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Abstract: Resolving surf-zone bathymetry from high-resolution imagery typically involves measuring
wave speeds and performing a physics-based inversion process using linear wave theory, or data
assimilation techniques which combine multiple remotely sensed parameters with numerical models.
In this work, we explored what types of coastal imagery can be best utilized in a 2-dimensional fully
convolutional neural network to directly estimate nearshore bathymetry from optical expressions of
wave kinematics. Specifically, we explored utilizing time-averaged images (timex) of the surf-zone,
which can be used as a proxy for wave dissipation, as well as including a single-frame image input,
which has visible patterns of wave refraction and instantaneous expressions of wave breaking. Our results
show both types of imagery can be used to estimate nearshore bathymetry. However, the single-frame
imagery provides more complete information across the domain, decreasing the error over the test set by
approximately 10% relative to using timex imagery alone. A network incorporating both inputs had the
best performance, with an overall root-mean-squared-error of 0.39 m. Activation maps demonstrate the
additional information provided by the single-frame imagery in non-breaking wave areas which aid in
prediction. Uncertainty in model predictions is explored through three techniques (Monte Carlo (MC)
dropout, infer-transformation, and infer-noise) to provide additional actionable information about the
spatial reliability of each bathymetric prediction.

Keywords: machine learning; bathymetry; surf-zone; uncertainty; convolutional; synthetic data

1. Introduction

Nearshore and surf-zone water depths are an important input for a wide variety of tasks. Whether it
is locating rip currents to help identify swimming hazards, determining the safe navigation of vessels
through shallow waters, or estimating nearshore wave heights and flooding hazards, bathymetry is one
of the most important parameters for understanding the littoral zone. However, nearshore bathymetry
on sandy, open-coasts is both spatially variable and constantly changing in response to environmental
forces. Typically, vessel-based survey techniques are used to measure the bathymetry in the nearshore
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area. Unfortunately, these surveys can be expensive and time-consuming, often requiring specialized
equipment [1–3], and are limited to smaller wave conditions, even though most change occurs during
larger wave conditions[4–8].

The use of remote sensing technology from satellites, manned or unmanned aircraft, or towers offers
opportunities to estimate bathymetry in areas that would normally be difficult or costly to assess at a
high-enough frequency to resolve rapidly changing bathymetry. These remote platforms increase data
availability (with reduced cost and increased temporal spatial availability) compared to in-situ observation
methods, allowing analysis of coastal morphodynamics at previously unprecedented scales [9–17]. Remote
bathymetric measurements can be made using a variety of techniques and approaches including lidar
and hyper-spectral imaging, video imaging, and radar. Lidar and hyper-spectral imaging techniques
exploit the way light travels through the water column at a location to derive water depth and work well
in non-breaking, low turbidity coastal environments [9,18–23].

In the surf-zone, where wave breaking and turbidity present challenges to lidar and hyperspectral
approaches, high-definition (HD) camera and satellite images offer an alternative solution to estimating
bathymetry, by exploiting the relationship between wave kinematics in shallow water and water depth.
Nearshore waves are visible in optical imagery when the slope of the sea-surface modulates the amount of
reflected light towards the optical sensor. Properties of waves in shallow water, like speed and dissipation,
can be extracted from sequences of geo-rectified video imagery and combined with our physics-based
understanding of shallow-water wave transformation to estimate bathymetry [3,14,15,24–26].

1.1. Physics-Based Bathymetric Inversion Methods

Early approaches to quantifying nearshore bathymetry began in World War 2 using imagery from
manned aircraft combined with crude hand-measurements of nearshore wavelengths [27]. Within the
research community, initial efforts utilized tower-based imagery, and focused on relating observations
of wave breaking to sandbar morphology [28]. This approach exploited the relationship between wave
dissipation and water depth in shallow water. Specifically, a spatial time-exposure image of waves as they
approach the shoreline was generated, termed a ”Timex” image, and used to identify regions of persistent
wave breaking [28]. Persistent regions of wave breaking appear as white in a timex image and can be
related to the position of the surf-zone sandbars [28–32]. Exposure times required to generate timex images
that identify persistent wave breaking can range from a minimum of 10 min to full day exposures [33,34].

Bathymetric-inversion approaches have also focused on measuring wave speeds from temporal
sequences of images and applying linear wave theory to solve for water depth [15,24–26,35,36]. Additional
approaches combine physics-based inversion techniques from measured data with high-fidelity models of
nearshore hydrodynamics and have shown the potential to provide high accuracy estimates under a wider
set of hydrodynamic regimes than direct measurements of the surf-zone [37–41]. However, this approach
introduces added complexity and computational expense, which are potential barriers to utilization of
these methods for real-time application. Different types of observations have been assimilated, including:
wave speed, wave height, currents [39,40], and estimates of wave energy dissipation from timex images
[42,43].

Errors in physics-based inversions can occur due to incorrect extraction of wave properties from
the imagery and/or due to the use of physics relationships which do not account for the non-linearities
in wave kinematics that can dominate surf-zone hydrodynamics as the waves interact with the bottom
and break [35,44]. In addition, input data is sometimes simplified, (such as dimension reduction to 1D
transects) [24,41,45–48] and to reduce computational complexity, the physical models themselves are
often simplified using closure methods [49–52]. Some of these physics-based inversion approaches
include spatially variable uncertainty estimates. However, these estimates rarely bound the true
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error even with magnification factors and do not account for systematic biases [26]. In addition,
typical (optimization-based) inverse modeling approaches report linearized uncertainty (i.e., Cramér–Rao
bound), which may underestimate the uncertainty in the bathymetry estimate (e.g., [53,54]).

1.2. Machine Learning for Nearshore Bathymetry Inversion

Conversely, machine learning (ML) approaches front-load their computational complexity during
training, allowing for the full image information to be used during inference while still retaining quick
prediction times (generally less than 1 second). Deep convolutional neural networks (DCNNs) have been
used in depth regression estimates (i.e., identifying the distance from the camera to objects in imagery
and video feed), with common applications in robotics, outperforming other traditional algorithms in
this area [55–57]. Neural networks offer global, adaptive, and high accuracy approximations of complex
functions, including non-stationary functions with sharp changes [58]. These type of depth regression
studies have similarities to the problem of estimating water depth from remotely sensed images of the
surf-zone. By utilizing an ML approach, there is no longer a need to simplify input data or physical models
to reduce computational complexity. The lack of linear simplification of physical parameters creates
opportunity for more accurate predictions where linear models tend to fail, such as in the surf-zone.

ML approaches for bathymetric inversion have been utilized within riverine systems [59], but only
recently have image-based approaches been applied to the nearshore environment. Specifically,
image-based ML approaches were utilized to derive wave celerity from time-stack images [60] and
have also been used to extract wave height and period information [61]. For bathymetry inversion,
DCNNs have been used to estimate 1D bathymetric transects from synthetic time-stack imagery, and
showed promise on applications at real world sites [62]. However, the applicability of ML approaches
in image-based bathymetric inversion is limited by a variety of factors in general. Similar to most other
supervised ML applications involving computer vision, the main limitation is the lack of robustly labeled
data sets, e.g., time-varying surface imagery and associated bathymetric survey pairs. Coastal imagery
coincident to highly accurate bathymetric measurements are rare and are generally only available during
small wave conditions due to the safety concerns of collecting vessel-based bathymetric data during
large waves. Because of this, training data sets using real imagery are likely too small, or extremely site
specific. For example, the most recent ARGUS [33] HD imagery data set from Duck, NC, has been running
since 2015, but accurate bathymetric data is only collected monthly. The lack of robustness in both size
and geographic extent (only in one 2000 by 1000 m area) of this data set could lead to over-fitting when
applying ML techniques [63,64].

One potential technique that can address the limitations of available imagery for training a
DCNN is the use of synthetic sea-surface imagery for training data augmentation. This is imagery
that has been developed with physics-based computer models using realistic wave conditions and
bathymetry. The use of synthetic imagery has shown promise in other nearshore applications,
such as quantifying the sensitivity of traditional inversion algorithms and to automate detection of rip
currents [35,62,65–69].

1.3. Machine Learning Uncertainty

ML-based computer vision approaches suffer from “black box” issues that make it difficult
both to ascertain which features the model is using during prediction, as well as to obtain reliable
estimates of uncertainty. Neural network models with uncertainty built-in are referred to as Bayesian
neural networks [70,71] and are typically very computationally expensive since they learn complex
probability distributions. Variational inference techniques have also been used to approximate a Bayesian
posterior [72,73]. Ensemble methods, which train multiple neural network models using the same data
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(with weights randomly initialized), can provide varied outputs that can be used as an approximation of
uncertainty in model predictions [74]. Batch normalization during inference (i.e., prediction after training)
time can also be used to approximate Bayesian inference [75,76]. Additionally, Monte Carlo (MC) dropout,
which is usually used in networks during training time to avoid over-fitting has also been studied as an
approximation of model uncertainty [77–79].

1.4. Objectives

This research builds on previous work in Reference [80,81], which was designed to demonstrate the
feasibility of using an ML algorithm to infer bathymetry and provide a qualitative estimate of uncertainty,
using visually realistic synthetic sea-surface imagery in the surf-zone generated from the GPU computed
and rendered Bousinessq wave model, Celeris [52]. In this work, we explored the use of both single snapshot
images (containing wave refraction and some dissipation information) and timex imagery (containing
dissipation information) from the nadir perspective as inputs to a fully convolutional neural network
(FCNN) to estimate bathymetry and to also provide a quantitative estimation of uncertainty. Model
uncertainty is quantified by perturbations to the input data [82], MC dropout [77–79], and by perturbations
of middle layer activations with Gaussian noise, which has shown to be analogous to dropout [83–85] during
inference to produce an ensemble of predictions to identify uncertainty in the ML model’s predictions.

2. Methods

The methodology for this study follows a simple workflow model (Figure 1).

Workflow

Figure 1. Workflow for the project from collecting parameters for synthetic data generation, to training and
testing the fully convolutional neural network (FCNN).
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2.1. Synthetic Imagery Generation

In this work, realistic-looking synthetic sea-surface imagery was generated using a wave model to
approximate the images commonly collected through typical coastal imagery methods [33,86]. Specifically,
the Celeris wave model [52] was used to generate and record video of model output in the nearshore
area. Celeris is an open source, phase-resolving extended-boussinesq wave model that is computed and
rendered on the GPU allowing for real-time visualization of the simulated sea surface. Celeris generates
and visualizes wave shoaling, refraction, reflection, and breaking, which are the relevant physical processes
that influence the visual expression of wave propagation in the nearshore. Lighting effects to enhance the
photo-realism of the waves use the Fresnel equations to simulate the look of the water surface (e.g., shading
on the wave crest). For this effort, the sun projection was disabled and only ambient lighting from the
shoreward direction was used. The “ocean” skybox was selected, which does not contain any clouds to
alter the reflections from the lighting, and the foam visualization decay parameter was adjusted to more
closely resemble the Argus imagery. While the position of the “camera” or view angle can be varied within
Celeris, we chose to set the camera to have a direct nadir view, removing any projection artifacts that may
occur in real imagery collected from a tower or with a UAS (Unmanned Aircraft System).

The Celeris model domain is 970 m in cross-shore by 1805 m in the along-shore with a computational
resolution of 1 by 1 m. The model is run over a 30-min period, with 10 min being used as model spin-up
time (to reach a semi-steady sea state) followed by 20 min of recording time. Single frame ‘snapshot’ images
can be extracted from the model output, and averaged in time to produced a timex image. An example
snapshot image from the video recording used to generate the timex images is shown for Celeris (Figure 2a)
and from the ARGUS tower camera system [33] in Duck, NC (Figure 2b). While it is unlikely to find an exact
replication of the observed imagery from an individual snapshot image of Celeris (specifically the exact
wave and breaking patterns, since the wave boundary conditions lack phase information), the synthetic
snapshot shows surficial expressions of propagating and breaking waves across the domain that are
similar to geo-rectified snapshot images from the ARGUS camera system at Duck, NC. Similar to prior
work, which showed synthetic timex images generated by this approach were comparable to UAV-derived
coastal imagery [81], timex images generated from Celeris (Figure 2c) are reasonable approximations for
timex images recorded from Argus (Figure 2d). Increases in brightness from wave breaking occur in
similar locations over the sandbar and at the shoreline (Figure 2e). The Celeris imagery is thus a reasonable,
though idealized, approximation of the example real Argus imagery. Notably absent in the synthetic
imagery are sources of noise, such as the lighting variations seen in the real Argus imagery between two
cameras (i.e., Figure 2b,d). In addition, because of the nadir view, the wave fronts do not have the same
lighting characteristics as may be traditionally seen in tower or UAS-based imagery collected from the
shore. Because of these differences between the synthetic and real imagery, the network developed in
this effort will not be immediately applicable to real imagery without the addition of a transfer learning
process or more variable and complex synthetic training data.

To simulate the wave field for an area of interest the model requires two main inputs: the bottom
boundary condition (bathymetry) and the offshore wave boundary condition. Two types of bathymetries
were used for this work. The first was based on 40 years of historical measured data from the U.S.
Army Engineer Research and Development Center’s Field Research Facility (FRF) in Duck, NC, USA [87].
Specifically, a spatio-temporal covariance matrix was generated from the the FRF survey data and then an
Empirical Orthogonal Function (EOF) approach [88] was used to generate samples of a pseudo-random
bathymetry (Figure 3a). We generated 80 of these bathymetries for training, 10 for validation, and 10
for testing. The second type of bathymetries were introduced in order to mitigate the risk of over-fitting
to the Duck, NC site and represent other possible coastal environments. We created 240 completely
synthetic bathymetries with a 160/20/60 training/validation/testing split. The first step in creating
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these bathymetries was to generate a parametric cross-shore slope, for which we used typical beach-face
slopes for sandy Atlantic beaches (0.01–0.1 (m/m)) (Figure 3b). Secondly, a perturbation map was added
with cross-shore variability in the form of sandbars and troughs. Additional along-shore non-uniformity
was added by the introduction of positive/negative cone-like features of varying location and radii
(Figure 3c). The perturbation features added to the parametric slopes were sampled from a uniform
random distribution for their number, location, and magnitude. The resultant bathymetry was then
smoothed to produce a final bathymetric boundary condition (Figure 3e). This process yielded more
complex bathymetries than in previous work [80,81].

Timex and Snapshot Comparison

Figure 2. Comparison between synthetic imagery and HD video capture of the surf-zone. (a) Example
snapshot of a Celeris visualization. (b) Example snapshot of the HD video. (c) Timex generated from the
Celeris visualization. (d) Timex generated from the HD video. (e) Average cross-shore transect of the
timex images in terms of pixel intensity, with the Celeris pixel intensity in grey, and the HD video in black.
Along-shore averaged depth and the mean water level are shown on the right axis.

The offshore wave boundary condition is described using TMA spectra [89,90] generated using bulk
input parameters of significant wave height (Hs), peak wave direction (Dm), and peak wave period(Tp).
A 10-year period (2010–2020) of wave conditions measured at the 8-m water depth pressure sensor
array located in Duck, NC, was analyzed to develop a regional wave climatology. The most commonly
occurring directions, (−17° <= Dm <= 32° relative to shore-normal), and peak periods, (5 s < Tp < 11 s),
were combined with significant wave heights between 0.7 and 2.5 m to generate a range of offshore
wave boundary conditions. These wave spectra, while not all encompassing, contain wave conditions
that would likely occur on U.S. East Coast beaches. Additional bulk parameters (Hs, Dm, Tp) were then
generated by sampling within the bounds of the historically most common occurring wave boundary
conditions described above (0.7 < Hs < 2.5, −17° <= Dm <= 32°, 5 s < Tp < 11 s) using a Latin hypercube
sampling approach [91]. This yielded a total of 45 wave conditions (11 historical aggregate, 34 created).
To generate the training/validation data sets, the wave model was run using every combination of the 340
(100 Duck, NC, based, 240 fully synthetic) bathymetries and 30 of the wave conditions described above.
The remaining 15 wave conditions and 80 bathymetries were used to create the test set.
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Bathymetry Selection

Figure 3. A step through the logic of the bathymetry selection. (a) Along-shore averaged profiles of
the Duck, NC, based bathymetries. (b) Along-shore averaged profiles of the synthetically generated
bathymetries. (c–e) Steps to generate the profiles shown in (b). Specifically: (c) Example parametric slope.
(d) Perturbations that are added to the parametric slope. (e) Composite bathymetry; the red box shows an
example area to be used for training/testing; dashed white contours show 1-m increments with z = 0 shown
as a thick white line). (f) The standard deviations of the depths of the synthetic bathymetries averaged over
the entire training/testing set.
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2.2. Network Architecture

Three separate fully convolutional neural network models (FCNNs) using the same architecture
were trained by using different combinations of the above described image input features (timex only,
snapshot only, timex and snapshot). Wave dissipation features that are present in timex imagery have
shown promise in being able to estimate bathymetry by using a variety of approaches [43,80,81,92,93],
but those methods are limited to situations where video imagery of the surf-zone is available for a specified
duration to create the timex image. To help extend the developed networks’ capability to situations
that cannot afford dwell time, we explored training an FCNN on snapshot imagery only, as well as a
combined version with both snapshot and timex imagery. Timex imagery reflects time-averaged surf-zone
conditions and provides information on wave dissipation close to shore, however it may lack information
in deeper parts of the domain and in the trough. In contrast, snapshot imagery provides details on wave
refraction and wavelength across the domain, adding value in deeper regions, but may lack spatially
expansive dissipation information due to the limitations of being an instant in time. The wavelength
and direction information contained in the shape of the wave crests have previously shown promise in
estimating simple synthetic bathymetries [66]. Adding this type of information to the previously described
timex-only work [80,81] could increase skill in areas where there is little-to-no wave breaking (trough
and seaward of the sandbar) in the timex images alone. This approach would be similar to that of Beach
Wizard, which combined dissipation and celerity information to best estimate bathymetry [43].

Figure 4 shows the chosen network architecture for the FCNN. The network is similar to the U-Net
architecture [94], which which can incorporate information from large scales while preserving fine-scale
details. A U-Net variant was used in our previous work [80,81]. While different versions of the model are
trained and tested utilizing differing sets of input features, the general structure of each version remains
the same. Input features are in the shape of (512, 512, # of channels), where the channel number will differ
by which input features are being used (timex, snapshot, or both). While larger input sizes is desirable,
hardware limitations did not allow for larger input image sizes than 512. These features are input into
the network producing a (512, 512, 1) shaped depth map that corresponds to each pixel of the input
channel. Skip connections, shown by the horizontal arrows labeled ‘Merge’ in Figure 4, are used to bring in
high-level features from the down-sampling layers into the up-sampling layers to aid in the placement of
the depth features. The current architecture has a total of 1,078,915 (1,075,971 trainable) parameters, which
is approximately 4% the size of the 512 × 512 variant of the U-net architecture. Monte Carlo dropout [77,78],
batch normalization [95], and uniform Gaussian noise layers are added in between each convolutional
block in both the down-sampling and up-sampling side of the architecture. The batch normalization layers
only affect activations during training (testing is done with a batch size of 1), while dropout is active
during both training and testing similar to [78]. The uniform Gaussian noise layers shown in the down
and up block defined in Figure 4 is active only during inference and is used to add a random value to the
activations coming out of each convolutional block.
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Network Architecture

Figure 4. A map of the network architecture used in this study. Down-sampling and up-sampling
convolutional blocks are defined independently. Input data travels through a combination of
down-sampling blocks, dropout, and pooling layers. The final down-sampled output is then passed
through a combination of up-sampling blocks, dropout, and merge layers to create a final prediction
of bathymetry.

2.3. FCNN Model Uncertainty

The dropout and Gaussian noise layers act during testing to produce varied outputs from consistent
input, allowing for the same input image to be run through the network multiple times during inference
to create an ensemble of predictions to identify areas of high volatility in the predicted depth map [74,96].
Different values and locations for the dropout layers, as well as different arrangements of Gaussian
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noise, during inference were tried within the network to aid in estimating the uncertainty of the model.
These varied in implementation, such as only having dropout/noise at the beginning, at the middle, and
at the ends of the network and various combinations of the above.

2.4. Training

Training was performed using 3754 images created from the combination of 260 (80 of the 340 created
bathymetries were set aside for testing) bathymetries and 30 wave conditions. During training, the loss
function value was checked on a validation set consisting of 350 images that were set aside from the training
set. The loss function was minimized using the NAdam [97] optimizer with default parameters including
a starting learning rate of 10−3. After 75 epochs, the learning rate was annealed to 10−4. Convergence
was defined as the point where the loss of the validation data set did not decrease after 10 consecutive
epochs. Additionally, different optimizers, including stochastic gradient descent (SGD) and Adam were
tried, while varying the learning rate. A more fully exhaustive search across all possible hyperparameters
could reveal improvements in test set accuracy, but similar results from past work [80,81], as well as the
breadth of approaches tried here, initially imply a lack of sensitivity of the model to modest changes in
either architecture or hyperparameters.

3. Results

3.1. Input Feature Comparison

Figure 5 compares an example of the model output from the three network setups: timex only
(first row), snapshot only (second row), and timex and snapshot (third row). All three versions of the
model are able to predict the shoreline and location and magnitude of the shore-parallel sandbar well.
The timex-input only FCNN (Figure 5a) predicts the worst mean ensemble bathymetry between the three
methods for this example, by predicting the trough to be much too deep. The increased error appears
primarily in the regions without much wave breaking, where the imagery lacks visible signatures related
to depth (cross-shore position 200–350 m). The snapshot-only FCNN (Figure 5e) predicts a better mean
bathymetry (Figure 5b) and has less spread in the predictions than the timex-only version (grey lines
in Figure 5d,h). The combined FCNN (input is both the timex and snapshot images in Figure 5a,e) has
the best agreement between truth (Figure 5i) and predicted bathymetry (Figure 5j) with a reasonable
uncertainty interval from the estimation ensemble.

In Figure 6, spatial variability in summary statistics (root mean squared error (RMSE), Figure 6a–c;
bias, Figure 6d–f) from the three FCNNs across the entire test set (895 images) are evaluated. A decrease in
RMSE is shown between timex (Figure 6a) and snapshot-only inputs (Figure 6b), particularly offshore of
200 m cross-shore. RMSE is further decreased when using both images as inputs (Figure 6c). Biases drop
in magnitude from Figure 6d–f, as the input changes from timex only, to snapshot only, to both timex
and snapshot. While the greatest improvement in performance was shown when utilizing snapshot only
instead of timex only, the FCNN that utilizes both inputs demonstrates advantages over each input data
set individually. Notably, the RMSE and bias are reduced in the center of surf-zone in the same areas
as the snapshot only FCNN. Additionally, the combined FCNN includes the lower RMSE found in the
timex-only (when compared to snapshot-only) in the furthest regions offshore. Histograms of image-wise
RMSE (Figure 6h–j) and bias (Figure 6k–m) help elucidate these differences. Specifically, the combined
FCNN (Figure 6j) has fewer images in the high RMSE bins, when compared with the snapshot-only and
timex-only FCNN, indicating that this network has fewer extreme mis-predictions.
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Model Comparison Example

Figure 5. Input features and predictions from three different model runs. The first row shows the timex-only
model, with (a) showing the timex input image, (b) showing the ensemble mean prediction, (c) showing the
spatial bias relative to ground truth, and (d) showing an example transect of the ground truth and ensemble
prediction, along with the along-shore averaged root mean squared error (RMSE) and depth-normalized
RMSE. The second row is in the same pattern, with the only difference being (e) shows the snapshot input.
The third row, which shows the model trained on both (a,e) as inputs, shows the ground truth in panel (i),
with (j–l) being the prediction, difference, and cross-shore transects of said model.

The example model output shown in Figure 5, as well as the error statistics over the test set shown in
Figure 6, demonstrate similar trends to the overall statistics reported in Table 1. Specifically, mean absolute
error, RMSE, depth-normalized RMSE, and the 90-th percentile error across the entire test set decrease from
the timex-only network, to the snapshot-only network, to the network trained on both inputs (Table 1).
Bounded pixels also increase with increasing information. A pixel is defined as “bounded” when the truth
depth falls within the uncertainty range at a given pixel. For the remainder of the paper, the focus will
shift to analysis of the the FCNN that includes both inputs, given its superior performance relative to the
other networks.
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Spatial & Image-based Error Comparisons

Figure 6. Spatial and image-based error for each of the three models, separated by column. The first column
shows the model trained by timex only, the second column shows the model trained by snapshot only,
and the third column shows the model trained with both inputs. (a–c) shows the 2D RMSE over the test set,
(d–f) shows the 2D bias over the test set, (h–j) shows a histogram of the average RMSE for each image in
the test set, and (k–m) shows a histogram of the average bias for each image in the test set. Each histogram
has 25 bins. The second and third columns show snapshot only, the combination trained model results,
respectively.
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Table 1. The bias, mean absolute error, RMSE, depth-normalized RMSE, 90-th percentile error, and the
% of offshore pixels bounded by the ensemble prediction for each of the three models by input features
(timex only, snapshot only, timex + snapshot). Bounded % calculated using 0 mean and 0.05 standard
deviation uniform noise of 100 ensemble members for the Gaussian Noise layer during inference only.

Error Statistics by Input Features

Input Features Bias (m) MAE (m) RMSE (m) NRMSE 90% Error (m) Bounded %
Timex 0.05 0.39 0.49 0.17 0.86 78

snapshot 0.04 0.35 0.44 0.15 0.79 82
Both 0.02 0.33 0.39 0.14 0.68 88

3.2. Example Predictions

Example results showing the broad applicability of the combined FCNN to three unique bathymetric
profiles are shown in Figure 7 with a comparison of estimated model uncertainty and true error. In the
first case (Figure 7a–f), there is significant wave breaking over a bar at the outer portion of the domain
and at the shoreline (cross-shore position 475 and 150 m, respectively, Figure 7a,d). No wave breaking
is visible in the large trough (cross-shore positions 200 to 385 m) between the shoreline and bar (shown
in Figure 7a,b); however, the wave refraction information in this area introduced by the snapshot input
(Figure 7d) allows for accurate predictions in the trough (Figure 7e). Spatial maps of the 95th confidence
interval of the ensemble range at each pixel location are used to characterize spatially variability in model
results Figure 7c. In this example, the model performs well, qualitatively placing the trough and sandbar
in the correct cross-shore position, as well as estimating the sandbar depth. Errors are greatest in the
deepest parts of the trough, which are underestimated by ≈1 m, but bounded by the 95th confidence
interval of the ensemble spread.

In the second example (Figure 7a–f, rows three and four), there is a large depression in the center of
the domain, similar to a rip channel. In the timex input, there is little wave breaking in the deepest portions
(cross-shore position 300 to 475 m, along-shore position of 100 to 500 m). Wave breaking does occur over
the sandbar found at the far northern and southern portions of the image, and again at the shoreline.
Overall the model performs well, correctly characterizing the overall morphology of the bathymetry.
The trough is correctly located, as well as the shallow split sandbars at the north and southern parts of the
image. The inner-surf zone bathymetry is also well represented. The highest errors (near 1 m) are found in
the deep depression (Figure 7l). The uncertainty estimation (Figure 7i) correctly shows higher expected
error in this location but does not show sufficient uncertainty in the far seaward edge (cross-shore position
485+ m) to bound the observed error. Interestingly, the FCNN predicts too shallow of a trough in this
region, suggesting that a rip current circulation pattern may be artificially shortening the wavelengths
(slowing down incoming waves) in this region.

The third example (Figure 7a–f, rows five and six) shows results on a more dissipative bathymetric
profile with a shallow shore-attached sandbar in the inner surf-zone. There is a large amount of dissipation
at the steeply sloped edge of this bar, where the depths becomes very shallow (cross-shore position 350 m),
with minimal wave breaking at the shoreline. In the snapshot image, refracting and breaking waves are
clearly visible across the domain. In this example, the model errors are less than 0.2 m across most of the
domain, with the exception of the offshore region in the northeast corner of the domain. Interestingly the
model estimates moderate uncertainty over the shallow sandbar despite the low error in the prediction
(Figure 7). The ensemble spread is highest at the furthest offshore portion of the image, and this correlates
with increased error when compared to ground-truth. The model incorrectly estimates the depth in most
of the area seaward of the sandbar (cross-shore position 400–500 m), with errors of 0.5 to 1 m found in the
northern portion of the image where the model is biased too shallow.
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Example Results

Figure 7. Three example results each marked (a–f), all from the model trained using both inputs. (a) Timex
image input features. (b) Truth depth. (c) Spatial uncertainty using 2* the standard deviation of the
ensemble spread. (d) Snapshot image input features. (e) The predicted depth. (f) Spatial absolute error map.
Example one is Hs = 1.9 m, Dm = 87°, Tp = 7.25 s. The second example is Hs = 1.4 m, Dm = 89°, Tp = 10.63 s.
The third example is Hs = 1.2 m, Dm = 86°, Tp = 6.71 s.
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Overall, the model performance is satisfactory (RMSE = 0.39 m) across a range of synthetic
morphological states and wave conditions. While uncertainty estimates do not correlate precisely with
observed error, they frequently bound the true depth with the 95th confidence interval of the ensemble
spread and can be used to visually identify regions with increased error.

The FCNN’s ability to bound true depth errors with its predictive uncertainty over the entire test set is
assessed in Figure 8. The FCNN’s predictive uncertainty bounds at least 60 and often more than 80 percent
of the predictive error for each location across the test set beyond the 100-m cross-shore position (Figure 8a).
Regions of the domain that are typically beach pixels are bounded with less frequency. Specifically, onshore
of 100-m cross-shore location, the number of test images with underwater pixels in this region decreases
to 20% or less of the entire data set (Figure 8b). As a result, smaller sample sizes may affect the statistics
calculated in this region.

Test Set Uncertainty

Figure 8. Uncertainty shown various ways over the test set. (a) A spatial map of each pixel that,
when averaged across the test, shows the percentage of the time that the true depth at that pixel is
bounded by the ensemble. (b) The spatial map of the number of times each pixel is under water in the test
set of 895 images. (c) A histogram of each bounded and unbounded pixel. (d) The same pixel composition
with the count of the errors of the bounded and unbounded pixels. (e) The same pixel composition with
the count of the intensity of the bounded and unbounded pixels. (f) The same pixel composition with the
count of the biases of the bounded and unbounded pixels.
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In Figure 8c–e, pixels at which the estimated uncertainty bounds or fails to bound the true value are
assessed as a function of depth, absolute error, and bias. Since most pixel errors are frequently bounded
by the uncertainty estimate ( 88%, Table 1), the number of bounded pixels (green) will almost always
outnumber unbounded pixels (blue) in these histograms. At almost every depth the bounded pixels
outnumber the unbounded pixels (as expected), with the exception of near the extreme values, where
the most shallow depths (less than 1 m) see almost as many unbounded pixels as bounded. In addition,
the deepest depths (more than 8 m) tend to be unbounded by the ensemble of predictions (Figure 8c).
As absolute errors for individual pixels increase beyond 1.0 m (Figure 8d) and biases increase beyond
±0.75 m (Figure 8e), the histograms indicate pixel errors are more often unbounded than bounded,
suggesting our uncertainty intervals are often not bounding our largest errors.

4. Discussion

Inference results over the test set (Table 1) show errors on the scale of 10% of the water depth across
90% of the domain for a range of synthetic bathymetries, demonstrating promising results using an
image-based FCNNs to estimate bathymetry. The scale of errors using our FCNN approach is comparable
to prior bathymetry inversion approaches. It is important to note that these techniques were assessed on
real imagery, not synthetic imagery, so there are additional potential sources of error that may be relevant
to the FCNN performance on real imagery, not addressed by this current study. Other approaches have
found similar scale errors (RMSE = 0.40 m) using dissipation (timex) techniques [42]. Numerical modeling
techniques for inversion that combine dissipation information, as well as wave celerity information from
radar [43], see RMSE between 0.3–0.5 m. cBathy [26], an approach that utilizes video of the surf-zone to
derive wave celerity and then perform linear depth inversion, typically sees RMSE around 0.51 m after
observing wave speeds for an average of 33 h. Additionally, during higher, non-linear wave conditions,
video-based linear dispersion inversion approaches can overestimate the depth by up to 2.0 m and have
difficulty locating the cross-shore position of the sandbar [35,44]. Recent approaches using satellite image
sequences to extract wave celerity see RMSE of around 1.4 m [14]. One advantage of using synthetic
imagery is the ability to test the algorithm’s performance over a large and varied ensemble of synthetic
bathymetries, exceeding the amount and variation of measured high-resolution bathymetric data sets.
The RMSE of our ML approach rarely exceeds 0.68 m (90%) for any given subaqueous pixel, with a
total RMSE of 0.39 m across all subaqueous pixels. Additionally, this image-based ML method requires
fewer pre-processing steps [26,43] or manual inputs [93] than the similar methods. However, training
the neural network is time consuming (around 20 hours with both inputs), and identifying the reasoning
behind some errors is difficult. In addition, our results only include performance statistics on idealized
synthetic imagery. Once trained, the network has a significantly decreased inference time (∼37 ms)
relative to direct inversion techniques, that can take minutes to run [26], or compared to model-based
inversion methods that rely on solving differential equations during run-time to produce a bathymetric
estimate [36,38,39,43]. Additionally, the snapshot-only version of the trained FCNN can utilize only a
single snapshot of sea-surface imagery, removing the requirement for a time-series (video) of images of the
surf-zone, with only a small reduction in overall error over the test-set.

4.1. Wave Conditions

Methods that extract wave celerity from image sequences tend to see increased error during larger
wave heights, which is when the linear shallow-water wave equations cease to accurately describe wave
propagation in the surf-zone, and when breaking can interfere with the celerity extraction algorithm [44].
Methods that use timex-based algorithms see opposite trends, with increased errors when wave heights
are small [43]. In this effort, we tested the FCNN in significant wave height conditions ranging from
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0.7 to 2.5 m, and observed no significant trends in performance with wave height (Figure 9). This is in
contrast to the physics-based approaches, which see wave-height dependent performance, potentially
due to simplifications in the underlying physics of the models [26]. At this time, it is unclear if the lack of
wave height dependence on the accuracy of our FCNN is because it has “learned” some of the non-linear
relationships between wave breaking and wavelength in shallow-water, or if we did not test over a broad
enough wave climate to observe these trends. For the test set wave conditions, the “both input” FCNN
performed better than snapshot-only or timex-only in every wave height scenario (Figure 9), which may
be due to the combination of information from energy dissipation and wavelength. The timex-only FCNN
almost always had the highest groups of RMSE outliers, which suggests that the lack of wave structure
information (only included in the snapshot imagery) can lead to unreasonable predictions. In addition,
we found little-to-no significant trends between peak wave period and direction and error in the predictive
model (not shown). A larger set of wave conditions, with more extreme wave energies is of interest for
future work.

RMSE of Models Compared to Off-shore Wave Heights

Figure 9. RMSE (a) and Bias (b) calculations as a function of binned offshore wave height values from the
boundary of the Celeris model. The mean value of each set of bins is shown, as well as the number of
images in each bin.

4.2. Activation Maps

Inference activation maps [98,99] are often used to identify the input features in the image which the
FCNN keys onto during training and prediction. These maps highlight the intensity of individual neurons
in different layers of the network, and can be used, alongside the input features, to see which aspects of
the input features are involved in prediction. Thus, we can use activation maps to provide insight into
what information the FCNN is using during training.
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In Figure 10, results from the timex-only and snapshot-only trained FCNN are shown for the same
wave and bathymetry combination alongside three example activation maps. Activations from the timex
input (Figure 10, second row) reveal the lack of information in the areas with little wave breaking, such as
in the trough. In this area, the activations across the network become sensitive to extremely small changes
in lighting gradients. These lighting gradients could be reflective of differences in wave steepness across
the domain or may be completely unrelated to the bathymetric gradients. The network incorrectly infers a
depression in the trough to explain the apparent lack of breaking. This type of error in the trough, and in
other areas that lack the wave dissipation information (pixel intensity gradients) in the timex images,
confirms the potential benefit of including snapshot imagery that contains more information in these
regions in the form of refracting waves in the input features. Snapshot imagery activations (Figure 10,
fourth row) highlight the FCNN model’s ability to extract wave structure information from areas with
little wave breaking. The snapshot-trained FCNN is able to identify wave structure patterns, which the
activation maps indicate are providing increased information in the regions with less wave breaking
when compared to the timex-only activation maps. As a result, the snapshot-only FCNN infers a more
accurate depth in the areas where there is little wave breaking. This implies the decrease in wavelengths as
waves move into shallower water, combined with wave refraction information (bending of the wave crests
around bathymetric features) provides information the FCNN uses to make the bathymetric prediction,
similar to approaches used by short-dwell satellite-based inversion methods [15].

The relative closeness in errors shown in Table 1 between the snapshot-only and both FCNN, suggests
the expression of wave dissipation in the timex images is rarely adding much extra information to
the predictions. However, some examples, such as the one shown in Figure 6, demonstrate where the
timex image can provide additional information relative to snapshot-only—in this case the increased
continuum of wave breaking at the offshore boundary decreases the RMSE and bias in this region.
Therefore, if available, the input of both a dissipation proxy (timex imagery) and wavelength proxy
(snapshot imagery) to the FCNN provides a better estimate of depth, which has also shown to be the case
with other approaches [43]. Different environmental variables and/or bathymetric profiles may provide
more opportunity for timex images to add more information, such as on lower sloped, dissipative beaches
where gradients in dissipation may be wide-spread. However, the success of the snapshot-only model
demonstrates the ability of the ML algorithm to learn relationships between changes in depth and the
resultant wavelength changes previously exploited in the very first depth inversion approaches and state
of the art satellite methods [14,15,27,66]. From a practical perspective, getting similar errors between the
snapshot-only and both FCNNs is a good thing; single snapshots of the surf-zone are logistically easier to
collect and more widely available than taking high-quality 20-min video imagery. For example, the success
of snapshot implies that this synthetic data could be exploited in transfer learning for domain adaption
to data similar in appearance, such as satellite imagery or limited-dwell, high-altitude aerial imagery, in
future works.
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Activation Maps

Figure 10. Three example activations from the FCNN with timex and snapshot-only input. Colorscale
goes from black (unactivated) to white (activated). The first and third rows shows the input, ground truth
bathymetry, and predicted bathymetry from each type of input. The second and fourth rows show sample
activation maps from the input shown in the row above. The activation maps were randomly selected from
the fourth batch normalization layer in the downward convolutional block.

4.3. Uncertainty Measurements

Various methods to estimate model uncertainty are applied to the neural network in the form of
MC-dropout, infer-transformation, and infer-noise. This creates the uncertainty maps shown in Figure 7.
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The FCNN’s 95% confidence interval bounded observed error 88% of the time over the entire test set
(Table 1), and magnitudes frequently corresponded with observed error (Figure 8). Relative to other
video-based bathymetric inversion methods, such as cBathy [26], which bounds errors around 50% of
the time, these results provide higher fidelity uncertainty estimates. In addition the location of higher
errors often corresponded with regions with less information in the input imagery (i.e., less wave breaking
or fainter wave refraction patterns), which is where we expect the algorithm to perform more poorly
(Figure 8e). Figure 11a shows a pixel-wise 1:1 plot of the prediction and truth depth, showing strong
agreement that reflect low error values seen across the test set Table 1. Figure 11b shows a pixel-wise
1:1 plot of the uncertainty and observed absolute error. Pixel uncertainties tend to increase for pixels
with larger observed error; however, our estimated uncertainty tends to exceed the actual algorithm
error, which makes sense since our uncertainty estimate provides a 95% confidence interval. Spatial
correspondence between error and uncertainty maps (see Figure 7 for examples of the 2d error and
uncertainty maps being discussed), is high, with a median correlation coefficient of 0.78 between each
uncertainty map and error map in the test set (Figure 11c). The strong performance of our uncertainty
estimates at each grid cell allows prediction of when the FCNN inference is useful by giving a spatial
estimate of error for each image. This can aid in actionable decision-making where high risk is unacceptable
(such as for navigation of vessels).

Uncertainty-Error Correlations

Figure 11. Examples showing correlations between the error and uncertainty. (a) A 1:1 plot of the pixel-wise
predicted depth and the true depth, allowing easy visualization of the spread from the line. (b) The error
at each pixel as a function of its uncertainty value. (c) The correlation coefficient from the 2d spatial
uncertainty and errors maps that accompany each prediction during inference.

4.4. Future Work

This work has focused on exploring whether an image-based ML approach can be successfully
implemented to infer bathymetry from timex and/or snap imagery, and thus has used a simplified form of
synthetic data that, while, in general, agrees with the features seen in remotely sensed imagery, still lacks
the robustness to various types of real-world noise that are present in remotely sensed imagery. Because of
this, immediate goals include both expanding the existing synthetic data set, as well as transitioning to
real-world remotely sensed imagery using transfer learning for domain adaption. That is, immediate
goals will be to train on a fully robust synthetic data set that mimics remotely sensed data as close as
possible, and then to fine-tune the FCNN on much smaller sets of high-resolution real imagery matched
with their bathymetric survey pairs. Creating this robust data set will involve several additions to the
existing data set that can be categorized into two subsections: (1) expanding the wave characteristics;
and (2) accounting for sources of noise in real imagery, such as lighting variations, weather conditions,
or rectification/projection errors. Expansion of the wave conditions will include testing of an increased
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range in wave heights and periods, as well as include variations in directional spread of the input spectra.
To more closely mimic remotely sensed data, lighting conditions will be varied in the Celeris model to
account for various lighting conditions from different sun angles and intensities. In addition, analysis of
the types of noise in real imagery is presently being conducted to identify the relevant factors, such as
weather conditions or ortho-rectification/projection errors, which may affect the output performance
of the FCNN. Additionally, image decomposition techniques to reduce synthetic and remotely sensed
imagery to a more common component structure to more easily utilize the transfer learning for domain
adaption is also being explored.

5. Conclusions

A 2D FCNN was used to estimate nearshore bathymetry from time-averaged and snapshot synthetic
imagery, as well as on a combination of both image types. The FCNN that utilized both image types
had the lowest RMSE over the test set (0.39 m) though the snapshot only model’s RMSE was similar at
0.44 m. The FCNN was tested over a wide range of highly variable synthetic bathymetries, with a best
RMSE prediction of 0.11 m and a median RMSE of 0.37 m. These results demonstrate the promise of using
a 2D FCNN to estimate nearshore bathymetry from time-series and snapshot synthetic imagery of the
surf-zone. The relative success of snapshot only imagery, which contains wave refraction information along
with some dissipation, bodes well for the algorithm’s potential success with high-resolution single-frame
images, reducing the reliance on dwell of many common bathymetric inversion algorithms. Unlike existing
physics-based inversion approaches that show increased errors with higher non-linearity (when wave
heights become large), the FCNN shows robustness in estimation across wave heights up to 2.5 m. Finally,
the methods used to estimate model uncertainty provide a range of ensembles that usually (88%) bound
the true water depth in our studies, allowing for a reasonable estimation of both location and magnitude
of error at any given location in the area of prediction.

6. Source Code

The code to retrieve and bin wave conditions by their wave/height and direction is found in https:
//github.com/collins-frf/Wave-Conditions. Synthetic wave conditions were sampled from between
highly occurring edge cases from the measured data set at the FRF’s 8-m pressure array. The code to
generate the ensemble of bathymetries based on historical measurements from Duck, NC, is located at https:
//github.com/collins-frf/bathy_gen, while the code to generate (and plot) the synthetic bathymetries is
located at https://github.com/collins-frf/Celerity_Net. The Celeris wave model is available for download
from https://github.com/collins-frf/Wave-Conditions. The code to run and record the model output
(using MATLAB) with the generated bathymetries and wave conditions is found in https://github.com/
collins-frf/celerisDataGen. The code to create tiff files of timex and snapshot images from the recorded
Celeris visualizations is found in https://github.com/collins-frf/PyTimex.

The model was trained validation and tested using mainly the Pytorch [100] and
Tensorflow [101,102] libraries, with the data loading and serving handled by a modified Pytorch.Dataset
class, while the model was constructed, trained, and tested with Tensorflow/Keras. The Celeris model
simulations were run on a Dell Precision 5820 with 64GB of RAM and NVIDIA RTX 2080. The FCN model
was trained on a custom built PC with 64 GB of RAM and a NVIDIA RTX Titan V with 24GB of VRAM.

The feature inputs used during training consisted of different inputs depending on the referenced
model. Results were presented for both timex, snapshot, and a combination of both.
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