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Abstract: Temporal mass variations within the Earth’s system can be detected on a regional/global
scale using GRACE (Gravity Recovery and Climate Experiment) and GRACE Follow-On (GRACE-FO)
satellite missions’ data, while GNSS (Global Navigation Satellite System) data can be used to detect
those variations on a local scale. The aim of this study is to investigate the usefulness of national GNSS
CORS (Continuously Operating Reference Stations) networks for the determination of those temporal
mass variations and for improving GRACE/GRACE-FO solutions. The area of Poland was chosen as
a study area. Temporal variations of equivalent water thickness ∆EWT and vertical deformations of
the Earth’s surface ∆h were determined at the sites of the ASG-EUPOS (Active Geodetic Network
of the European Position Determination System) CORS network using GRACE/GRACE-FO-based
GGMs and GNSS data. Moreover, combined solutions of ∆EWT were developed by combining ∆EWT
obtained from GNSS data with the corresponding ones determined from GRACE satellite mission
data. Strong correlations (correlation coefficients ranging from 0.6 to 0.9) between detrended ∆h
determined from GRACE/GRACE-FO satellite mission data and the corresponding ones from GNSS
data were observed at 93% of the GNSS stations investigated. Furthermore, for the determination of
temporal mass variations, GNSS data from CORS network stations provide valuable information
complementary to GRACE satellite mission data.

Keywords: equivalent water thickness; GNSS; GRACE/GRACE-FO; temporal mass variations within
the Earth’s system; vertical surface deformation

1. Introduction

The determination of temporal mass variations in the Earth’s system with high accuracy as
well as high spatial and temporal resolutions using space geodetic data is one of the main scientific
problems in the Earth science-related disciplines. Since the last decade, the Gravity Recovery and
Climate Experiment (GRACE; [1]) satellite mission operated between March 2002 and October 2017,
brought a unique opportunity for the determination of temporal mass variations within the Earth’s
system. Its concept, including theoretical background as well as impressive scientific results, has widely
been demonstrated by many authors (e.g., see the review given by [2]). The tremendous success
achieved from the mission emphasized the need of launching a GRACE-type mission for a sustainable
long-term monitoring of temporal mass variations within the Earth’s system. The GRACE Follow-On
(GRACE-FO; https://gracefo.jpl.nasa.gov/) satellite mission of a designed life of five years has been
launched in May 2018. The GRACE and GRACE-FO missions, without any doubt, are a state-of-the-art
space geodetic technique for monitoring temporal mass variations within the Earth’s system. They have
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clearly revolutionized research in many disciplines of Earth sciences. Besides GRACE-type satellite
missions, the Global Navigation Satellite System (GNSS) has proven itself as one of the most powerful
space geodesy tools for the determination of temporal mass variations in the Earth’s system and related
geodynamic processes. It is successfully used to study the elastic ground loading deformation in
response to the Earth’s hydrological mass variations. Since the beginning of this century, numerous
studies on the relation between the mass loading and the Earth’s surface deformations obtained
from GNSS data have been conducted on a global scale (e.g., [3–7]), on a continental scale, e.g.,
South America [8]; and Europe [9], as well as on a local/regional scale, e.g., Japan [10]; the Amazon
basin [11]; Bangladesh [12]; Greenland [13]; the West Africa [14]; North America [15–18]; China [19–22];
Tibet [23,24]; Poland [25,26]; and the East Africa [27]. Except van Dam et al. [9] that indicated poor
correlation between the annual vertical crustal deformation from GRACE and GPS at 36 GPS sites
over Europe, all those studies revealed very good agreement (correlation coefficient >0.6) between the
Earth’s surface deformations obtained from GNSS data and the corresponding ones determined from
GRACE data. In addition to GNSS and GRACE data, other space geodetic techniques, e.g., the very
long baseline interferometry (VLBI), indicated that the vertical crustal deformations due to continental
water loading reach up to 15 mm [28].

The latest official GRACE/GRACE-FO level-2 products, i.e., RL06 (release 6) GRACE/

GRACE-FO-based Global Geopotential Models (GGMs), developed by GFZ (GeoForschungsZentrum),
CSR (Center for Space Research) and JPL (Jet Propulsion Laboratory) centers (cf. [29–32]) are currently
available for scientific users. In addition to GRACE/GRACE-FO-based GGMs, global mass concentration
(mascon) products of NASA (National Aeronautics and Space Administration), GSFC (Goddard Space
Flight Center), JPL and CSR have also been released to the scientific community [33–35]. On the other
hand, national GNSS CORS (Continuously Operating Reference Stations) networks are rapidly growing
and being continuously expanded around the world. Currently, national GNSS CORS networks are
in operation in Australia, North America and almost all European countries (e.g., networks of the
EUPOS multifunctional reference stations) as well as in some countries in Africa, Asia and South
America. National GNSS CORS networks are regarded as a multifunctional precise positioning system
that provides very valuable information for: (1) static and Real-Time Kinematic (RTK) positioning;
(2) monitoring crustal deformations; (3) definition and realization of global, regional and national
geodetic reference frames; (4) atmosphere related studies; etc. Besides national GNSS CORS networks,
a number of dense regional/local GNSS CORS networks have been established for a specific scientific
research, e.g., the PBO H2O (Plate Boundary Observatory Studies of the Water Cycle) established to
study the 3D strain field resulting from deformation across the active boundary zone between the
Pacific and North American plates in the western United States as well as remotely measured changes
in soil moisture content, snow depth, water content of the troposphere, and ground motions related to
changes in the water table (e.g., [36]).

The coarse spatial resolution of GRACE/GRACE-FO products is one of the main
weaknesses of GRACE-type missions. Moreover, GRACE/GRACE-FO level-2 products (e.g.,
GRACE/GRACE-FO-based GGMs) as well as GRACE-based mascon products being the results
of a complex processing of GRACE mission data, are released to scientific users with a delay of a few
months. On the other hand, temporal mass variations can be obtained using GNSS data in real or
near real time, but they represent the local effect for a very limited area within the radius of a few
kilometers from a GNSS station. Furthermore, coordinate variations obtained from GNSS data are
affected by many errors, e.g., the draconitic error that systematically affects the seasonal periods in
GNSS series (e.g., [37]). However, investigation concerning the use of national GNSS CORS networks
to study temporal mass variations within the Earth’s system is essentially needed. The main objective
of this study is to investigate the use of national GNSS CORS networks for monitoring temporal mass
variations within the Earth’s system. It is also aimed at the use of national GNSS CORS networks data
to improve temporal mass variations within the Earth’s system on a regional/local scale determined
from GRACE/GRACE-FO satellite missions’ data. The study area and data used are described in
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Section 2. In Section 3, the methods implemented for the determination of vertical deformations of the
Earth’s surface ∆h and temporal variations of equivalent water thickness using GRACE/GRACE-FO
satellite mission and GNSS data as well as the determination of ∆EWT combined solutions using
these data are specified. The results obtained are presented and analyzed in Section 4. Moreover,
in Section 4, the improvement of ∆EWT determined from GRACE satellite mission data when adding
∆EWT determined from GNSS data is illustrated. Finally, in Section 5, discussions and conclusions
concerning the usefulness of GNSS data from CORS network stations for the determination of ∆h and
∆EWT as well as for improving GRACE/GRACE-FO solutions are given.

2. Study Area and Data Used

The area of Poland has been chosen as a study area. A national GNSS CORS network in this area,
called the Active Geodetic Network of the European Position Determination System (ASG-EUPOS),
consists recently of 102 GNSS stations apart from each other by about 70 km; http://www.asgeupos.pl,
are operating since 2008. Daily GNSS data from 96 ASG-EUPOS stations covering the period 2008–2018
were used within the course of this study. Figure 1 illustrates the study area as well as the ASG-EUPOS
sites used.
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Figure 1. Study area and the location of Global Navigation Satellite System (GNSS) stations used.

Beside the GNSS data from ASG-EUPOS stations, CSR RL06 GRACE/GRACE-FO-based GGMs
were utilized in this study. In order to reduce the noise included in RL06 GRACE/GRACE-FO-based
GGMs, the DDK3 (decorrelation 3) filter (cf. [38]) that indicates a good performance over the area
investigated [39], was applied. Moreover, CSR RL06 GRACE/GRACE-FO-based GGMs developed as
monthly solutions obtained from GRACE/GRACE-FO satellite missions were truncated at d/o 60 that
corresponds to the spatial resolution, i.e., 3◦ × 3◦ at the equator.

The WaterGAP Global Hydrology Model (WGHM) Version 2.2d (e.g., [40,41]) was used for the
evaluation purposes. This hydrological model represents the terrestrial hydrological cycle with a

http://www.asgeupos.pl
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spatial resolution of 0.5 degree. Within the context of the investigation conducted in this study, monthly
variations of equivalent water thickness for the period 2008–2016 were obtained at the ASG-EUPOS
sites from the WGHM.

3. Methods

The methods implemented for the determination of monthly vertical deformations of the Earth’s
surface and monthly variations of equivalent water thickness from GRACE/GRACE-FO-based GGMs
and GNSS data are described in Sections 3.1 and 3.2, respectively. In Section 3.3, the method applied to
determine combined solutions of monthly variations of equivalent water thickness ∆EWTm-CombSol is
presented. In Section 3.4, uncertainties of monthly variations of equivalent water thickness determined
from GNSS and GRACE/GRACE-FO satellite missions’ data as well as their combined solutions are
estimated. The general steps of the method implemented within this investigation are summarized in
Figure 2.

Remote Sens. 2020, 12, x FOR PEER REVIEW 4 of 22 

 

3. Methods 

The methods implemented for the determination of monthly vertical deformations of the Earth’s 
surface and monthly variations of equivalent water thickness from GRACE/GRACE‒FO‒based 
GGMs and GNSS data are described in Sections 3.1 and 3.2, respectively. In Section 3.3, the method 
applied to determine combined solutions of monthly variations of equivalent water thickness ∆EWTm-

CombSol is presented. In Section 3.4, uncertainties of monthly variations of equivalent water thickness 
determined from GNSS and GRACE/GRACE‒FO satellite missions’ data as well as their combined 
solutions are estimated. The general steps of the method implemented within this investigation are 
summarized in Figure 2. 

 

Figure 2. General steps of the method implemented to determine combined solutions of ∆EWT and 
evaluate monthly variations of equivalent water thickness from Gravity Recovery and Climate 
Experiment/GRACE‒Follow-On (GRACE/GRACE‒FO)-based Global Geopotential Models (GGMs) 
and GNSS data. 

3.1. The Determination of ∆hm-GRACE and ∆EWTm-GRACE 

Monthly vertical deformations of the Earth’s surface ∆hm-GRACE and monthly variations of 
equivalent water thickness ∆EWTm-GRACE were determined at the sites of the ASG‒EUPOS CORS 
network using GRACE/GRACE‒FO‒based GGMs as follows [9,20,42,43]: 

Figure 2. General steps of the method implemented to determine combined solutions of ∆EWT
and evaluate monthly variations of equivalent water thickness from Gravity Recovery and Climate
Experiment/GRACE-Follow-On (GRACE/GRACE-FO)-based Global Geopotential Models (GGMs) and
GNSS data.
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3.1. The Determination of ∆hm-GRACE and ∆EWTm-GRACE

Monthly vertical deformations of the Earth’s surface ∆hm-GRACE and monthly variations of
equivalent water thickness ∆EWTm-GRACE were determined at the sites of the ASG-EUPOS CORS
network using GRACE/GRACE-FO-based GGMs as follows [9,20,42,43]:

∆hm−GRACE = a
Nmax∑
n=0

n∑
m=0

Pnm(sinϕ)
hn

1 + kn
(∆Cnm cos mλ+ ∆Snm sin mλ) (1)

∆EWTm−GRACE =
a× ρavg

3ρw

Nmax∑
n=0

n∑
m=0

Pnm(sinϕ)
2n + 1
1 + kn

(∆Cnm cos mλ+ ∆Snm sin mλ) (2)

where ϕ, λ are spherical geocentric coordinates of the computation point, a is the radius of the Earth
(semi-major axis), ρw is the water density, ρavg is the Earth’s average density, k and h are load Love
numbers of degree n based on the Preliminary Reference Earth Model (PREM; [44]) obtained from [45],
∆Cnm and ∆Snm are the differences between fully normalized spherical harmonic coefficients from
monthly RL06 GRACE/GRACE-FO-based GGMs and the corresponding ones obtained from a reference
GGM, Pnm are the fully normalized Legendre functions of degree n and order m, and Nmax is the
maximum degree applied.

The Pnm(sinϕ) are determined using a recursive algorithm as follows (e.g., [46]):

P00(sinϕ) = 1.0
P11(sinϕ) =

√
3 cosϕ

Pnn(sinϕ) =
√

(2n+1)
n cosϕP(n−1)(n−1)(sinϕ)

Pnm(sinϕ) =
√

(2n−1)(2n+1)
(n−m)(n+m)

cosϕP(n−1)m(sinϕ)

−

√
(2n+1)(n+m−1)(n−m−1)

(2n+3)(n+m)(n−m)
cosϕP(n−2)m(sinϕ)


(3)

In this study, ∆hm-GRACE and ∆EWTm-GRACE were determined using CSR RL06
GRACE/GRACE-FO-based GGMs specified in Section 2 and the IGiK-TVGMF software [43].
These GGMs were obtained from the International Centre for Global Earth Models (ICGEM; cf.
http://icgem.gfz-potsdam.de/series). The degree-1 and degree-2 spherical harmonic coefficients of these
GGMs were replaced by the corresponding ones obtained from the solution described in [47] and from
Satellite Laser Ranging (SLR) observations [48], respectively. The monthly estimates of these degree-1
and degree-2 spherical harmonic coefficients are available via GRACE TN-13 (GRACE Technical Note
13; https://podaac-tools.jpl.nasa.gov/drive/files/allData/ grace/docs/TN-13_GEOC_CSR_RL06.txt) and
GRACE TN-11 (GRACE Technical Note 11; cf. https://podaac-tools.jpl.nasa.gov/drive/files/allData/

grace/docs/TN-11_C20_SLR.txt), respectively. The EGM2008 (Earth Gravitational Model 2008; [49])
was used as a reference GGM and the WGS84 (World Geodetic System 1984) was chosen as a geodetic
reference system.

3.2. The Determination of ∆hm-GNSS and ∆EWTm-GNSS from GNSS Data

Daily vertical deformations of the Earth’s surface ∆hd-GNSS for the period 2008-2018 were
determined first at the location of 96 sites of the ASG-EUOPS CORS network using daily GNSS
observations data processed by the GAMIT/GLOBK software version 10.7 [50,51]. The TEQC
(Translation, Editing, and Quality Checking) software developed by UNAVCO [52] was used to
check the quality of GNSS data from 96 stations of the ASG-EUPOS network. The linear combination
of L1 and L2 was implemented to eliminate the signal delay caused by first-order ionospheric
refraction. The delay induced by second- and third-order ionospheric refraction of the carrier wave
was also removed using daily IONEX (IONosphere EXchange) files provided by the Centre for Orbit

http://icgem.gfz-potsdam.de/series
https://podaac-tools.jpl.nasa.gov/drive/files/allData/
https://podaac-tools.jpl.nasa.gov/drive/files/allData/grace/docs/TN-11_C20_SLR.txt
https://podaac-tools.jpl.nasa.gov/drive/files/allData/grace/docs/TN-11_C20_SLR.txt
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Determination in Europe (CODE; [53]). These IONEX files represent the ionosphere in the form of
global maps of the Vertical Total Electron Content (VTEC). The troposphere delay was estimated using
the Vienna Mapping Function (VMF; [54]) with a priori hydrostatic delay estimates based on the global
pressure and temperature (GPT2) model [55]. The troposphere delay was estimated for every 2 h from
GNSS data acquired at ASG-EUPOS sites investigated. The Atmospheric Loading Model (ATML; [56])
at the observation level provided by the MIT (Massachusetts Institute of Technology) was applied to
remove deformation caused by atmospheric loading. The Finite Element Solutions 2004 tidal model
(FES2004; [57]) was used to remove deformations induced from oceanic tidal loading.

From the GAMIT software, the daily loosely constrained solutions were obtained. These solutions
were combined with global solutions provided by the MIT using the GLOBK software. In this step
of processing, the GLORG was used to define the reference frame. Time series of daily vertical
deformations of the Earth’s surface were tight to the ITRF2014 (International Terrestrial Reference
Frame 2014; [58]). Daily vertical deformations of the Earth’s surface that exceed the daily repeatability
within the same month were considered as outliers. These outliers were detected using GAMIT/GLOBK
MATLAB TOOL [50] and subsequently removed. Finally, all daily vertical deformations of each month
were averaged to estimate monthly vertical deformations of the Earth’s surface ∆hm-GNSS. Time series
of daily and monthly vertical deformations for an exemplary ASG-EUPOS station KLCE are shown
in Figure 3. Then, ∆hm-GNSS were inverted into monthly variations of equivalent water thickness
∆EWTm-GNSS using the Green’s function elastic half-space model (cf. [59]).

∆EWTm−GNSS = ∆hm−GNSS ·

(
2ρw ·R0 · g ·

(
1− υ2

E

))−1

(4)

where R0 presents the radius that has been estimated on the basis of the spatial resolution of
GRACE/GRACE-FO satellite missions’ data (i.e., 167 km), g denotes the gravity value (estimated to
9.81 Gal), υ is the Poisson’s ratio, E is the Young’s modulus. It should be noted that on the basis of the
review of the literature (e.g., [59]), the Poisson’s ratio and the Young’s modulus used in this study were
estimated to 0.25 and 70 Gpa, respectively.
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Figure 3. Time series of daily and monthly vertical deformations for the KLCE station of the Active
Geodetic Network of the European Position Determination System (ASG-EUPOS) network.
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3.3. The Detrmination of ∆EWTm-CombSol

Combined solutions of monthly variations of equivalent water thickness ∆EWTm-CombSol were
developed for each (i = 1, 2, 3, . . . , q) GNSS station of the ASG-EUPOS CORS network:

∆EWTi
m−CombSol =

wi
GNSS
· ∆EWTi

m−GNSS + wi
GRACE

· ∆EWTi
m−GRACE

wi
GNSS

+ wi
GRACE

(5)

where q denotes the total number of GNSS stations of the ASG-EUPOS CORS network investigated and
wGNSS and wGRACE are weights for ∆EWT determined from GNSS and GRACE/GRACE-FO satellite
missions’ data, respectively. These weights were estimated as follows:

wi
GNSS

=


√

k∑
t=1

(
(∆EWTi

m−GNSS(t)−∆EWTi
WGHM(t))−(∆EWTi

m−GNSS(t)−∆EWTi
WGHM(t))

)2

k−1


−1

wi
GRACE

=


√

k∑
t=1

(
(∆EWTi

m−GRACE(t)−∆EWTi
WGHM(t))−(∆EWTi

m−GRACE(t)−∆EWTi
WGHM(t))

)2

k−1


−1


(6)

where (t = 1, 2, 3, . . . , k) denotes the month, k is the total number of months investigated, ∆EWTm-WGHM

are time series of monthly variations of the equivalent water thickness obtained from the WGHM and
the overbar operator presents the average over all k months.

3.4. Estimation of ∆EWTm-GRACE, ∆EWTm-GNSS, and ∆EWTm-CombSol Uncertainties

Monthly variations of equivalent water thickness determined from GNSS data and
GRACE/GRACE-FO-based GGMs as well as their combined solutions determined with the use
of methods specified in Section 3.1, Section 3.2, Section 3.3, were evaluated using ∆EWTm-WGHM.
The differences

δ∆EWTi
m−GRACE = ∆EWTi

m−WGHM − ∆EWTi
m−GRACE

δ∆EWTi
m−GNSS = ∆EWTi

m−WGHM − ∆EWTi
m−GNSS

δ∆EWTi
m−CombSol = ∆EWTi

m−WGHM − ∆EWTi
m−ComSol

 (7)

were determined and standard deviations of these differences were computed. Moreover, correlations
between equivalent water thickness obtained from the WGHM and the corresponding ones determined
from GNSS and GRACE/GRACE-FO satellite missions’ data as well as the combined solutions
∆EWTm-CombSol developed were estimated.

4. Results

4.1. Monthly Vertical Deformations of the Earth’s Surface

Time series of monthly vertical deformations of the Earth’s surface ∆h at the stations of
the ASG-EUPOS network obtained from GNSS data ∆hm-GNSS and ∆hm-GRACE determined from
GRACE/GRACE-FO satellite missions’ data are illustrated in Figure 4.
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The results presented in Figure 4 exhibit a seasonal pattern over the area investigated. It is
observed that maximum values of ∆hm-GNSS and ∆hm-GRACE occur during the summer–fall seasons and
minimum values during the winter–spring seasons [26]. This pattern can be attributed to the change in
the mass loading caused by seasonal variations in the water mass with maximum values in March and
minimum values in July–September [26,60]. For all GNSS stations investigated, the phase difference
between ∆hm-GNSS and ∆hm-GRACE is less than one month, which can be considered negligible. Statistics
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of peak-to-peak variations of the seasonal pattern of the monthly vertical deformations are given in
Table 1.

Table 1. Statistics of peak-to-peak variations of ∆hm-GNSS and ∆hm-GRACE [mm].

∆h Min Max Median Std

∆hm-GNSS 10.2 38.2 21.7 4.0
∆hm-GRACE 13.8 21.4 20.0 1.6

The results presented in Table 1 indicate that although the medians of peak-to-peak variations
of the seasonal pattern in ∆hm-GNSS and ∆hm-GRACE are in a good agreement, the dispersion and the
standard deviation of those variations for ∆hm-GNSS with respect to the corresponding ones obtained
from ∆hm-GRACE are higher by a factor of approx. 3.5, and approx. 2.5, respectively. The higher
dispersion and standard deviation of peak-to-peak variations in ∆hm-GNSS may reveal that monthly
vertical deformations obtained from GNSS data include the local deformation signal which cannot be
detected from GRACE/GRACE-FO satellite missions’ data. The sources of such local deformation signal
may be (i) thermoelastic deformation of the monuments caused by seasonal variation of the Earth’s
temperature [61] and (ii) poroelastic deformations caused by large variation of the water table [62].
Besides these geophysical sources, systematic errors in GNSS observations such as mismodeling of
daily and subdaily tidal signals [63], presence of GPS draconitic signal [37,64] as well as the variation in
the phase center and the local multipath, can also induce the specific ∆hm-GNSS pattern for a station [65].

Furthermore, along with the seasonal pattern of ∆h obtained from GNSS and GRACE/GRACE-FO
satellite missions data illustrated in Figure 4, there are also linear trends in the monthly vertical
deformation of the Earth’s surface (Figure 5). Statistics of these linear trends are given in Table 2.
It should be mentioned that due to limited GNSS data at SKSL, SKSK and SKSV stations of the
ASG-EUPOS network, linear trends of ∆h have not been estimated at these sites. The results presented
in Figure 5 and Table 2 indicate positive linear trends for ∆hm-GRACE at the ASG-EUPOS sites, ranging
from 0.67 mm/year to 1.86 mm/year. These trends can be ascribed to the annual water depletion
over the territory of Poland, observed beyond the extreme land hydrology events, i.e., flooding and
increased precipitation, occurred in 2010–2011 (e.g., [66]). It should be noted that magnitudes of linear
trends estimated from ∆hm-GRACE depend on both the covering period and number of months used.
The ∆hm-GNSS reflects variable linear trends ranging from −1.47 mm/year to 2.16 mm/year. The reasons
for these different linear trends can be attributed to the unstable monument [67], anthropogenic factors
such as subsidence of mining areas and over exploitation of groundwater [68] and the presence of
diverse geological structures such as Eastern European Precambrian platform, young western and
middle Paleozoic platform as well as Carpathian region [69]. As the factors causing linear trends in
∆hm-GNSS and ∆hm-GRACE are different, the distinctive mismatch between linear trends of ∆hm-GNSS

and ∆hm-GRACE for some ASG-EUPOS GNSS stations such as PRZM, SWKI occurs. The linear trends
in ∆hm-GRACE in the case of ASG-EUPOS GNSS stations PRZM, SWKI can primarily be attributed
to the manifestation of the elastic response of the water depletion over the area. On the other hand,
the corresponding linear trends in ∆hm-GNSS can be ascribed to the monumental instability of the
ASG-EUPOS GNSS station, anthropogenic activity and water mass change occurring in limited spatial
scales, e.g., few kilometers, as well as the presence of geological features. The uncommon linear
trends in ∆hm-GNSS and ∆hm-GRACE may result in disagreements between vertical deformations of the
Earth’s surface determined from GNSS and GRACE/GRACE-FO satellite missions’ data. Time series of
∆hm-GNSS and ∆hm-GRACE were thus detrended for further analysis.
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Figure 5. Linear trends of vertical deformation of the Earth’s surface estimated at ASG-EUPOS sites
using GRACE/GRACE-FO satellite missions and GNSS data.

Table 2. Statistics of linear trends of vertical deformation of the Earth’s surface estimated at ASG-EUPOS
sites (except sites SKSL, SKSK and SKSV) using GRACE/GRACE-FO satellite missions and GNSS data
[mm/year].

∆h Min Max Median Std

∆hm-GNSS −1.47 2.16 0.07 0.58
∆hm-GRACE 0.67 1.86 0.83 0.25

In order to compare monthly vertical deformations of the Earth’s surface ∆h determined from GNSS
and GRACE/GRACE-FO satellite missions’ data, correlations and standard deviations of the differences
between (1) ∆hm-GNSS and ∆hm-GRACE, and (2) detrended ∆hm-GNSS and detrended ∆hm-GRACE were
computed. Figure 6 depicts coefficients of correlations between ∆h obtained from GNSS data and
the corresponding ones obtained from GRACE/GRACE-FO satellite missions’ data at the locations of
the ASG-EUPOS stations investigated. Statistics of these correlation coefficients are given in Table 3.
The results presented in Figure 6 and Table 3 reveal that at 68% of the ASG-EUPOS GNSS stations
investigated, strong correlations (correlation coefficients ranging from 0.60 to 0.90) between ∆hm-GNSS

and ∆hm-GRACE were obtained. Moderate/weak correlations (correlation coefficients ranging from
0.30 to 0.59) between ∆hm-GNSS and ∆hm-GRACE were observed at 30% of the stations investigated.
At two ASG-EUPOS GNSS stations (PRZM and NWT1) correlations coefficients between ∆hm-GNSS and
∆hm-GRACE were found to be 0.13 and 0.29, respectively. After detrending ∆hm-GNSS and ∆hm-GRACE,
strong correlations between ∆hm-GNSS and ∆hm-GRACE were obtained at 93% of the GNSS stations
investigated. At 7% of the stations, moderate/weak correlations between ∆hm-GNSS and ∆hm-GRACE

were obtained. Thus, values of correlations coefficients have clearly improved after detrending. For the
ASG-EUPOS stations PRZM the value of the correlation coefficient increased to 0.71 after the removal
of linear trends from ∆hm-GNSS and ∆hm-GRACE (cf. Figures 4 and 5). On the contrary the value of
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the correlation coefficient at the station NWT1 does not change much despite removing the linear
trend. However, it should be noted that the value of the coefficient of correlation between ∆hm-GNSS

and ∆hm-GRACE in the case of NWT1 can be less reliable because of the shorter time span and gaps
in ∆h time series. Overall, the results presented in Figure 6 show strong correlations between ∆h
obtained from GNSS data and corresponding ones determined using GRACE/GRACE-FO data. Strong
correlations between ∆h suggest that surface mass loading effects are the dominant contributor to the
vertical deformation of the Earth’s surface over the area investigated and also indicate consistency of
the GNSS and GRACE/GRACE-FO satellite missions’ data in monitoring surface mass loading effects.
The cases of weak correlations between ∆h obtained from GNSS data and the corresponding ones
determined using GRACE/GRACE-FO satellite missions’ data may be attributed to variety of reasons
such as local temporal variations of water masses and GNSS station dependent errors. However, in this
study the values of correlation coefficients got improved after removing the linear trends and there are
only two ASG-EUPOS stations (NWT1 and WIEL) for which values remain under 0.5. The case of
NWT1 has already been stated above, and regarding WIEL the authors believe that the value of the
correlation coefficient may get improved with the use of the longer data span.
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Figure 6. Coefficients of correlation between vertical deformations of the Earth’s surface determined
from ASG-EUPOS and GRACE/GRACE-FO satellite missions’ data.

Table 3. Statistics of correlation coefficient values presented in Figure 6.

∆h Min Max Mean

GNSS–GRACE 0.13 0.91 0.64
GNSS–GRACE (detrended) 0.31 0.83 0.72

The standard deviations of the differences between ∆h obtained from GNSS data and the
corresponding ones obtained from GRACE/GRACE-FO satellite missions’ data were illustrated in
Figure 7. Statistics of these standard deviations are given in Table 4. They reveal that the mean value
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of standard deviations of the differences between ∆hm-GNSS and ∆hm-GRACE decreased by ca. 18% (i.e.,
from 4.2 to 3.4 mm) after removing the linear trend of ∆h specified in Figure 5. The reduced value
of standard deviations of ∆h differences after removing linear trend in ∆h signifies the reduction of
amplitude discrepancy between detrended ∆hm-GNSS and detrended ∆hm-GRACE in relation to that of
∆hm-GNSS and ∆hm-GRACE. Overall, the improvement, in terms of correlation coefficients (Figure 6) and
standard deviations of the ∆h differences (Figure 7), obtained after removing linear trends in ∆h is
observed. The results also indicate that although ∆h obtained from GNSS and GRACE/GRACE-FO
data agree well, linear trends in ∆h can vary significantly. Therefore, detrended ∆hm-GNSS are further
used for estimating ∆EWT.
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Figure 7. Standard deviations of the differences between vertical deformations of the Earth’s surface
determined from ASG-EUPOS and GRACE/GRACE-FO satellite missions’ data.

Table 4. Statistics of standard deviation values presented in Figure 7 [mm].

∆h Min Max Mean

GNSS–GRACE 2.6 7.3 4.2
GNSS–GRACE (detrended) 2.5 5.2 3.4

4.2. Monthly Variations of Equivalent Water Thickness

Monthly variations of equivalent water thickness ∆EWTm-GRACE and ∆EWTm-GNSS were
determined with the use of Equations (2) and (4) as well as data from GRACE/GRACE-FO satellite
missions and GNSS data from the ASG-EUPOS CORS network, respectively. Moreover, monthly
variations of equivalent water thickness ∆EWTm-WGHM were obtained from the WGHM. In order to be
consistent with the detrended ∆EWTm-GNSS, linear trends in ∆EWTm-GRACE and ∆EWTm-WGHM were
also removed. Then, combined solutions ∆EWTm-CombSol were determined using Equation (5) with the
weights wGNSS and wGRACE estimated by Equation (4) and ∆EWT determined from GRACE/GRACE-FO
and GNSS data. The ratio between these weights (i.e., wGNSS:wGRACE) is illustrated in Figure 8.
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The maximum (i.e., 0.73) and minimum (i.e., 0.14) values of this ratio were observed at the GNSS
stations CHOJ and SIDZ, respectively. For ca. 72% of GNSS stations investigated (i.e., 69 GNSS stations
of ASG-EUPOS network), the ratio between wGNSS and wGRACE is at the level of 0.46 ± 0.13. Time series
of ∆EWTm-GRACE, ∆EWTm-GNSS and ∆EWTm-CombSol as well as the corresponding ∆EWTm-WGHM

obtained from the WGHM are illustrated in Figure 9. It is observed from the results presented in
Figure 9 that likewise ∆h, there is also a seasonal pattern in ∆EWT. This seasonal pattern can be
attributed to seasonal mass variations related with the hydrological cycle over the territory of Poland.
Statistics of peak-to-peak variations of the seasonal pattern of the monthly equivalent water thickness
variations are given in Table 5. From the values of medians and standard deviations, it is clear that
overall ∆EWTm-CombSol are in better agreement with ∆EWTm-WGHM than those of ∆EWTm-GNSS and
∆EWTm-GRACE.
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combined solutions ∆EWTm-CombSol as well as the corresponding ∆EWTm-WGHM obtained from
the WGHM.
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Table 5. Statistics of peak-to-peak variations of ∆EWTm-GNSS, ∆EWTm-GRACE, ∆EWTm-CombSol and
∆EWTm-WGHM [cm].

∆EWT Min Max Median Std

∆EWTm-GNSS 11.1 56.9 38.5 8.5
∆EWTm-GRACE 11.1 22.2 18.7 3.2
∆EWTm-CombSol 6.7 28.4 22.2 4.3
∆EWTm-WGHM 5.7 37.1 21.4 4.9

In order to assess the performance of GNSS data from ASG-EUPOS CORS network for the
determination of ∆EWT as well as for improving ∆EWT determined from GRACE/GRACE-FO
satellite missions’ data, correlations between (1) ∆EWTm-GNSS and ∆EWTWGHM, (2) ∆EWTm-GRACE

and ∆EWTm-WGHM, and (3) ∆EWTm-CombSol and ∆EWTm-WGHM have been estimated (Figure 10 and
Table 6). Strong correlations (correlation coefficients ranging from 0.60 to 0.70), between ∆EWTm-GNSS

and ∆EWTm-WGHM were obtained at 32% of GNSS sites investigated; moderate/weak correlations
(correlation coefficients ranging from 0.30 to 0.59), were obtained at 56% of the GNSS sites investigated;
at about 12% of GNSS sites investigated, no correlations (correlation coefficient ranging from −0.41
to 0.29) have been obtained. In terms of correlations between ∆EWTm-GRACE and ∆EWTm-WGHM,
strong correlations (correlation coefficients ranging from 0.60 to 0.79) have been obtained at 57% of the
stations investigated; moderate/weak correlations (correlation coefficients ranging from 0.30 to 0.59)
were obtained in the case of 38% of the stations investigated; at the remaining 5% of the GNSS sites
investigated correlation coefficients range from −0.04 to 0.29. It is clear that the obtained correlations
between ∆EWTm-GRACE and ∆EWTm-WGHM are much stronger than the corresponding ones between
∆EWTm-GNSS and ∆EWTm-WGHM. The reason for this may be ascribed to the fact that ∆EWTm-GRACE

is obtained directly from the monitoring of the gravitational effect of mass variations within the Earth’s
system, while ∆EWTm-GNSS is determined by inverting the response of the Earth’s surface to the mass
variation at a point. The response of the Earth’s surface to the mass variation depends upon the
underlying crustal properties. Moreover, ∆EWTm-GNSS is sensitive to the local signal and the presence of
any such signal could affect the ∆EWTm-GNSS. At 83% of the GNSS sites investigated, strong correlation
(correlation coefficients from 0.60 to 0.80) between ∆EWTm-CombSol and ∆EWTm-WGHM were obtained.
At 16% of the GNSS stations investigated, the correlations are moderate/weak. For the remaining 1% of
the GNSS stations investigated (one station) the correlation coefficient is 0.27. The values of coefficients
of correlation between ∆EWTm-CombSol and ∆EWTm-WGHM have evidently been improved at 85% of
the GNSS stations in comparison to values of coefficients of correlation between ∆EWTm-GRACE and
∆EWTm-WGHM. Furthermore, combining ∆EWT obtained from GNSS data with the corresponding ones
determined from GRACE/GRACE-FO satellite missions’ data does not change, however, the correlation
coefficients’ values at 3% of the GNSS stations investigated. At 12% of the GNSS stations, the addition
of GNSS data worsen the ∆EWT in terms of correlations with the ∆EWTm-WGHM. The good agreement,
in terms of correlations, between ∆EWTm-CombSol and ∆EWTm-WGHM, indicates that GNSS data from
CORS network stations provides in general valuable information to improve GRACE/GRACE-FO
solutions for monitoring mass variation within the Earth’s system.
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Table 6. Statistics of correlation coefficient values presented in Figure 10.

∆EWT Min Max Mean

GNSS −0.41 0.71 0.51
GRACE −0.04 0.79 0.58

Combined solution 0.27 0.83 0.67

With the use of Equation (7), the differences δ∆EWTm-GNSS, δ∆EWTm-GRACE and δ∆EWTm-CombSol

were determined. Standard deviations of these differences were depicted in Figure 11. Statistics of these
standard deviations are given in Table 7. The results presented in Figure 11 and Table 7 reveal that the
mean values of standard deviations of differences δ∆EWTm-GNSS, δ∆EWTm-GRACE and δ∆EWTm-CombSol

are 7 cm, 5 cm and 4 cm, respectively. The values of standard deviations of δ∆EWTm-CombSol decreased
at 44 sites of the ASG-EUPOS CORS network in comparison to standard deviations of δ∆EWTm-GRACE.
At 48 sites of the ASG-EUPOS CORS network, standard deviations of δ∆EWTm-CombSol remained the
same as the values of standard deviations of δ∆EWTm-GRACE. There are only 4 sites of the ASG-EUPOS
CORS network where standard deviations of δ∆EWTm-CombSol increased in comparison to that of
the δ∆EWTm-GRACE. Although there are improvements in the median values of standard deviations
of δ∆EWTm-CombSol in comparison to the corresponding ones of δ∆EWTm-GRACE, they are limited to
only 46% of GNSS sites investigated. This can be attributed to the amplitude differences, due the
fact that GNSS data present ∆EWT at points, while GRACE/GRACE-FO satellite mission data and
the WGHM present ∆EWT over an area. Furthermore, amplitude differences between ∆EWTm-GRACE

and ∆EWTm-WGHM may be due to (i) the coarse spatial resolution of the GRACE/GRACE-FO satellite
missions data (ca. 3◦ × 3◦ at the equator), and (ii) the spatial resolution of the WGHM (ca. 0.5◦ × 0.5◦),
as well as uncertainties of the WGHM related to modeling of storage capacity, fluxes, and human
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intervention [70]. As the data from GNSS, GRACE/GRACE-FO satellite missions and the WGHM
characterize with differences between each other, so incorporation of ∆EWTm-GNSS to ∆EWTm-GRACE

may not reduce standard deviations of δ∆EWTm-CombSol in comparison to that of δ∆EWTm-GRACE.
Since, there are only 4 GNSS stations where the addition of ∆EWTm-GNSS to ∆EWTm-GRACE increase the
standard deviation values of δ∆EWTm-CombSol, addition of ∆EWTm-GNSS to ∆EWTm-GRACE, in general,
either reduced or did not change the values of standard deviations in comparison to the corresponding
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Table 7. Statistics of standard deviation values presented in Figure 11 [m].

∆EWT Min Max Mean

GNSS 0.03 0.12 0.07
GRACE 0.03 0.07 0.05

Combined solution 0.02 0.06 0.04

5. Conclusions and Discussions

In this study, monthly vertical deformations of the Earth’s surface ∆h as well as temporal variations
of equivalent water thickness ∆EWT were determined using GNSS data from the ASG-EUPOS
CORS network as well as the CSR RL06 GRACE/GRACE-FO-based GGMs over the area of Poland.
Combined solutions of ∆EWT were developed by combining ∆EWT obtained from GNSS data and the
corresponding ones determined from GRACE satellite mission data. The ∆EWT obtained from GNSS
data, GRACE/GRACE-FO satellite missions’ data and from the determined combined solutions of
∆EWT were evaluated using the corresponding values obtained from the WGHM hydrological model.
The main findings reveal:
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Over the area investigated, the seasonal patterns in ∆h determined from GNSS data of the
ASG-EUPOS CORS network ∆hm-GNSS are in a good agreement with the corresponding ones determined
from GRACE/GRACE-FO satellite missions’ data ∆hm-GRACE. The maximum and minimum values
of ∆h occur during the summer–fall and winter–spring seasons, respectively. Linear trends in the
time series of ∆hm-GNSS and ∆hm-GRACE are, however, not fully consistent. It is found that ∆hm-GRACE

show positive linear trends which can be related with water depletion over the territory of Poland.
In the case of ∆hm-GNSS, the nature of linear trends significantly differs at the sites of the ASG-EUPOS
CORS network. These differences in linear trends of ∆hm-GNSS can be due to monumental instability,
anthropogenic activity, and geological features. Strong correlations between ∆hm-GNSS and ∆hm-GRACE

were obtained at 68% of GNSS sites investigated. When removing the linear trends in ∆hm-GNSS

and ∆hm-GRACE, the number of stations with strong correlations between detrended ∆hm-GNSS and
detrended ∆hm-GRACE increased to 93% of GNSS sites investigated. Median values of standard
deviations of differences between ∆hm-GNSS and ∆hm-GRACE as well as between detrended ∆hm-GNSS

and detrended ∆hm-GRACE are 4.1 mm and 3.4 mm, respectively. Overall, removing the linear trends in
∆hm-GNSS and ∆hm-GRACE results in clear improvements of the fit, in terms of both correlations and
standard deviations of the difference between ∆h determined from GNSS data of the ASG-EUPOS
CORS network to the corresponding ones determined from GRACE/GRACE-FO satellite mission data.

Furthermore, ∆EWT determined from GRACE/GRACE-FO satellite missions’ data (∆EWTm-GRACE)
and from GNSS data of the ASG-EUPOS CORS network (∆EWTm-GNSS) as well as their combined
solutions ∆EWTm-CombSol are also in a good agreement with the ∆EWTm-WGHM obtained from
the hydrological model WGHM. Strong correlations between (1) ∆EWTm-GNSS and ∆EWTm-WGHM,
(2) ∆EWTm-GRACE and ∆EWTm-WGHM, as well as (3) ∆EWTm-CombSol and ∆EWTm-WGHM were obtained
at 32%, 57% and 83% of the GNSS sites investigated, respectively. It has been found that the combination
of ∆EWTm-GNSS and ∆EWTm-GRACE improves the determination of ∆EWT, in terms of correlations
coefficients, at 85% of GNSS sites investigated in comparison to the one obtained with the use of
GRACE/GRACE-FO satellite missions’ data only. The median values of standard deviations of
differences ∆EWTm-GNSS, ∆EWTm-GRACE, and ∆EWTm-CombSol with respect to ∆EWTm-WGHM are 7 cm,
5 cm and 4 cm, respectively. The improvements, in terms of standard deviations of the differences,
obtained for ∆EWTm-CombSol in comparison to ∆EWTm-GRACE are limited to 46% of the GNSS stations
investigated, however, there are only 4% of the GNSS sites where standard deviations of the difference
between ∆EWTm-CombSol and ∆EWTm-WGHM (i.e., δ∆EWTm-CombSol) are larger than the corresponding
ones obtained from the differences between ∆EWTm-GRACE and ∆EWTWGHM (i.e., δ∆EWTm-GRACE).
In general, the combination of ∆EWTm-GNSS and ∆EWTm-GRACE either reduce or do not change standard
deviations of δ∆EWTm-CombSol in comparison to the corresponding ones of δ∆EWTm-GRACE.

Although linear trends in ∆h estimated from GNSS data of the ASG-EUPOS CORS network
and the corresponding ones determined from GRACE/GRACE-FO satellite missions data are not
fully consistent, the agreement in the seasonal pattern of ∆h and ∆EWT obtained from these both
data types demonstrates the capability of using stations of the ASG-EUPOS CORS network as
sensors for the determination of temporal mass variations within the Earth’s system. Moreover,
incorporation of ∆EWTm-GNSS to ∆EWTm-GRACE provides improved solutions for sensing mass
variation of the Earth’s surface. The ∆EWTm-CombSol developed from this incorporation can be thought
as optimization of the determination of mass variations using GNSS data from the ASG-EUPOS CORS
network and GRACE/GRACE-FO satellite mission data. This is due to the coarse spatial resolution
of GRACE/GRACE-FO satellite mission data while GNSS provides local information about mass
variations. Thus, ∆EWTm-GNSS and ∆EWTm-GRACE are complementary to each other.

Overall, the results obtained indicate that although national GNSS CORS networks are mainly
developed for precise positioning related applications, they evidently provide a valuable information
complementary to the one obtained from satellite data for the determination of temporal mass variations
within the Earth’s system. Data from the ASG-EUPOS CORS network in Poland improve models of
temporal mass variations within the Earth’s system obtained from GRACE/GRACE-FO satellite missions’
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data. However, the use of other national GNSS CORS networks operated worldwide for determining
temporal mass variations within the Earth’s system as well as for improving GRACE/GRACE-FO
satellite missions’ solutions is a subject of future investigation.
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