
remote sensing  

Article

The Importance of High Resolution Digital Elevation
Models for Improved Hydrological Simulations of a
Mediterranean Forested Catchment

João Rocha 1,*, André Duarte 1, Margarida Silva 1, Sérgio Fabres 1, José Vasques 2,
Beatriz Revilla-Romero 3 and Ana Quintela 1

1 RAIZ—Forest and Paper Research Institute, Quinta de S. Francisco, Rua José Estevão (EN 230-1), Eixo,
3800-783 Aveiro, Portugal; andre.duarte@thenavigatorcompany.com (A.D.);
margarida.silva@thenavigatorcompany.com (M.S.); sergio.fabres@thenavigatorcompany.com (S.F.);
ana.quintela@thenavigatorcompany.com (A.Q.)

2 Navigator Forest Portugal, Zona Industrial da Mitrena, 2910-738 Setúbal, Portugal;
jose.vasques@thenavigatorcompany.com

3 Remote Sensing and Geospatial Analytics Division, GMV, Isaac Newton 11, P.T.M. Tres Cantos,
E-28760 Madrid, Spain; brevilla@gmv.com

* Correspondence: joao.rocha@thenavigatorcompany.com

Received: 27 August 2020; Accepted: 8 October 2020; Published: 10 October 2020
����������
�������

Abstract: Eco-hydrological models can be used to support effective land management and planning
of forest resources. These models require a Digital Elevation Model (DEM), in order to accurately
represent the morphological surface and to simulate catchment responses. This is particularly
relevant on low altimetry catchments, where a high resolution DEM can result in a more accurate
representation of terrain morphology (e.g., slope, flow direction), and therefore a better prediction of
hydrological responses. This work intended to use Soil and Water Assessment Tool (SWAT) to assess
the influence of DEM resolutions (1 m, 10 m and 30 m) on the accuracy of catchment representations
and hydrological responses on a low relief forest catchment with a dry and hot summer Mediterranean
climate. The catchment responses were simulated using independent SWAT models built up using
three DEMs. These resolutions resulted in marked differences regarding the total number of channels,
their length as well as the hierarchy. Model performance was increasingly improved using fine
resolutions DEM, revealing a bR2 (0.87, 0.85 and 0.85), NSE (0.84, 0.67 and 0.60) and Pbias (−14.1,
−27.0 and −38.7), respectively, for 1 m, 10 m and 30 m resolutions. This translates into a better timing
of the flow, improved volume simulation and significantly less underestimation of the flow.

Keywords: forested catchment; forestry; hydrological modeling; SWAT model; DEM

1. Introduction

Forests play a significant role on the hydrological cycle and have a key importance on ecosystems
regulation. Planted forest productivity is highly dependent on water availability [1]. Therefore,
the evaluation of watersheds’ hydrological response is important especially in regions that, under
present day conditions, register water restrictions such as the Mediterranean bioclimatic zones [2,3].
In Portugal, forests cover about 36% of the total mainland area [4], holding an important role on the
environment and on the national economy.

In order to obtain insight on hydrological responses and on water availability at a catchment
scale, hydrological models may be used. These models require, as an input, a morphological surface
representation, and the digital elevation model (DEM) is one of the most common. DEM is a numeric
representation of a surface arranged in a set of regular grids each containing the three-dimensional
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(3D) (x, y, z) coordinate records [5]. A DEM may be produced based on three arrangements: contour
lines (x, y data on equal elevation lines); triangular irregular network (non-overlapped linked triplets
of nodes with x, y, z data); or mass points (x, y, z data regularly or irregularly distributed) [6].

DEM data sources are typically obtained by using: (i) remote sensing techniques on which the
sources may be Interferometric Synthetic Aperture Radar (IfSAR), either from the Shuttle Radar
Topography Mission (SRTM), Advanced Spaceborne Thermal Emission or Reflection Radiometer;
(ii) photogrammetry with stereo pairs of aerial imagery (e.g., satellite, airborne and Unmanned
Aerial Vehicles); (iii) laser scanning by Light Detection and Ranging (LiDAR); (iv) interpolated
global positioning system and total stations; and (v) cartographic digitalization on pre-existing
topographic (contour) maps [7,8]. Photogrammetry, IfSAR and LiDAR are preferential sources to
produce DEMs [9,10].

From the DEM it can be extracted geomorphological and hydrological data (e.g., aspect, slope,
stream network, watershed delineation, flow direction and accumulation patch) and, therefore,
the horizontal and vertical resolutions of the DEM will impact on the accuracy of the linked extract
products. As concluded by Sørensen et al. [11] and Vaze et al. [12], the input DEM (accuracy and
resolution) will impact the ranges of hydrological and topographic indices derived from the DEM.
Following Tan et al. [13,14] and Xu et al. [15], DEM uncertainties are linked with the input resolution
(provided by the data sources) and the applied resampling techniques.

Physically based semi-distributed and distributed hydrological models are powerful tools to
simulate catchment processes and linked responses. Moreover, hydrological models may be used to
support effective land management and planning of forest resources. They can be used as effective
decision support tools [16,17] to set site-specific forestry management practices.

The Soil and Water Assessment Tool (SWAT) is a continuous time, physical based and
semi-distributed ecohydrological model that simulates on a daily basis landscape processes and
watershed responses [18,19]. The model has been widely used for three decades and it has been
applied to assess different inputs and scenarios for multiple variety of catchments and objectives
(e.g., climate change impacts, land use and land cover changes, water quality and quantity, sediment
exportation, management practice effects) resulting in more than 3900 published research papers [20].
The SWAT model has been successfully used to address the impacts of different resolution input
data on catchments and hydrological responses [21–23] and some studies have focused on the use
of low to high resolution input DEM to assess SWAT performance and simulation results [24–27].
The links between different input DEM resolutions and the uncertainty on model predictions have
been discussed in other research studies [28–30].

SWAT procedures that are DEM-dependent (e.g., watershed delineation, stream network definition,
sub-basins) will be largely constrained by the DEM resolution and uncertainty. Additionally, as stressed
by Goulden et al. [31], the lack of knowledge on DEM uncertainty and the potential undefined
cascade impact on hydrological model simulations may result in inaccurate assumptions and under or
overestimated conclusions for the modeler. Wu et al. [32] applied the SWAT to 10 catchments and used
three DEM resolutions (250 m, 500 m and 1000 m) to assess the links between automatic watershed
extraction (from DEM), watershed parameters and area threshold values. They concluded that a DEM
resolution increase results in a more refined flow direction and accumulation calculation, meaning a
more realistic representation of the stream network.

Tan et al. [13] found that SWAT generated stream network was set to be more sensitive with regard
to the DEM resolution rather than DEM source or the applied resampling technique. Furthermore,
Tan et al. [14] obtained better streamflow simulations using 20 m and 60 m resolution DEMs as well as
improved DEM sensitivity analysis upon the integration of the smallest area threshold (1000 ha) value.

Camargos et al. [33] debated the use of fine (regional data) and coarse (global data) detail inputs
to improve the robustness of SWAT model simulations. Zhang et al. [29] and Xu et al. [15] analyzed
the influence of contrasting DEM resolutions on SWAT simulations for hydrological responses and
nutrient exports. Goulden et al. [24] presented a comprehensive analysis on DEM resolution and
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sensitivity of the SWAT outputs, namely the increase of slope class with higher DEM resolutions and
the linked increase of sediments loads as a consequence of the reduction on watershed areas using
higher resolutions.

The great majority of SWAT modeling studies explicitly fails to consider the simulations on forest
dominated catchments despite the relevance of these ecosystems and provided services. In addition,
there is also a gap on studies that focus on forest dominated catchments on water scarce regions under
the influence of Mediterranean-type climate.

This study focuses on the use of DEMs with different resolutions to improve the accuracy of
hydrological modeling in a forest dominated catchment in a water scarce region in Alentejo (Portugal).
To this end, the SWAT model was applied on relative flat catchment with three DEM cell sizes (1 m,
10 m and 30 m) in order to simulate the impacts of different DEMs on the representation of watershed
characteristics, processes and responses.

There are two major research questions that we intend to address: What is the impact of different
DEM resolutions on surface representation and watershed properties in a flat area? Is it worthwhile to
use very high resolution DEMs to simulate catchment processes and responses in a forest dominated
catchment under the influence of Mediterranean climate?

2. Material and Methods

2.1. The Study Area

The Caniceira catchment (is located in Alcolobre river basin (in the context of the wider Tagus
transboundary river basin), in the Alentejo region in mainland Portugal. The catchment is under the
influence of a Mediterranean climate and registers an average annual precipitation of about 720 mm
with a dry warm summer and a mild winter and it is characterized by a temperate with dry and
hot summer climate (Csa) according to the Köppen classification [34] (Figure 1). In addition, it is
categorized as a sub-humid mesothermal, registering a severe water-deficit, especially during summer
time (C2 B’2) [35,36]. The catchment is located in a relatively flatten area with elevations ranging from
99 to 164 m (above sea level) and covers an area of about 267 ha.

Regarding the geological background, the catchment is located in the context of the Lower Tagus
Tertiary basin, whose genesis is related to Pyrenean compression [37]. The catchment is dominated
by Miocene and Pliocene fluvial sedimentary deposits, conglomerates and reddish to yellowish clay
sandstones and some Quaternary sands and gravels beds. The Tertiary deposits overlay in discordance
with the gneiss and migmatite formations from Precambrian [38]. The hydrogeological context of the
area is associated with an extensive multilayered aquifer system, shaped by variable in depth layers of
sandstones alternating with impervious clay layers [39,40].

Following the Portuguese soil classification [41,42] and the FAO-UNESCO classification [43,44],
the catchment soils are mainly Arenic Endoleptic Regosols and Arenic Epileptic Regosols, with little or
no profile differentiation, on which bedrock is located between 25 cm and 50 cm (Epileptic) or between
50 cm and 100 cm (Endoleptic) with sandy or coarser texture.

This is a forest dominated catchment largely occupied by evergreen broadleaf species (Eucalyptus
globulus, Quercus suber—cork oak, Quercus faginea—green oak, Pinus pinaster—maritime pine; Table 1)
and by sclerophyllous vegetation (Mediterranean scrubland). The catchment is linked to a riparian
gallery of high nature conservation value, including alders and narrow-leaved ash as the most common
tree cover and otter, polecat and Eurasian sparrowhawk as faunistic representatives. The land use
and land cover data (1:10 scale) was obtained with field observation and detailed mapping survey
validated with pan-sharped World-View-2 orthoimage from 8 August 2019.
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Figure 1. Land cover and stream network (1 m resolution) at Caniceira catchment, in the context of the
Tagus transboundary river basin with the Köppen classification (top right map).

Table 1. Land use and land cover (LULC) distribution at Caniceira catchment.

LULC
Area Area

ha %

Eucalyptus 210.9 78.9
Unpaved roads and firebreaks 19.9 7.4

Cork oaks 16.4 6.1
Mediterranean scrubland 9.2 3.4

Mixed forest (maritime pine, green oak) 6.3 2.4
Maritime pine 3.7 1.4

Paved road 0.4 0.2
Urban (commercial) 0.2 0.1

Water bodies 0.1 0.0

2.2. DEM Input Data

The DEMs used as input in the SWAT model were obtained using: Synthetic Aperture Radar
interferometric data, GPS and digitalization surveys and Airborne Laser Scanning surveying data.

The SRTM from 2000 in combination with the United States Geological Survey’s GTOPO30 data
set, provided about 80% worldwide coverage of the SAR interferometric data, which were resampled
at 1 arc-second resolution (~30 m × ~30 m) [45]. The SRTM-DEM was validated for Portugal [46,47]
and is freely available. In addition, it has been used worldwide as an input DEM in the SWAT
model [28,48,49].

The 10 m resolution DEM was based on the contour lines data (National Cartography
Series—1:10,000 scale), produced by the Portuguese Geographical Institute and by the Geographical
Institute of the Military, with the European Terrestrial Reference System coordinated system
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(PT-TM06/ETRS89). This is the official data for Portugal and included, among others, the National
Geodetic Network and GPS Permanent Network to provide an expected vertical accuracy ranging from
1 to 1.5 m [46]. A triangulated irregular network surface was generated from contour lines through the
Delaunay triangulation and was converted to raster with a 10 m × 10 m cell size, in order to respect the
contour lines equidistance.

The 1 m resolution DEM was provided by a LiDAR survey (April 2019) with a flight performed at
approximately 2792 m with a 30% overlap between sweeps. The point clouds with an average point
density of 2 points m−2 were captured using Leica ALS80HP, a high performance airborne scanner
operating at a pulse rate 704 kHz and scan rate of 73.5 Hz. The airborne laser scanning point clouds
were processed and classified using CloudCompare and FUSION/LDV 3.80 software [50,51]. The 1 m
gridded surface model was interpolated using the GridSurfaceCreate tool in FUSION/LDV 3.60+.
Wooded areas may induce positional errors on DEMs. However, as the planted forest in the catchment
follow the same compartments (tree plantation plots) since the late 1950s, it is possible to get several
sectors with no vegetation, namely during the periods between clear cuts and new coppice cycle (each
12 years). The operations included regular management of the understory vegetation in-between
plantation lines. As a result, the airborne laser scan was able to get the surface information without
the canopy interference. Additionally, the canopy density on this planted forest, in association with
the unpaved roads and firebreaks networks account for several gaps of vegetation and therefore,
exposing the topographic surface, which results in an improved accuracy of the laser scan on the
actual surface. The official available input data for the 10 m DEM also benefits from this reducing the
eventual elevation errors provided on wooded areas.

The three DEMs represent the topographic surface for an almost 20-year period, as the data began
to be collected in the late 1990s (for the 10 m DEM), in the earlier 2000 (for the 30 m DEM) and in 2019
(for the 1 m DEM). As a result, there is a temporal gap in the actual representation of the topographic
surface. Nevertheless, no significant geomorphological changes are expected to have occurred in
the catchment.

2.3. SWAT Modeling Approach and Calibration Routines

The catchment responses were simulated using the SWAT model, through the ArcGIS interface
(ArcSWAT version 2012). In order to assess the influence of the DEMs at different resolutions (1 m,
10 m and 30 m), three independent SWAT models were built up, as each new input DEM requires a
single new SWAT model.

In the SWAT model, the stream network definition can be done via DEM by “forcing” the model
to define the stream network (DEM-based) or by using a pre-defined shapefile on which each line
represents a reach with a unique identification code as well as the flow direction in the sub-basins.
Similarly, the watershed delineation may be achieved based on the DEM or by using a pre-defined
polygon shapefile. The stream networks were calculated with a D8 hydrological algorithm [52],
within the Terrain Analysis Using Digital Elevation Models (TauDEM), which is a set of tools for the
analysis of terrain using DEMs. The pre-defined watershed limit was calculated with the D8 algorithm
based on the 1 m DEM.

To assess the accuracy of the stream network three metrics were used: drainage density
(Dd = average total stream length/catchment area; a higher value represents a more agglutination of
the channels, [53]); sinuosity (S = length of meandering/straight-line distance; ranging from one for a
straight line to zero for a curvy line, [54]); vertices index (Vi = number of vertices/total stream length,
wherein a close to zero value indicates lower geometry complexity, with no curvy sectors).

As the catchment presents little altimetry variation, the use of a pre-defined stream network and
watershed shapefiles were considered rather than using the DEM-based option in the SWAT model.

In addition, back in the early 2000s, a water management strategy was implemented in a flat sector
at the Caniceira catchment outlet, to prevent the occurrence of soil waterlogging during the raining
season and as to be used as water storage pond in the driest period. As a result, a small retention pond



Remote Sens. 2020, 12, 3287 6 of 17

was created and two stream lines were merged, which only left one channel free flowing. On this flat
area, the unmistakable geomorphological evidence of the two parallel thalwegs was captured by the
fine detailed DEM (1 m resolution) and included in the extracted stream network. These channel lines
are linked to the topographic surface but present no relation with the actual flow direction and altered
the actual location of the catchment outlet. On the TauDEM-based stream network, there is a partial a
gap on the linkage to the man-made pond (oval marker on Figure 2) and a missed representation of
the actual stream lines nearby the catchment outlet (highlighted by the rectangle marker on Figure 2),
which impact the outlet location. As a consequence, the stream lines shapefile (.shp) was edited
using the ArcGIS Editing toolbox, and the polyline vertices rectified and some vertex deleted in
order eliminate these incongruences and to redefine the correct flow direction. Additionally, a field
survey was done with a Real Time Kinematic GNSS high-accuracy antenna, to provide a set of 225
ground survey-points in order to assess the positional accuracy of the 1 m DEM based stream network,
in particular z (elevation) values. The survey-points were acquired with a triple-frequency GNSS
receiver (Arrow Gold antenna) linked to the Portuguese active GNSS network (RENEP). The reference
ellipsoid is the GRS80, the coordinate reference system is the ETRS89/PT-TM06 (EPSG:3763) and the
vertical heights are based on the GeodPT08 geoid model.

This validation procedure insures a more realistic representation of the flow direction on this flat
terminal sector and the definition of a more precise location of the gauged catchment outlet, ultimately
leading to an accurate representation of the catchments responses and an improved robustness of the
SWAT model. It is worth stressing that the extracted stream network represents channel lines according
to the topographic surface, but does not necessarily mean free flow on all channels, as for present day
conditions the catchment is facing water scarcity constrains. Figure 2 presents the TauDEM based
stream network (dotted line) and the rectified (edited) stream network for the flat terminal sector of
the catchment.
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catchment for the 1 m DEM resolution, with major differences highlighted in green.

SWAT defines sets of hydrological response units (HRUs) as a unique combination of overlaying
land use, soil type and slope for a sub-basin. In the SWAT+ (a revised SWAT version), it is possible
to separate water and other land areas per sub-basin (in contrary to the previous SWAT model) and,
from the landscape units (LSUs), it is possible to define the HRUs [55].

SWAT is mainly divided in two phases: land phase and routing (water) phase. Within the land
phase the amount of water and sediments is controlled, as well as nutrients loads in the main channel
for each sub-basin; on the routing phase the movement of water, sediments and nutrients in the stream
network throughout the watershed catchment is controlled [56].

To run the model, some input data are mandatory: soil, land cover and crop/plant parameters and
climate records.

Soil data resulted of a sampling survey of a minimum of five soil samples per hectare. All samples
were analyzed in the laboratory in order to define a comprehensive database of soil physical and
chemical characteristics (namely texture, pH, exchangeable cations).

Specific-site parameters for eucalyptus trees were provided by forest inventories, Scholander
pressure chamber, leaf area index surveys, sap flow sensors and dendrometers. Eco-physiological
data for the other land uses were adapted from the SWAT database and also following previous
research [57–60].

The meteorological sub-daily data (precipitation, air temperature, humidity, solar radiation and
wind), were provided by two automatic meteorological stations installed in the catchment area since
2012. Sub-daily hydrological records were provided by an automatic stream flow gauge installed in
2019 in a weir open channel at the catchment outlet.

The SWAT management operations database included information on several operations (e.g.,
soil tillage, planting and maintenance fertilizations, harvesting procedures) that may have influenced
the plant growing cycle and the catchment hydrological responses. Plant growth was calculated using a
modified version of the Environmental Policy Integrated Calculator (EPIC) crop model [61]. The model
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simulates the evolution of leaf area index, biomass accumulation as well as the yield for different plants.
A detailed operation schedule (for eucalyptus) was defined by date (adapted to local meteorological
conditions) rather than by heat units. In addition, refined SWAT parameters (e.g., plantation dates,
tillage operations, planting and maintenance fertilizations, weed control, plant growth cycle, leaf area
index) were included in the model database based on the long term (50 years) management operations
held at Caniceira and also following previous research [57–60]. The model was run on a daily basis
from 2012 to 2020 with a warm-up period of five years to minimize the effect of the initial systems
variables ensuring proper model dynamic equilibrium.

Calibration routines were performed with Calibration and Uncertainty Analysis Program
(SWAT-CUP [62,63]). SWAT-CUP is an iterative calibration procedure that allows the selection
of five optimization algorithms and different objective functions (10 in total) and on which multiple
variables (parameters) can be assumed and simultaneously calibrated, whether meant for a specific
HRU or a set of HRUs or sub-basins. For the Caniceira catchment, a total of 12 sub-basins were
considered. The Sequential Uncertainty Fitting algorithm (SUFI2) produces a set of good solutions
within the considered parameters and their ranges, and for each iteration, the arrays were gradually
narrowed through several iterations. The algorithm accounts for potential sources of uncertainty and
helps to determine the most impacting parameters. The calibration was performed for each SWAT
model (1 m, 10 m and 30 m resolution DEMs) on two iterations, each with 450 simulations.

Model performance (observed versus calibrated data) was evaluated using three indicators: (i) the
Coefficient of Determination (R2) multiplied by the coefficient of the regression line (bR2); (ii) the
Nash-Sutcliffe model efficiency index (NSE); (iii) the average percent model error (Pbias—percentage
of bias) [64–67] (Table 2). The calibration results are expressed from the unsatisfactory to the very good
performance rating, following the goodness-of-fit indicators proposed by Moriasi et al. [66].

Table 2. Ratings of the goodness-of-fit indicators for model performance (adapted from
Moriasi et al. [66].

Performance Rating bR2 NSE Pbias%

Very good 0.75 < bR2
≤ 1.00 0.75 < NSE ≤ 1.00 Pbias < ±10

Good 0.65 < bR2
≤ 0.75 0.65 < NSE ≤ 0.75 ±10 ≤ Pbias < ±15

Satisfactory 0.50 < bR2
≤ 0.65 0.50 < NSE ≤ 0.65 ±15 ≤ Pbias < ±25

Unsatisfactory bR2
≤ 0.50 NSE ≤ 0.50 Pbias ≥ ±25

3. Results and Discussion

3.1. Impacts of DEM Resolution on Surface Representation and Watershed Properties

The watershed limit was calculated in order to assess the impact of increasing resolution on
products extracted from different DEMs. The watershed delineation resulted in a total area value
ranging from 267 ha (1 m) to 224 ha (30 m). The watershed area on the 30 m DEM results from a
non-realistic generalization of watershed limit due to a super pixel cell size (30 m × 30 m) that accounts
for a higher area within the influence of each pixel. Charrier et al. [68] pointed out that the use of very
high resolution DEMs could better suit for more realistic watershed delineation, which is true for the
1 m and 10 m resolutions DEMs. In order to avoid these constrains imposed by the DEM resolution
on the watershed area, a pre-defined watershed shapefile (calculated with D8 algorithm based on
the 1 m DEM) was used in the model. Luo et al. [69] used a pre-defined set of watershed and stream
shapefiles for a plain study-area and obtained an improved representation of the actual surface and
also increased model accuracy, when compared with a DEM “forcing” procedure.

This resulted in a more realistic representation of the catchment (Figure 3), especially as it is
located on a relatively flatten area with low amplitude on elevation values, in line with Luo et al. [69].
A reduction in total watershed area and linked geometry can be substantial, especially on low to
medium size watersheds, as the proper representation of the surface and catchment responses is,
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therefore, affected. A closer analysis points to some incongruence whether due to the lack of detail
on catchment headwaters or due to erroneous flow patch and direction calculations on more flat
sectors. In addition, loss in detail from altimetry values for coarse resolutions DEMs resulted in an
underestimation of the maximum value and an overestimation of the lower catchment altimetry values
(Table 3), in line with results reported by Lin et al. [48], Zhang et al. [29] and Reddy et al. [25].
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Table 3. Caniceira watershed characteristics extracted from 30 m, 10 m and 1 m DEM resolutions.

Watershed Characteristics
DEM Resolution

30 m 10 m 1 m

Number of channels 312 735 16,321
Channels length 14,955 m 16,274 m 26,317 m

Strahler order 4 5 7
Elevation (minimum) 105 m 102 m 99 m
Elevation (maximum) 169 m 160 m 164 m

Elevation (Std. deviation) 13.7 11.3 12.8
Drainage density 0.55 mm−2 0.60 mm−2 0.98 mm−2

Sinuosity 0.45 0.12 0.06
Vertices index 0.04 0.09 1.24

Hydrological response units 263 297 402

The accurate three-dimensional representation of a surface is closely related to the resolutions of
the input data. In fact, all the 12 sub-basins registered a decrease (from the 1 m to the 30 m resolution)
on the number of channels and their length, the Strahler stream order numbers [70] and the slope class
values (Table 3).

The 1 m resolution DEM resulted in a significantly higher number of HRUs. The SWAT capability
to better simulate surface runoff will be increased as curve numbers will be better adjusted to slope
values, based on HRUs slopes, although forest catchments may present a potential higher capability
for water storage, as mentioned by Pang et al. [71].

3.2. Impacts of DEM Resolution on Catchment Processes and Responses

The analyses prior to the model calibration intended to obtain insight on the SWAT
parameterization to highlight the impact of DEM resolutions, as the three models were built up
with the same parameters. The baseline simulation (uncalibrated) on the 1 m DEM embodied a
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more reduced gap between the observed and simulated data, providing therefore a more realistic
representation of the catchment response (bR2 = 0.74, NSE = 0.58 and Pbias = −40.7). Moreover,
observed, simulated (uncalibrated) and calibrated data presented a reduced difference, thus denoting a
good overall trend on the model performance (following Moriasi et al. [64]—Table 2), and improved the
goodness-of-fit indicators after calibration (bR2 = 0.87, NSE = 0.84 and Pbias = −14.1). This translates
into a better timing of the flow, improved volume simulation and significantly less underestimation of
the flow.

The baseline simulations from the 10 m and 30 m resolutions denoted a gradual increase on the
gap between observed and simulated. The overall model performance before calibration, based on the
bR2 (0.71 and 0.60, respectively) and NSE index (0.51 and 0.49, respectively) are nevertheless good
(Table 4). The Pbias for 10 m and 30 m DEMs indicates an overall flow underestimation (−44.1 and
−50.6, respectively) that may be related to the challenges of capturing the total rainfall amounts on
extreme precipitation events. As expected, after calibration these values improved.

Table 4. Goodness-of-fit indicators for daily discharge at the Caniceira catchment outlet considering
DEM at different resolutions before and after SWAT model calibration. bR2—ranging from the
optimal value (one) to zero; NSE—ranging from the optimal value (one) to zero (below zero indicates
unacceptable model simulation); —ranging from the optimal value (zero) to positive or negative values
representing model underestimation and overestimation, respectively.

bR2 NSE Pbias

DEM Resolution 30 m 10 m 1 m 30 m 10 m 1 m 30 m 10 m 1 m

Uncalibrated 0.60 0.71 0.74 0.49 0.51 0.58 −50.6 −44.1 −40.7
Calibrated 0.85 0.85 0.87 0.60 0.67 0.84 −38.7 −27.0 −14.1

Model simulations showed a gradual deterioration on model performance as DEM moved from
1 m, 10 m to 30 m resolution. This is translated in a gradual loss on accuracy for streamflow at
the watershed outlet (gauged) (Figure 4). This analysis was performed in two stages: upon model
parameterization (uncalibrated flow) and upon model calibration (calibrated flow). From 1 June to
30 September (2019), the catchment received a total of precipitation as little as 17.8 mm. Upon the first
rain events on mid-October, the responses are showed at the catchment outlet where the river gauge
and model outlet are located. The extreme precipitation event in December 2019 affecting Portugal
(“Elsa storm”) resulted in the highest flow peak visible on both stages hydrographs. The hydrological
response provided by the flow peak denotes a higher peak representation for the 1 m DEM and a
gradual decrease on peak representation for coarser resolutions. The catchment meteorological stations
registered 114.4 mm of rain, respectively, with 68.4 mm on the 19th of December and 46.0 mm on the
20th of December (2019).

On this forest dominated Mediterranean catchment with low elevation range, the SWAT modeling
of the responses to intense precipitation events have clearly showed a better fit using very high
resolution DEM, either uncalibrated or calibrated, and can, therefore, be considered a very good model
performance based on bR2 and NSE, and a satisfactory performance based on Pbias [66,67].

Reddy et al. [25] found similar relation with different resolution DEM and stressed that accuracy
of estimated runoff and sediment yield decreases with coarser resolutions. The rational for using
coarse DEM resolutions has been largely discussed by several authors [6,72]. They concluded that
despite poor accuracy, they present a reasonable compromise between available (freely) data and
low computation demands and a suitable representation of hydrological processes and catchment
responses, in the context of hydrological model simulations. The findings of the present work contrast
some previous studies [28–31,73] that showed that high resolutions DEM have a negligible effect on
streamflow reduction. As suggested by Tan el al. [13], such studies rely on coarser DEM resolutions.
In addition, most models are calibrated using monthly to yearly records, which may uncover some
short-term discharge tendencies, event-based responses and peak flow representations. Finally,
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fine DEM resolutions may not add any significant advantage in flow representation of large watersheds
and in mountain areas [29].
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A more detailed representation of the terrain supports the definition of site-specific forestry
operations, better planning of LULC, stands location site-indices and stocking and harvesting
operations. High resolution DEM can also be used in support the planning of forest roads and
drainage infrastructures, in order to prevent biotic, waterlogging and forest fire risks.

On one hand, future work must be conducted in order to assess the real value for forest planning
of modeling with fine resolution DEM, since fine detail DEM are often not freely available. On the other
hand, future research may consider the use of SWAT model to simulate adaptive land management
strategies to improve the resilience of stands to water scarcity, particularly in the context of climate
change scenarios.

4. Conclusions

The study looked into two major research questions: (i) What is the impact of different DEM
resolutions on surface representation and watershed properties in a flat area? (ii) Is it worthwhile to
use very high resolution DEMs to simulate catchment processes and responses in a forest dominated
catchment under the influence of Mediterranean climate?

In the low-relief Caniceira forest catchment with a low altimetry variation, the use of high
resolution DEM resulted in an improved representation of the surface with a more accurate report of
watershed characteristics, namely, the number and length of channels and the Strahler order. At the
flat end sector of the catchment, the high detail DEM (1 m) generated two parallel channels with
significance on the morphological representation but with no linkage to the actual water direction.
The 1 m DEM was able to capture water bodies (ponds) and the tree plantation lines. Moreover,
the coarse resolutions DEMs fail to capture these topographic evidences. The detailed input from 1 m
DEM is better suited to model the hydrological response of this catchment, located in a water scarce
region of Portugal (under the influence of Mediterranean climate). In fact, the model performance was
increasingly improved as fine resolutions DEMs were implemented allowing a better representation
of actual processes and events, such as better timing of the flow, improved volume simulation and
significantly less underestimation of the flow.
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