changes are mainly concentrated from −0.05 to −0.4, areas with
a magnitude of change less than −0.05 and a number of changes greater than 0 were considered
ecologically vulnerable areas (Figure 6). Vulnerability was divided into five categories according to the
number of changes: low vulnerability, slight vulnerability, moderate vulnerability, high vulnerability,
and serious vulnerability, as the number of changes increased, as shown in Table 1.

Table 1. Vulnerability level classification standard.

Number of Negative Changes Vulnerability

1 Low Vulnerability
2 Slight Vulnerability

3 Moderate
Vulnerability

4 High Vulnerability
5 Serious Vulnerability
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Figure 6 shows that ecologically vulnerable areas accounted for 13.52% of the total region, mainly
concentrated in the northwest (Baicheng, Songyuan) of Jilin Province, where disturbances are caused by
drought. The vulnerability of the study area was at a low level, which indicated that resistance against
drought disasters was common. Areas of low vulnerability appeared in the southwest of Baicheng
and the east of Songyuan, accounting for 46.9% of the vulnerable area; these areas were dominated
by cropland and herbaceous. In areas with less precipitation but a large effective irrigation area to
reduce the impact of regional drought, wind erosion weakened due to the cropland’s shelterbelts.
Areas of slight vulnerability accounted for 37.91% of the vulnerable area and were found in the
northwest of Baicheng and to the north of Songyuan, where there was sparse vegetation mixed with
cropland and a mosaic of natural vegetation. The precipitation in the region was relatively low, and the
irrigation conditions were poor. The landscape was fragmented, the surface structure was simple,
and the wind erosion and irrigation conditions were slightly worse in this region than those in areas
of low vulnerability. Areas of moderate, high, and serious vulnerability accounted for 15.19% of
the vulnerable area and were located in the northeast of Songyuan, which is dominated by sparse
vegetation. The wind erosion and soil salinization in this area were the most serious in the entire region.
These areas usually suffered from hazardous drought and the most serious vegetation degradation.
The poor ecological environment in this area led to vegetation degradation and the poorest ability to
cope with drought.

3.2. BFAST Result Verification

A comparison between the NDVI trend and SPEI at the sites is illustrated in Figure 7. In the 5 months
of the study (May to September), the NDVI trends corresponded well to the SPEI in terms of their trend
and slope. Before April 2007, the drought at the site became serious, leading to a gradual decline in
the NDVI trend. The relatively low intensity of the drought (severe drought) period from April to
September 2007 (SPEI < −1.5) led to the first drop (abrupt change) of 0.04 in the NDVI trend within a
month. After September 2007, the drought at the site gradually weakened as the SPEI increased, which led
to an upward NDVI trend. The second highest intensity drought (extreme drought) period from May 2009,
to April 2010 (SPEI < −2) led to a dramatic drop in the NDVI trend. Within two years, the average NDVI
value decreased by 0.1. After May 2010, the humidity of the site gradually increased, leading to an upward
trend in the NDVI. The decreasing trends were all significant (p < 0.001). In general, the negative changes
of NDVI detected by BFAST reflected changes in vegetation after being disturbed.
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Figure 7. The 5-month (May–September) standardized precipitation evapotranspiration index (SPEI)
(orange bar) and NDVI trend (line) components decomposed by BFAST at Qianan station. C, D, E, F,
respectively, represent the NDVI trend for 4 pixels near the site extracted by BFAST.
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3.3. Analysis of the Vulnerability of Different Vegetation Types

The vulnerability of different vegetation types against drought was also explored. Figure 8a shows
the number of negative changes that represents the instability of each vegetation type. The tree cover,
which experienced a negative change of 1, accounted for 99% of the change areas during 2000−2018.
Numbers from 1 to 5 were determined for sparse vegetation, while areas with 1 and 2 accounted
for 40% and 34%, respectively. The area percentage with a score greater than 1 for other vegetation
types was less than that of the sparse vegetation. Tree cover was relatively stable and changed little in
response to drought, while sparse vegetation changed frequently and was thus the most unstable in
resisting external drought.
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Figure 8. (a) Area percentage of the number of negative changes in different vegetation types between
2000 and 2018. (b) Interval plot of the negative magnitude for different vegetation types (the blue line
indicates the range of the 95% confidence intervals, and the red dot in the center is the mean value).

The magnitude of change was then compared to determine the sensitivity of different vegetation
types. Figure 8b illustrates the mean and the 95% confidence range of the negative magnitude. For the
negative changes, sparse vegetation (−0.429) had the lowest mean, while tree cover (−0.092) had the
highest mean for the negative magnitude. The 95% confidence range of sparse vegetation was the
highest at 0.623, while that of the tree cover was the lowest at 0.175. The results indicated that the
order of sensitivity of negative changes from small to large was tree cover, cropland, herbaceous land,
shrubland, mosaic natural vegetation, grassland, and sparse vegetation. In general, the strongest and
the weakest abilities to resist external drought belonged to tree cover and sparse vegetation, respectively.

Figure 9 shows the percentage of the negative change area for each type of vegetation compared
to the total negative change area during 2000−2018. The years with negative changes ranged from
2002 to 2016. The area proportion from large to small was herbaceous land, cropland, mosaic natural
vegetation, grassland, shrubland, sparse vegetation, and tree cover. The year with the largest negative
change area ranged from 2010 to 2014, which indicates that the northwest area of Jilin suffered more
drought during 2010 to 2014 than during the other years.
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3.4. Vegetation Phenological Responses to Negative Changes

Finding the pattern underlying the most negative changes for each vegetation type was a
prerequisite for exploring the response mechanism of phenology to negative changes. First, the year
with the largest proportion was selected according to Figure 9, as shown in Table 2.

Table 2. Statistics of the negative changes with the largest areas for each vegetation type.

Vegetation Types Number of Changes Year of Change

Cropland 1 2011
Herbaceous 1 2012

Mosaic Natural
Vegetation 1 2012

Tree Cover 1 2009
Shrubland 1 2014
Grassland 1 2010

Sparse Vegetation 1 2011

Then, the correlation between the NDVI trend representing the growth detected by BFAST and
the phenological indicators obtained by TIMESAT were used to screen the phenological indicators
related to growth. As shown in Table 3, for the growth phase, the correlation coefficient of SOS was
higher than that of EOS in the cropland, mosaic natural vegetation, and grassland. The EOS correlation
was higher than that of SOS and length for the herbaceous land, tree cover, shrubland, and sparse
vegetation. For all types, the correlation of the peak was higher than that of the amplitude at its
maximum. The correlation of the L. integral was higher than that of the S. integral in the integral value.
The EOS, SOS, peak, and L. integral were selected as the sensitivity indicators related to growth to
explore the phenological responses to negative changes. The peak and L. integral were the indicators
for vegetation biomass [53], while the EOS and SOS were indicators of the growth phase.

The trajectory of the NDVI trend component decomposed by BFAST and the sensitive phenological
indicators are shown in Figure 10. For the overall change, the NDVI trend was more similar to the L.
integral than the peaks for cropland, herbaceous land, shrubland, mosaic natural vegetation, tree cover,
and sparse vegetation for the vegetation biomass. For the growth phase, the EOS was consistent with
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the NDVI trend for all types. The results also demonstrated that the L. integral and EOS were more
consistent with growth in the vegetation biomass and the growth phase.

Table 3. The correlation coefficients of phenological indicators and the NDVI trend for vegetation types.

Vegetation Types
Growth Phase Maximum Integral

SOS EOS Amplitude Peak L. integral S. integral

Cropland −0.73 0.16 0.61 0.83 0.89 0.74
Herbaceous −0.43 0.54 −0.15 0.18 0.75 0.68

Mosaic Natural
Vegetation 0.68 0.65 0.76 0.86 0.95 0.83

Tree Cover −0.27 0.46 0.42 0.78 0.79 0.57
Shrubland −0.5 0.58 0.71 0.74 0.88 0.74
Grassland −0.28 −0.27 0.69 0.92 0.81 0.70

Sparse Vegetation 0.29 0.71 0.15 0.65 0.67 0.46

For local changes, the NDVI trend and the sensitive phenological indicators were compared by
the years of negative changes. In terms of vegetation biomass, the L. integral decreased due to negative
changes of the NDVI trend for cropland, herbaceous land, mosaic natural vegetation, tree cover,
shrubland, and grassland, while the L. integral of sparse vegetation increased. Thus, the negative
changes had a positive effect on the L. integral for dense vegetation types (Figure 10a–f). For sparse
vegetation, the negative change negatively impacted the L. integral. Further, the length of the growth
phase was shortened under negative changes for cropland, herbaceous land, tree cover, mosaic natural
vegetation, shrubland, and grassland. However, the length for sparse vegetation was extended. For the
dense vegetation types, a positive impact on the length of the growth phase was caused by the negative
change. For the sparse vegetation, the negative change negatively affected the length.

For the peak changes, both EOS and SOS decreased, while the growth phase advanced. The time
of the peak was earlier than that of the previous year, whereas the peak declined for mosaic natural
vegetation, shrubland, grassland, and sparse vegetation, as shown in Figure 10c,e–g. For cropland
and herbaceous land, EOS and SOS both increased, and the growth phase was delayed. The time of
the peak was late, and an increase in the peak is shown in Figure 10a,b. When the decrease in EOS
was greater than the increase in SOS, the growth phase had advanced. When the year of the peak was
earlier, the peak declined for tree cover, as shown in Figure 10d. In summary, for all vegetation types,
the variation of the peak depended on the peak time. Specifically, the peak time was earlier when the
peak declined. Otherwise, the time of the peak was delayed as the peak rose.
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Figure 10. The trajectory changes of the trend component and the sensitive phenological indicators
extracted by TIMESAT. (a) trajectory changes of cropland, (b) trajectory changes of herbaceous,
(c) trajectory changes of mosaic natural vegetation, (d) trajectory changes of tree cover, (e) trajectory
changes of shrubland, (f) trajectory changes of grassland, and (g) trajectory changes of sparse vegetation.

4. Discussion

4.1. Spatial Distribution of the Ecologically Vulnerable Area

The results in Section 3.1 show that the ecologically vulnerable areas were located in the northwest
area of Jilin Province. Compared with the southeastern part, which is covered by trees, the northwestern
part was mainly covered by cropland and sparse vegetation, where more frequent and severe drought
occurred. This result is consistent with the fact that the stability of the trees was greater than the
stability of sparse vegetation and cropland, as shown in Section 3.3. Moreover, the results of this
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paper are consistent with previous research [54]. Consequently, the method based on abrupt change
detection from RS time-series data is able to identify ecologically vulnerable areas. Thus, the regional
disaster prevention capabilities were identified effectively by BFAST. The northwest area contained
arid and semi-arid areas and the vulnerable ecological zone of cropland and grass in northeastern
China. This study area belongs to the junction between a temperate continental climate and a
temperate monsoon climate, which is the reason for the complex community structure, high degree
of environmental heterogeneity due to poor anti-interference abilities, and climatic sensitivity of the
ecological system, as well as the space–time fluctuations with a high frequency and weak edge effect
in the area. In the agricultural belt of the northwest, as a result of long-term continuous cropping
and the excessive application of pesticides and fertilizers, soil fertility has declined. The degradation
and erosion of black soil have become gradually more serious under the impact of non-point-source
pollution and wind erosion. The surface temperature and biological distribution structure have also
been changed by human interference. However, soil salinization and grassland degradation have
reduced drought resistance in the northern region, which is located in the agricultural and pastoral
ecotone zone. At the same time, blind reclamation, wetland environment deterioration, function
decline, and the extent of vulnerable ecosystems were much worse.

4.2. The Response of Vegetation Phenology to Negative Changes

As shown in Figure 10, parts of the NDVI trends were not similar to the phenology indicators.
For example, the changes of the phenological indicators in the cropland from 2005 to 2006 were
more significant than those from 2011 to 2012. The environment changed from humid to drought
in 2005–2006, as shown in Figure 7. Although the degree of drought did not reach an extreme level,
the water needed for vegetation growth changed from a sufficient deficit, and vegetation growth began
to be stressed. There were also some fluctuations in the phenological indicators. Compared to the
changes in 2007–2010, the changes in the phenological trajectory during 2005–2006 were relatively
short-lived and had less of an impact on the overall trend. The phenological changes caused by the
severe drought in 2007–2010 had a greater impact on the trend changes in the following years and was
a turning point that affected the changes in phenological trends.

In this paper, the relative amount of vegetation biomass and length of the growing period
were decreased by negative changes. However, the peak and SOS were less affected by negative
changes. This indicates that the impact of negative change on vegetation phenology has long-term
effects. When vegetation growth suddenly drops, the balanced state of the interactive process between
vegetation and the environment is broken. Therefore, vegetation constantly adjusts itself to adapt to
the changing environment. For example, vegetation closes its stomata to reduce water loss and fit the
drought status. Vegetation needs a period of recovery before reaching its next stable period. Therefore,
negative changes had a more significant effect on the cumulative values than the instantaneous values.
Additionally, when a negative change occurred after the time of peak, the effect of the negative change
was also independent of the peak. The peak declined as the peak time advanced, while the peak
rose as the peak time was delayed. Advancement of the peak time indicated that the vegetation was
not located in the correct ecological environment and was much susceptible to the stress of water
and nutrients. Thus, the peak declined. Otherwise, when the peak time was delayed, there was
enough available soil water, heat, and fertilizer to improve photosynthesis efficiency. Consequently,
the peak rose. In general, the results of this study show that when the changes in phenology are known,
changes in the surrounding environment can be inferred. When the length of the growing period
and the relative amount of vegetation biomass decreased significantly, vegetation growth was under
environmental stress, indicating that the environment could gradually deteriorate.

4.3. Limitations and Future Work

In this paper, the negative changes of NDVI were used to identify the ecologically vulnerable areas
under drought, although this method is also applicable to other disturbances that cause declines in
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vegetation growth, such as insect infestations and flood disasters, because the negative changes in the
NDVI reflect the sensitivity and stability of vegetation being disturbed. However, specific disturbances
need to be compared with the results of BFAST to verify that the vegetation change is, in fact, caused by
the disturbance.

Three major limitations of this study should be discussed further. First, vulnerable areas were
identified based only on negative changes in vegetation growth. This limitation led to overlooking
areas of low vegetation cover. So, areas with less than 10% vegetation cover were excluded in the
vulnerable area analysis. This was a necessary trade-off because it is difficult to assess ecological
vulnerability in areas of low vegetation cover. This, however, should not be a great concern as only a
small proportion of the study area (1.54%) was characterized by low vegetation cover. Second, in this
paper, the relationship of change between phenology and negative changes was revealed. However,
the sensitivity between negative changes and phenological changes could be further explored, such as
the range of negative changes that will not trigger changes in phenology and the threshold of negative
changes that will affect changes in phenology. Third, when comparing the negative changes for
different vegetation types, this paper assumed that the soil profile and depth were homogeneous.
The influences of different soil depths and slopes on the drought resistance of vegetation will be
considered in future work. Further investigations on this issue should thus be carried out in the future.

5. Conclusions

On the basis of the changes in vegetation growth in Jilin Province, China, during 2000–2018,
a method to identify ecologically vulnerable areas was developed based on detecting abrupt changes
in NDVI time series. Then, the response of phenology to negative changes was explored by analyzing
the phenological indictors and the NDVI trend. The following conclusions were reached:

(1) In this paper, an ecologically fragile zone identification framework based on the breakpoint
detection of the BFAST NDVI time series was proposed. By identifying ecologically vulnerable
areas to detect the number of negative changes and the magnitude of negative changes in
vegetation growth over many years, we fully considered the long-term stability of vegetation
growth and sensitivity to specific disturbances. This method can accurately reflect the long-term
and short-term changes in vegetation growth and has better applicability in semi-arid regions.

(2) During the past 19 years, northwest Jilin Province located in the semi-arid area was identified
as ecologically vulnerable, primarily with low and slight vulnerability, where rainfall is scarce.
Moreover, artificial irrigation cannot meet the needs of vegetation growth. Moisture is the main
limiting factor leading to the vulnerability of the region’s ecological environment.

(3) Compared to other vegetation types with dense coverage, 60% of the area had a number of
negative changes greater than 1, a much larger area than that of other vegetation types (less than
50%). The magnitude of change in sparse vegetation was −0.429, which is the lowest among the
vegetation types. This shows that sparse vegetation is more susceptible to drought. Therefore,
increasing the vegetation coverage or changing to more stable vegetation types can reduce the
fragility in ecologically vulnerable areas.

(4) For vegetation types with dense coverage, the impact of negative changes on vegetation phenology
shows long-term effects. The negative changes in the NDVI trends of various types of vegetation
led to a fluctuation range of the integral value from −0.06 to −6.9 and a phenological period length
from −0.3 to −5.4; the peak value varied from −0.11 to 0.12. Negative change had a significant
effect on the cumulative values of the growth phase, such as the relative amount of vegetation
biomass and the length of the growing period, but less of an effect on the instantaneous value of
the peak. Detecting changes in the growth phase or the integral value could be used to predict
whether the vegetation growth experiences a negative change.
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