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Abstract: Accurate and continuous monitoring of leaf area index (LAI), a widely-used vegetation 
structural parameter, is crucial to characterize crop growth conditions and forecast crop yield. 
Meanwhile, advancements in collecting field LAI measurements have provided strong support for 
validating remote-sensing-derived LAI. This paper evaluates the performance of LAI retrieval from 
multi-source, remotely sensed data through comparisons with continuous field LAI measurements. 
Firstly, field LAI was measured continuously over periods of time in 2018 and 2019 using LAINet, 
a continuous LAI measurement system deployed using wireless sensor network (WSN) technology, 
over an agricultural region located at the Heihe watershed at northwestern China. Then, cloud-free 
images from optical satellite sensors, including Landsat 7 the Enhanced Thematic Mapper Plus 
(ETM+), Landsat 8 the Operational Land Imager (OLI), and Sentinel-2A/B Multispectral Instrument 
(MSI), were collected to derive LAI through inversion of the PROSAIL radiation transfer model 
using a look-up-table (LUT) approach. Finally, field LAI data were used to validate the multi-
temporal LAI retrieved from remote-sensing data acquired by different satellite sensors. The results 
indicate that good accuracy was obtained using different inversion strategies for each sensor, while 
Green Chlorophyll Index (CIgreen) and a combination of three red-edge bands perform better for 
Landsat 7/8 and Sentinel-2 LAI inversion, respectively. Furthermore, the estimated LAI has good 
consistency with in situ measurements at vegetative stage (coefficient of determination R2 = 0.74, 
and root mean square error RMSE = 0.53 m2 m−2). At the reproductive stage, a significant 
underestimation was found (R2 = 0.41, and 0.89 m2 m−2 in terms of RMSE). This study suggests that 
time-series LAI can be retrieved from multi-source satellite data through model inversion, and the 
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LAINet instrument could be used as a low-cost tool to provide continuous field LAI measurements 
to support LAI retrieval. 

Keywords: Leaf area index; PROSAIL; look-up-table (LUT); multi-source satellite data; LAINet; 
wireless sensor network (WSN) 

 

1. Introduction 

Leaf area index (LAI) of terrestrial vegetation is a widely used vegetation structural parameter, 
defined as one half the total leaf area per unit ground area [1,2]. It is a crucial driving factor for 
climate, hydrology, biogeochemistry, and ecology in ecosystem process-based models [3]. It has been 
considered as one of the key biophysical parameters among eighteen terrestrial Essential Climate 
Variables (ECVs) by the Global Climate Observing System (GCOS) community [4]. Due to the 
temporal variation in LAI throughout the growing season, accurate estimation of the seasonal 
dynamics of LAI is of great importance to precision agriculture (e.g., above-ground biomass 
estimation [5]) and model-driven scientific research [6,7]. 

LAI can be measured in situ using hand-held instruments or estimated from remote-sensing 
date acquired by various sensors. A wide-range of field LAI measuring methods and instruments are 
available [8]. While direct methods (e.g., harvesting leaves and measuring leaf area using the LI-3000 
portable leaf area meter) are desirable as they measure true LAI (LAIt), indirect methods to derive 
effective LAI (LAIe) have also been widely used due to their high efficiency. In particular, the 
development of automated ground LAI measurement technology makes it more convenient to collect 
time-series LAI. For example, LAINet is an emerging indirect tool to collect LAI automatically at fixed 
positions continuously based on a WSN technology [9,10]. It consists of four components, including 
an above-canopy node, a below-canopy node, a central node, and a solar power supply system. 
Precisely, LAINet can measure the effective Plant Area Index (PAIe) from multi-point directional 
transmittance based on the Beer-Lambert Law, as the sensors do not discriminate leaves with 
different chlorophyll contents from other plant tissues [9]. Other similar automated LAI 
measurement methods, such as the PAI Autonomous System from Transmittance Instantaneous 
Sensors at 57° (PASTIS-57) instrument [11,12], automated digital hemispherical photography (DHP) 
[13,14], automated digital cover photography [15], and terrestrial laser scanning [16] have been 
developed. 

LAI estimation from remote-sensing data has unique advantages in terms of large spatial 
coverage and continuous temporal resolution compared with field LAI measurement. During the last 
two decades, two primary types of methods have been used to derive LAI from high-resolution 
satellite data: (1) empirical/semi-empirical methods; (2) physical methods based on radiative transfer 
modelling (RTM), e.g., the combined PROSPECT leaf optical properties model and SAIL canopy 
bidirectional reflectance model (i.e., PROSAIL [17–19]), or the Discrete Anisotropic Radiative 
Transfer model (DART) [20]. Compared with the statistical method, the physical method is more 
generic for deriving LAIs of different vegetation types with fewer field LAI measurements [17]. 
However, the inversion of an RTM is an “ill-posed” process, as LAI is only one of the variables 
affecting canopy reflectance. Various approaches have been proposed to deal with this issue, e.g., the 
look-up tables, machine learning [21], data assimilation [22], and incorporation of a prior knowledge. 
Errors can be introduced by uncertainties in the reflectance data through modeling and inversion 
algorithms [23]. The discrepancy and uncertainty of LAI derived from remote-sensing inversion 
should be further evaluated. 

The validation of remote-sensing LAI estimates is an independent process to help diagnose 
algorithm deficiencies, understand error sources, and further improve the accuracy of LAI products 
[24]. In this context, field LAI measurements are usually used as a benchmark. However, due to a 
scale mismatch, discrepancies between field LAI measurements and pixel values in LAI products 
pose a challenge to operational applications [23,25]. The Committee on Earth Observation Satellites 
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(CEOS) Land Product Validation (LPV) subgroup proposed a “bottom-up” validation framework 
[26], which is internationally recognized and widely used [27]. Following this framework, to quantify 
the uncertainties of global LAI products, such as the Moderate Resolution Imaging 
Spectroradiometer (MODIS LAI) [3], the Visible Infrared Imager Radiometer Suite (VIIRS) LAI [28], 
the Global Land Surface Satellite (GLASS) LAI [29], and the Copernicus Global Land Service LAI [30], 
more systematic in situ LAI measurements are needed over time and across space. Meanwhile, due 
to the universality of spatial heterogeneity, representative and spatially intensive sampling is 
necessary to measure LAI, which can increase the cost of human labor for ground data collection 
using hand-held instruments. At this point, automated LAI instruments with acceptable accuracy can 
substantially reduce the costs of field LAI collection. 

Besides, high-quality satellite images with fine spatial and temporal resolution are useful to up-
scale field LAI measurements to match with moderate (0.1—1km) and coarse resolution (>1km) LAI 
products. Currently, decametric-resolution optical image data from a single-satellite sensor are 
limited in temporal resolution. For example, the Landsat time-series images with a 16-day repeat 
cycle are not able to provide near-real-time crop phenology and dynamic monitoring, and this can 
become worse when there is cloud interference or other unfavorable weather conditions such as rain 
and haze. With finer spatial and temporal resolution, Sentinel-2A/B satellites are promising but are 
still affected by cloud interference. Hence, it is difficult to acquire enough high-quality images from 
a single high-resolution satellite to capture the temporal variability of LAI throughout the growing 
season. While data fusion approaches were used to generate daily and gap-free images at a finer 
spatial resolution [31], it is difficult to quantify the uncertainty induced by the fusing algorithms. A 
simple combination of multi-source RS data from different satellite sensors remains a direct option. 
This requires consistent LAI retrievals from different satellite sensors with high quality. 

The goal of this study is to evaluate LAI retrievals from multi-source satellite data using ground 
LAI measurements acquired by LAINet. The specific objectives are to (1) evaluate the stability and 
accuracy of LAINet measurements; (2) estimate LAI from Landsat 7/8 and Sentinel-2 data through 
inversion of the PROSAIL model; and (3) assess the difference between LAI inversion and field 
measurement during the whole growing season of corn. 

2. Materials and Methods 

2.1. Study Area and Field Data Collection 

The study site is approximately 4×4km, located in the middle reach of the Heihe watershed, an 
artificial oasis in northwest China (38°80ʹ N, 100°40ʹ E). The area is relatively flat with an average 
elevation of 1556 m. It belongs to the cold arid climate according to the Köben-Geiger climate 
classification [32,33]. The average annual temperature and precipitation are 6~8℃  and 140mm, 
respectively. Corn is planted at the end of April and harvested in mid-September. Figure 1 shows the 
location of the study area and the spatial distribution of field observation plots. 
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Figure 1. The study area (left) and field observation plots in 2018 and 2019 (right). The background 
map was a color composite Sentinel-2B image (Band 4-3-2) acquired on 30th July 2019. 

In situ LAI was measured from June 11 to September 13 in 2018, and from June 1 to September 
13 in 2019. LAI was measured using three instruments, LAINet, LAI-2200C plant canopy analyzer, 
and LI-3000. The frequency of measurements is shown in Figure 2. LAINet measurements were used 
for evaluating LAI retrievals from RS images. The algorithm to derive in situ LAI from LAINet 
measurements is briefly introduced in Section 2.3, and more detailed information can be found in Qu 
et al., 2014 [9]. In 2018, three 30×30m corn plots were selected. In each plot, five nodes installed 
understory were deployed to measure the transmitted solar radiation, and one above-canopy node 
was fixed on a flux tower nearby to measure the incoming solar radiation after DOY 192. Before this, 
one above-canopy node was deployed per plot. In 2019, six 30×30m corn plots were selected, with 
four below-canopy nodes and one above-canopy node per plot. The LAINet datasets of both years 
have been released publicly via the National Science & Technology Infrastructure 
(http://www.tpdc.ac.cn/zh-hans/, in Chinese). Measurements corresponding to each below-canopy 
node were obtained from LAI-2200C. For LAINet and LAI-2200C, field LAI measurements within a 
plot were averaged to represent the plot LAI. Destructive LAI was measured using LI-3000 from three 
corn plants per plot. 

 

Figure 2. Temporal distribution of in situ leaf area index (LAI) measurement using three instruments 
during the 2018 and 2019 seasons. DOY stands for day of year (for instance, DOY 210 is the 210th day 
of this year). 

2.2. Remote-Sensing Data 

The satellite data used in this study were acquired by Landsat 7 the Enhanced Thematic Mapper 
Plus (ETM+) (Level-2), Landsat 8 the Operational Land Imager (OLI) (Level-2), and Sentinel-2A/B 
Multispectral Instrument (MSI) (Level-1C) (Table 1). 

Table 1. Acquisition dates of remote-sensing (RS) data collected over the study area for 2018 and 
2019. DOY stands for day of year. 

Years Sensors DOY 

2018 

Sentinel-2 MSI 171, 196, 201, 206, 211, 216, 221, 226, 256 

Landsat 8 OLI 168, 200, 216, 232 

Landsat 7 ETM+ 192, 256  

2019 

Sentinel-2 MSI 181, 186, 211, 216, 226, 256 

Landsat 8 OLI 203 

Landsat 7 ETM+ 163, 179, 195, 211, 227, 243  

Level-2 surface reflectance images acquired by ETM+ and OLI were downloaded from the 
United States Geological Survey (USGS) Land Product Characterization System 
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(https://earthexplorer.usgs.gov/). The data have a spatial resolution of 30m in the Universal 
Transverse Mercator (UTM) projection. Both ETM+ and OLI have a similar band setting. No missing 
data were used in the Landsat ETM+ SLC−off product, as nothing was done to fill the gaps. The 
quality assessment values stored in the quality assessment band (BQA) were used for removing 
pixels influenced by cloud, and only pixels marked as clear terrain were selected. For Landsat 7, Band 
2 (G: green, 0.519—0.601 nm), Band 3 (R: red, 0.631—0.692 nm), Band 4 (NIR: near-infrared, 0.772—
0.898 nm), Band 5 (SWIR-1: shortwave infrared 1, 1.547—1.749 nm), and Band 6 (SWIR-2: shortwave 
infrared 2, 2.064—2.345 nm) were used for LAI retrieval. For Landsat 8, Band 3 (G: green, 0.533—
0.590 nm), Band 4 (R: red, 0.636—0.673 nm), Band 5 (NIR: near-infrared, 0.851—0.879 nm), Band 6 
(SWIR-1: shortwave infrared 1, 1.566—1.651 nm), and Band 7 (SWIR-2: shortwave infrared 2, 2.107 – 
2.294 nm) were used for LAI retrieval. The blue band was excluded because of strong atmospheric 
interference in this band. In addition, three vegetation indices (VIs), including the normalized 
difference vegetation index (NDVI), the enhanced vegetation index (EVI2), and a chlorophyll index - 
Green (CIgreen) were also derived for inversion. NDVI was considered, as it has been widely used 
for estimating vegetation biophysical parameters [23,34,35]. Both EVI2 and CIgreen have a stronger 
correlation with LAI, especially when LAI is large [35]. The details on using these spectral bands and 
VIs are presented in methodology in Section 2.4. 

Sentinel-2A/B Level-1C images were also obtained from the USGS website. The European Space 
Agency’s Sen2Cor V2.5.5, a specialized processor to perform atmospheric correction, was used to 
derive Level-2 surface reflectance [36]. Band 3 (G: green, central wavelength at 0.560 nm), Band 4 (R: 
red, 0.665 nm), Band 8 (NIR: near-infrared, 0.842 nm), Band 5 (red-edge 1, 705 nm), Band 6 (red-edge 
2, 740 nm), and Band 7 (red-edge 3, 783 nm) were used in this study. All image bands were resampled 
to 20 m in UTM projection using the Sen2Cor tool. In addition to NDVI, EVI2, CIgreen, a chlorophyll 
index - Red-edge (CIred-edge) was derived for LAI estimation, because the red-edge index has been 
found to be more sensitive to LAI [35]. 

2.3. LAI Measurement Using LAINet 

LAINet was calibrated using an integrating sphere in the laboratory before it was deployed in 
the fields. LAI is measured through its relationship with light transmission via the Beer-Lambert law 

 T(θ,θL) = e-G(θL,θ)LAI/cos(θ)  (1) 

where T is light transmission through the canopy, and is calculated as the ratio of solar downwelling 
radiation measured by below-canopy nodes to that measured by above-canopy nodes, G  is the 
extinction coefficient, θL is the leaf inclination angle, and θ is the solar zenith angle. Following the 
method in Demon instruments [37], Equation (1) can also be expressed as follows 

 T θ  = e- A θL,θ g θL LAIdθL
π/2
0    (2) 

where 𝐴 𝜃 , 𝜃  is a trigonometric function, and 𝑔 𝜃  is a distribution function of θL. The detailed 
algorithm principle of LAINet can be found in Qu, et al. [10,38]. The leaf inclination angle of corn can 
be represented by probability density function with a vertically dominated orientation of leaf tissues, 
with an average inclination angle of 63.2° [10,38]. 

LAINet measured multi-angle light transmittance through vegetation canopy during the day from 
06:00 am to 18:30 pm on a daily basis, with a 10 min interval. All the measurements were used to 
estimate daily LAI. To reduce the error of daily LAI values introduced by weather conditions, LAINet 
measurements were smoothed using a 7-day moving window. Generally, a window of 3 to 8 days 
was acceptable to capture crop growth dynamics [38]. The performance of LAINet was evaluated by 
comparing its measurements with LAI measured by LAI-2200C and LI-3000. We characterized the 
measurement uncertainty of LAINet and LAI-2200C by relative predictive error (RPE) [39] 

 RPE= LAIindirect-LAIRef
LAIRef

×100%   (3) 
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where LAIindirect represents LAI measured by LAINet and LAI-2200C, and LAIRef represents LAI 
measured by LI-3000 as LAI true-values. 

2.4. Estimation and Validation of LAI Retrieved from Remote-sensing Data 

Statistical methods based on regression functions are not general, and the model parameters 
should be recalibrated when the site and time change. Hence, the physical method using the 
PROSAIL model was applied to LAI inversion in this study. The PROSAIL model has been widely 
used to simulate canopy spectral reflectance in croplands and grassland [31]. It combines the SAIL 
canopy reflectance model and the PROSPECT leaf optical model. For the leaf model (PROSPECT 5), 
six leaf parameters are needed, which include leaf structural parameter (N), leaf chlorophyll content 
(Cab), equivalent water thickness (Cw), leaf dry matter content (Cm), brown pigment content 
(Brown), and carotenoid content (Car). For the canopy model (4SAIL), eight parameters are needed, 
which include leaf area index (LAI), average leaf angle (ALA), diffuse/total radiation (skyl), soil 
brightness coefficient (ρsoil), hot spot effect (Hspot), solar zenith angle (SZA), view zenith angle (VZA), 
and relative azimuth angle (psi) (see Table 2). The reflectance and transmittance of leaf simulated 
from PROSPECT are used as inputs into SAIL. 

In this study, reflectance and VIs were employed separately to invert the PROSAIL model for 
LAI estimation. An LUT-based method was used to determine acceptable LAI solutions by matching 
the measured and simulated spectral reflectance or VI. Figure 3 shows the process flow of LAI 
estimation and validation from multi-source satellite data. 

 

Figure 3. Process flow of model derivation and validation 

Step1: Parameterization of the PROSAIL model 

Previous studies [40,41] showed that the reflectance at visible and NIR regions was weakly 
affected by Cm, N, and Cw but strongly influenced by ALA and LAI. Therefore, Cm, N, and Cw were 
generally given constant values [41]. In this study, the values and ranges of all parameters are listed 
in Table 2. 
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Table 2. List of canopy and leaf parameters applied in PROSAIL radiative transfer modelling (RTM) 
for modeling canopy surface reflectance 

Parameters Units Value/Range 𝑁—leaf structural parameter − 1—2.5 𝐶 —leaf chlorophyll content μg/cm  5—90 𝐶 —equivalent water thickness cm 0.004—0.07 C —leaf dry matter content  g/cm  0.0026—0.0132 

Brown—brown pigment content − 0 

Car—carotenoid content μg/cm  0.6—15.91 

LAI—leaf area index  m /m  0—7.0 

ALA—average leaf angle degree 20—80 𝑠𝑘𝑦𝑙—diffuse/total radiation − 0.1 ρ —soil brightness coefficient − 0—1 𝐻 —hot spot effect − 0.05—0.1 𝑆𝑍𝐴—solar zenith angle  degree acquired from metadata  𝑉𝑍𝐴—view zenith angle degree acquired from metadata psi—relative azimuth angle degree 0 

Step2: Creation of sensor-specific LUTs 

Sensor-specific LUTs on reflectance were generated using the Latin hypercube sampling 
method. When given the ranges, probability distribution or sampling intervals of each of the sensitive 
parameters, the model obtains the reflectance values over a specific band. Canopy reflectance was 
determined with the leaf-level models (i.e., PROSPECT 5) and canopy-level models (i.e., SAIL). The 
process to generate an LUT is to run the forward PROSAIL model using given model parameters 
(Table 2). The total number of records simulated in an LUT was 100,000. For the convenience of LAI 
inversion at subsequent steps and computational efficiency, simulated reflectance stored in LUTs was 
resampled to Landsat 7/8 and Sentinel-2 bands based on their corresponding spectral response 
functions. 

Step3: LAI estimation 

Two strategies can be used for LAI estimation from an LUT. Method 1 is to match satellite-
derived reflectance with simulated reflectance in the LUT in order to find corresponding parameters, 
e.g., LAI. For Landsat, four cases including single R, the combination of R and NIR, the combination 
of R, NIR, SWIR1 and SWIR 2, the combination of SWIR1 and SWIR 2, were  used in the inversion. 
For Sentinel-2, four cases including single G, R and NIR, Red-edge1 and NIR, a combination of three 
Red-edge bands, were used in the inversion. Method 2 is to match VI derived from satellite data with 
VI derived from simulated reflectance in the LUT. Table 3 shows four VIs in this study, and the 
reasons for selecting these indices are presented in Section 2.2. By comparing accuracies of LAI 
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retrieved from different VIs and reflectance, the VI or spectral bands with the best accuracy was 
selected for LAI estimation. 

Table 3. Vegetation indices used in this study 

Vegetation index Formulas Sensor References 
Normalized Difference 

Vegetation Index  
NDVI=(NIR−R)/(NIR+R) Landsat/Sentinel-2 [42] 

Enhanced Vegetation Index 2 EVI2=2.5(NIR−R)/(NIR+2.
4R+1) 

Landsat/Sentinel-2 [43] 

Green Chlorophyll index  CIgreen=NIR/G-1 Landsat/Sentinel-2 [44] 

Red-edge Chlorophyll index  
CIred-edge=NIR/Red-

edge 1 Sentinel-2 [44] 

A simple cost function (CF) based on the Root Mean Square Error (RMSE) between simulations 
and observations was used to help obtain acceptable LAI solutions 

 CFRef=
1
n

∑ (Refobserved i -Refsimulated i )2n
i=1    (4) 

 CFVI= (VIobserved-VIsimulated)2   (5) 

where n is the total number of bands used in the inversion (e.g., n = 2 for the combination of R and 
NIR bands ), Refobserved i  is the satellite-observed reflectance of band i , Refsimulated i  is the 
simulated reflectance of band i  in an LUT, VIobserved  is the value of VI calculated from 
satellite-observed reflectance, VIsimulated is the value of VI calculated from simulated reflectance in 
an LUT. Some studies suggested that the threshold of 10% was a good tradeoff between LAI accuracy 
and computing resources according to previous studies [31,45]. Some studies used threshold of less 
than 20% [46,47]. The selection of from 50 to 20% records is considered as a reasonable threshold 
range [31]. In this study, the first 100 records with the smallest CF values were selected, and the 
corresponding LAI values were averaged as estimated LAI [27]. 

Step4: Validation of LAI retrievals 

The field LAI measured using LAINet was used to validate LAI retrievals. Referring to a 
previous study [9], LAINet data seem to be closer to LAIt, possibly due to the leaf angle distribution 
adopted in LAINet algorithm. LAINet data were further adjusted with a scaling factor of 1.3 in this 
study. A total of 104 samples from the two years were available for the evaluation of LAI retrievals, 
16 for Landsat 8, 31 for Landsat 7, and 57 for Sentinel-2. Reflectance and VIs corresponding to each 
plot were derived from all satellite images. At each sample location, a 3×3 pixels window for 
Sentinel-2 and a 2×2 pixels window for Landsat 7/8 were used, and the average values were derived 
to reduce the potential geo-positioning errors. The RS-derived LAI were validated at the plot-scale 
using field LAI measurements collected by LAINet. Both the coefficient of determination (R2) and the 
root mean square error (RMSE) were used to quantify the performance and uncertainty of LAI 
estimates. 

3. Results 

3.1. Seasonal Changes of Field LAI using LAINet 

Seasonal variations of in situ LAI, as measured by LAINet, LAI-2200C, and LI-3000, are shown 
in Figure 4 for 2018 and Figure 5 for 2019. LAINet data shown in Figure 5 were smoothed with a 
moving window average algorithm. For both years, from June to September, LAI measured by 
LAINet ranged from 0.76 to 6.70 in 2018, and from 0.41 to 5.45 in 2019. 
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Figure 4. Temporal variation in field LAI measurements collected by LAINet, LAI-2200C, and LI-3000 
at 3 corn plots in 2018. DOY stands for day of year. 

 
Figure 5. Temporal variation in field LAI measurements collected by LAINet, LAI-2200C, and LI-3000 
at 6 corn plots in 2019. DOY stands for day of year. 

The dynamics of LAI for different corn plots measured by LAINet show similarity in the same 
year. A peak was found in the seasonal profile of measured LAI around DOY 192 in 2018. This was 
probably due to a change in the observation conditions of LAINet in the year, and weather conditions. 
The field deployment and installation of LAINet were improved in 2019. LAI measured in 2018 and 
2019 show an opposite trend later in the season (after DOY around 212). LAI at the later season (after 
DOY around 212) shows an increased trend in 2018 (Figure 4) but a slightly declining trend in 2019 
(Figure 5). To inspect this phenomenon, we compared the trends of LAINet to that of EVI2 derived 
from multiple RS images. The temporal variations in EVI2 and LAINet are also shown in Figure 4 
and Figure 5. For both years, EVI2 showed a decreasing trend after DOY 212, in conformity with the 
trends of measured LAI using the LAINet in 2019. This shows a potential measurement issue during 
senescent stage in 2018. The relationship between LAINet measurements and EVI2 are shown by the 
scatterplot in Figure 6. The figure reveals that in 2018, EVI2 decreased when LAINet measurements 
increased beyond 3.5, whereas this was not the case in 2019. Based on the aforementioned analysis, 
the LAINet measurements in 2018 appeared to be subjected to an overestimation at the later stage. 
Thus, LAI measured during that period were not used in subsequent validation of the remote-sensing 
retrievals. As a result, two Sentinel-2 images acquired on Sep 13th 2018 (DOY 256) and Aug 14th 
(DOY 226), and two Landsat 7 images acquired on Sep 13th 2018 and July 11th 2018 (DOY 192), were 
excluded. 
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Figure 6. Relationship between field LAI measurements and EVI2 for 2018 (a) and 2019 (b). The color 
bar indicates observation dates (i.e., DOY, day of year). 

LAI measured using LAI-2200C and LI-3000 on a few days in the two years generally followed 
the same trend as that measured using LAINet. There were three paired measurements (see Table 4) 
among three types of measurements on DOY 225 in 2019 to compute the RPE (see Equation 3). LAI 
values from LAINet and LAI-2200C underestimated LAIt values with a mean RPE of 4.4% and 23.7%, 
respectively. According to the statistics, the averaged LAI from LAINet, LAI-2200C, and LI-3000 was 
4.0, 3.1 and 4.2, respectively. Compared with measurement using LAI2200C, LAI derived from 
LAINet was more consistent with that of LI-3000. The ratio of averaged LAI value between LAINet 
(4.0) and LAI-2200C (3.1) was 1.3, which was used to adjust LAINet data so that measurements 
between the two sensors were consistent. After being adjusted, the absolute bias between LAINet 
and LAI-2200C decreased from 0.87 to 0.05. 

Table 4. Statistics of three kinds of field LAI measurements in 2019 

Plot LAINet LAI-2200C LI-3000 RPE/LAINet RPE/LAI-2200C 

Plot3 3.71 3.66 3.64 2.18% 0.76% 

Plot5 5.04 3.20 4.70 7.13% −31.88% 

Plot6 3.29 2.54 4.23 −22.36% −40.01% 

Mean 4.01 3.14 4.19 −4.35% −23.71% 

 

3.2. LAI Inversion from Landsat and Sentinel-2 Data 

For Landsat data, four combinations of band reflectance and three VIs (see Table 3) were used 
to estimate LAI. Figure 7 shows the comparison of LAI retrieved from Landsat surface reflectance 
with that measured using LAINet. Among the four band combinations, the combination of R, NIR, 
SWIR1 and SWIR2 reflectance performed the best for LAI estimation, with the lowest RMSE of 0.82 
(Figure 7 (c)). LAI estimation was the least successful when only the red band reflectance was used, 
with an R2 of 0.68 and the highest RMSE of 1.2. 
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Figure 7. Comparison of estimated and measured LAI using reflectance-based look-up-table (LUT) 
for Landsat 7/8. The spectral bands used for inversion correspond to (a) R; (b) R and NIR; (c) R, NIR, 
SWIR1 and SWIR2; (d) SWIR1 and SWIR2. Error bar represents the standard deviation of LAI 
retrievals. Color bar represents DOY (i.e., day of year) of images. 

Figure 8 shows the comparison of LAI retrieved from Landsat VIs with that measured using 
LAINet. CIgreen performed the best in estimating LAI, with the lowest RMSE of 0.72 and highest R2 
of 0.75 among the three selected VIs. Moreover, both Figure 7 and 8 showed an underestimation 
corresponding to both slope < 0.7 and negative bias when LAI is larger than 2.5. 
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Figure 8. Comparison of estimated and measured LAI using VI-based LUT for Landsat 7/8. The VIs 
used for inversion correspond to (a) NDVI; (b) EVI2; (c) CIgreen. Error bar represents the standard 
deviation of LAI retrievals. Color bar represents DOY (i.e., day of year) of images. 

For Sentinel-2, four combinations of spectral bands and four VIs (see Table 3) were used to 
estimate LAI. Figure 9 shows the performance of LAI estimation among four combinations of spectral 
bands tested with Sentinel-2. The green band performed the best for LAI estimation (Figure 9a), with 
the lowest RMSE of 0.57. Similarly, LAI was not well estimated using Sentinel-2 red and NIR (Figure 
9b). The other three situations performed similarly well with RMSE < 0.64. Compared to Green band, 
the combination of three red-edge bands yielded less accurate LAI estimation with a RMSE of 0.64. 
In addition, an LAI that is larger than 3.0 was more accurately estimated using the combination of 
three red-edge bands, which resulted in a slope of 0.81 between the measured and estimated LAI. 
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Figure 9. Comparison of LAI measured in situ and that estimated from reflectance-based LUT from 
Sentinel-2 data. The spectral bands used for inversion correspond to (a) G; (b) R, and NIR; (c) red-
edge 1 and NIR; (d) red-edge 1, red-edge 2 and red-edge 3. Error bar represents the standard deviation 
of LAI retrievals. Color bar represents DOY (i.e., day of year) of images. 

Figure 10 shows the performance of LAI estimation from VIs tested with Sentinel-2. LAI 
estimated using CIgreen performed best with RMSE of 0.53 (see Figure 10a). Similarly, the CIgreen 
derived from Sentinel-2 resulted in the best accuracy of LAI than both EVI2 and NDVI. In particular, 
LAI at high value was more accurately estimated using CIgreen than suing EVI2 and NDVI. 
However, a low LAI was less accurately estimated using CIgreen than using EVI2. The possible 
reason could be that CIgreen is affected more by soil reflectance than EVI2, and there is a greater 
proportion of exposed soil when LAI is low. The CIred-edge has similar performance with the 
CIgreen, while LAI at low value was not well estimated using the CIred-edge. 
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Figure 10. Comparison of LAI measured in situ and that estimated from VI-based LUT from Sentinel-
2 data. The VIs used for inversion correspond to (a) CIgreen; (b) CIred-edge1; (c) NDVI; (d) EVI2. 
Error bar represents the standard deviation of LAI retrievals. Color bar represents DOY (i.e., day of 
year) of images. 

3.3. Accuracy of LAI Inversion at Different Growth Stages 

Based on the above comparison of LAI estimations using different inversion strategies, 
comparable results were obtained for either Landsat 7/8 or Sentinel-2 data. In the following analysis, 
CIgreen for Landsat 7/8 and a combination of the three Red-edge bands for Sentinel-2 were used as 
the optimum inversion strategies for their lower RMSE. It was observed that LAI retrieved from the 
three red-edge bands of Sentinel-2 (Figure 9d) was more accurate (RMSE=0.64) than LAI derived from 
CIgreen of Landsat (RMSE= 0.72) during the entire growth season (Figure 8c). In particular, LAI 
derived from Sentinel-2 performed better around the 1:1 line at high LAI (> 3) regions. Similar 
underestimation was observed at the later growth stages. To further compare the accuracy between 
Landsat-derived LAI and Sentinel-2-derived LAI, the estimated LAI and measured LAI during the 
vegetative stage (before DOY 212) was compared. Figure 11a shows that the accuracy of LAI derived 
from Sentinel-2 improved as RMSE decreased from 0.64 to 0.45 when observation at the reproductive 
stage was removed (n decreased from 57 to 33) and R2 also increased from 0.45 to 0.68. Figure 11b 
shows that the accuracy of LAI derived from Landsat improved as RMSE decreased from 0.72 to 0.59 
when only LAI estimation at the vegetative stage was validated (n decreased from 47 to 34) and R2 
also increased from 0.75 to 0.82. The result indicates that Sentinel-2 still performed better than 
Landsat at the vegetative stage. Overall, LAI derived from different satellite sensors with high 
accuracy can be obtained. A combination of multiple RS data can improve the temporal resolution of 
LAI estimation during the whole growing season. 
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Figure 11. Comparison between measured and estimated LAI (a) derived from Sentinel-2, (b) Landsat 
7/8 before DOY (i.e., day of year) 212. (The 1:1 line is shown in red) 

It is widely acknowledged that crop phenology has great influence on canopy reflectance. To 
illustrate this further, the accuracies of combined LAI retrievals from three sensors between the 
vegetative stage (before DOY 212) and the reproductive stage (after DOY 212) were compared. At the 
vegetative stage, the validation achieved an R2 of 0.74 with a lower RMSE of 0.53 (Figure 12a), which 
showed much higher accuracy than that at the reproductive stage (0.89 LAI in terms of RMSE and R2 
= 0.41 (Figure 12 (b)). 

 

Figure 12. Comparison between measured and estimated LAI (a) before and (b) after DOY (i.e., day 
of year) 212. 

4. Discussion 

4.1. Potential and Limitations of LAINet 

Compared to the mainstream hand-held LAI measurement instruments (e.g., LAI-2200C), 
LAINet has an advantage in acquiring time-series field LAI automatically. Compared with other 
existing automated measurement methods using photos and TLS [11–16], the file size of WSN-based 
LAINet is less bandwidth-intensive, hence, post-processing is less computationally demanding. In 
principle, both LAINet and PASTIS-57 are based on radiation transmittance to measure PAI, without 
distinguishing leaves with different chlorophyll contents and from other plant tissues [9,11]. 
Calibration among all sensors deployed above and below the canopy is a must. For 
photography-based methods [13–15], the calculation of gap fraction from image classification can be 
a source of uncertainty. These measurement techniques are all vulnerable to adverse weather 
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conditions. The same as in the developing and emerging methods including the LAINet system, there 
is still a long way to go before operational deployment. 

The systematic errors of LAINet measurements should be reduced first. Firstly, elimination of 
or reduction in the influence by the light environment should be considered. For example, radiation 
calibration using an integrating sphere ensures consistent quantification of radiation above and 
below canopy. Multi-day aggregation on daily LAINet measurement is another approach to reduce 
the influence of daily variation in light environment. Secondly, apparent outliers should be removed 
to avoid error propagation. For instance, the unrealistic LAI after DOY 212 in 2018 were removed in 
this study. In addition, an adjustment on LAINet data was done in this study based on field LAI data. 
A scale of 1.3 was used to adjust LAINet data for improved consistency with LAI-2200C. This was 
based on an observation by Qu et al. [10] that LAINet seems to be closer to LAIt than LAI-2000 for 
corn during the 2012 ground experiment in the same study area. Possibly leaf angle distribution 
(LAD) adopted in the LAINet algorithm may not reflect the true condition of the corn canopy. Deeper 
analysis on the algorithm may help reveal the issue. However, this is out of the scope of this study. 
To further investigate this phenomenon, future efforts are needed to explore its authenticity or 
physical reasons. 

4.2. Impact of Inversion Strategies on LAI Estimations 

Based on the above comparison of LAI estimations using different inversion strategies in Section 
3.2, comparable results were obtained for either Landsat 7/8 or Sentinel-2 among all cases tested. This 
indicates that the PROSAIL RTM inversion with LUT-based methods is suitable for tracking LAI 
evolutions with good accuracy. However, the LAI values retrieved using different inversion 
strategies are slightly different for different satellite data. Overall, the LAIs using CIgreen for Landsat 
7/8 and the combination of three Red-edge bands for Sentinel-2 were analyzed ultimately as the 
optimum inversion strategy for their lower RMSE. LAI derived from Sentinel-2 with an RMSE of 0.64 
was more accurate than that derived from Landsat (RMSE = 0.72). 

In addition to LAI, other leaf or canopy parameters such as leaf angle distribution and leaf 
chlorophyll content, also have a substantial contribution to the variability of visible and NIR 
reflectance. In comparison with the use of band reflectance, the accuracy of LAI retrieval was 
generally improved when VIs were used. In particular, CIgreen performed the best at estimating LAI 
with the lowest RMSE (see Figure 8c and Figure 10a). VI was designed to improve the sensitivity to 
canopy variables (such as LAI), at the same time as suppressing the influence of other influential 
factors, e.g., impacts from soil reflectance and leaf chlorophyll absorption. From previous studies, 
CIgreen and EVI2 show a stronger capability to overcome the saturation issues at a high LAI and 
minimize background influence [48,49]. Spectral reflectance from satellite sensors will be affected by 
variation of interference factors in the signal path [50]. Hence, the combination of several bands can 
improve the performance of LAI inversion by weakening these effects partially. Anthony et al. 
monitored GLAI using the green and red-edge bands [51]. A good performance of the combination 
of three red-edge bands shown in Figure 9d was found, which was consistent with work 
demonstrating the value of the red-edge spectral bands in Sentinel-2. EVI2 shows a better 
performance than NDVI because it is less prone to saturation [50]. In terms of uncertainty, the 
chlorophyll indices (including CIgreen, and CIred-edge) are sensitive across the entire range of LAI 
[52] and yielded the lowest RMSE compared with the optical VIs including NDVI and EVI2. 

4.3. Difference between LAI Measurement and RS Inversion 

The decline in leaf chlorophyll content at the reproductive stage and spectral saturation are 
potential factors inducing the substantial differences between LAI inversion and field measurement. 

Firstly, the variability of leaf chlorophyll content at the vegetative stage is higher than that at the 
reproductive stage when the proportion of non-photosynthetic components is large. Some research 
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shows that a positive relationship between corn canopy chlorophyll and green LAI goes from linear 
to non-linear due to the decline in leaf chlorophyll content at the reproductive stage [53]. As satellite 
remote-sensing is more sensitive to plant photosynthetic components, LAI estimation tends to 
decrease quickly at the reproductive stage. However, LAINet is sensitive not only to photosynthetic 
components, but also to non-photosynthetic components to a certain extent. In this respect, the 
discrepancy between the measured and the estimated LAI can be attributed to the difference in the 
physical meaning of LAI, namely PAI vs. green LAI. 

In addition, when LAI is large, LAI retrievals may underestimate measured LAI due to 
saturation of spectrum. This phenomenon is more obvious for Landsat-derived LAI (Figure 8c) when 
CIgreen was used for the inversion. 

5. Conclusions 

We assessed cornfield LAI estimates derived from Sentinel-2/MSI, Landsat 8/OLI, and Landsat-
7/ETM+ through comparison with continuous field LAI measurements collected by LAINet. Based 
on the results of this experiment, the following conclusions can be made: 

(1) The PROSAIL RTM inversion with LUT-based methods is suitable for tracking LAI 
evolutions with good accuracy. However, the performances of different inversion strategies vary 
among different satellite data. In this study, CIgreen was optimal to derive Landsat LAI, while a 
combination of three red-edge bands was optimal to derive Sentinel-2 LAI; 

(2) The accuracies of LAI retrievals vary at different phenological growing stages. From the 
vegetative stage to the reproductive stage, R2 decreased from 0.74 to 0.41 and RMSE increased from 
0.53 to 0.89. The decline in leaf chlorophyll content at the reproductive stage and saturation of 
spectrum are potential factors inducing the differences between LAI inversion and field 
measurement; 

(3) LAINet, a continuous LAI measurement system based on a wireless sensor network 
technology, has the potential to validate time-series LAI at very low cost. However, more intensive 
field LAI measurements at different phenological stages and for different crop types will be acquired 
in future work to diagnose whether LAI measured using LAINet is closer to LAIt or not; 

Overall, this study suggests that time-series LAI can be retrieved from multi-source satellite data 
through model inversion. Our findings will contribute to enhancing the confidence in validating 
coarse long-term LAI products with time-series measurements by LAINet and multi-source RS data. 
In the near future, continuous field campaigns using LAINet will be carried out to collect LAI 
measurements of different crop types. 
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