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Abstract: Crop classification in agriculture is one of important applications for polarimetric synthetic
aperture radar (PolSAR) data. For agricultural crop discrimination, compared with single-temporal
data, multi-temporal data can dramatically increase crop classification accuracies since the same crop
shows different external phenomena as it grows up. In practice, the utilization of multi-temporal
data encounters a serious problem known as a “dimension disaster”. Aiming to solve this problem
and raise the classification accuracy, this study developed a feature dimension reduction method
using stacked sparse auto-encoders (S-SAEs) for crop classification. First, various incoherent
scattering decomposition algorithms were employed to extract a variety of detailed and quantitative
parameters from multi-temporal PolSAR data. Second, based on analyzing the configuration and main
parameters for constructing an S-SAE, a three-hidden-layer S-SAE network was built to reduce the
dimensionality and extract effective features to manage the “dimension disaster” caused by excessive
scattering parameters, especially for multi-temporal, quad-pol SAR images. Third, a convolutional
neural network (CNN) was constructed and employed to further enhance the crop classification
performance. Finally, the performances of the proposed strategy were assessed with the simulated
multi-temporal Sentinel-1 data for two experimental sites established by the European Space Agency
(ESA). The experimental results showed that the overall accuracy with the proposed method was
raised by at least 17% compared with the long short-term memory (LSTM) method in the case of
a 1% training ratio. Meanwhile, for a CNN classifier, the overall accuracy was almost 4% higher
than those of the principle component analysis (PCA) and locally linear embedded (LLE) methods.
The comparison studies clearly demonstrated the advantage of the proposed multi-temporal crop
classification methodology in terms of classification accuracy, even with small training ratios.

Keywords: crop classification; polarimetric synthetic aperture radar (PolSAR); multi-temporal;
stacked sparse auto-encoder (S-SAE); convolutional neural network (CNN)

Remote Sens. 2020, 12, 321; doi:10.3390/rs12020321 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0002-7751-0936
http://dx.doi.org/10.3390/rs12020321
http://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/2072-4292/12/2/321?type=check_update&version=2


Remote Sens. 2020, 12, 321 2 of 26

1. Introduction

It is very important to acquire crop type information in crop growing monitoring, biomass
estimation, crop yield prediction, etc. [1–3]. Different from the conventional optical remote sensing,
polarimetric synthetic aperture radar (PolSAR) is an active remote sensing technology that can work in
all weather and all time conditions. During the past few decades, crop classification with PolSAR data
has attracted strongly increasing research interest [4–6].

Currently, a variety of classification algorithms have been proposed and developed for PolSAR
data. Generally, the development mainly underwent the following three phases [7]: 1) Lee investigated
the regularities of distribution and applied statistical models to discriminate different objects [8].
2) With the deeper research on the mechanisms of PolSAR data, the scattering mechanisms of
electromagnetic waves were introduced into the analysis and application of PolSAR data [9,10].
Many studies have proved that retrieved polarimetric features by both coherent and incoherent
decomposition algorithms can improve the recognition and classification accuracy [11,12], especially
for quad-pol SAR images [13,14]. 3) Currently, several deep learning architectures have been
developed and notable results were attained [15,16]. These knowledge-based algorithms [17,18]
have opened a new horizon in this area. However, most of existing methods only concentrate on
single-date PolSAR data. For agricultural-crop-type discrimination, single-temporal PolSAR images
cannot provide sufficient information since the same crop shows different external phenomena as
it grows up [19]. Additionally, the date of data collection is quite crucial. For instance, it is very
challenging to discriminate different crops within the sowing periods. Accordingly, it is necessary
to take the advantage of multi-temporal PolSAR images to produce classification results with a high
accuracy [14]. Fortunately, with the rapid developments of SAR techniques, increasing numbers of
spaceborne SAR systems have been launched and operate in orbits, which can collect a large amount
of multi-temporal SAR data for Earth observations. Nowadays, several representative systems are
available for civilian applications, including C-band Sentinel-1 systems [20,21], RADARSAT-2 and
Radarsat Constellation Mission (RCM) [22,23], L-band Advanced Land Observing Satellite (ALOS)
ALOS-PALSAR/PALSAR-2 [24,25], X-band Tandem-X [26], and X-band Constellation of Small Satellites
for Mediterranean basin Observation (COMSMO) COMSMO -SkyMed constellation [27]. Based on
these operational systems, large amounts of multi-temporal PolSAR data can be collected and adopted
for use in crop classification and other applications [28–36].

For multi-temporal remote sensing data, a key point is how to take full advantage of the wealth
of multi-temporal characteristics. Currently, a variety of classification algorithms with time-series
information have been proposed. These algorithms can be mainly split into two methods: on one hand,
long short-term memory (LSTM) networks have been adopted for the recognition and classification
of multi-temporal data. For instance, Teimouri et al. combined an Fully Convolutional Networks
(FCN) and a ConvLSTM network to classify and map land covers with multi-temporal Sentinel-1
data [29]. In order to further raise the performances of LSTM, the input features of LSTM are artificially
modified with the fusion of high-resolution optical and SAR images. Zhou et al. used extracted
SAR features in multiple deep convolutional networks (DCNs) as the input features of LSTM to
improve the classification accuracy [30]. On the other hand, time-series or multi-temporal information
is extracted manually from multi-temporal and multi-source data [31–36]. For example, Zhong et
al. designed a one-dimensional convolution network to extract time-series features and discriminate
different ground objects [31]. Yang et al. combined Normalized Difference Vegetation Index (NDVI)
of optical images with SAR data to raise the accuracy of classifying paddy-rice in mountainous
areas [32]. Guo et al. defined a new parameter based on differential characteristics of Cloude scattering
parameters to improve the crop classification accuracy [33]. It can be seen that there is a rapid
development in the analysis and application of multi-temporal optical and SAR data. These existing
methods have the following limitations: First, it is difficult to discriminate multiple crop types by
only using the time-series information due to the similarity between various crops. Second, the
performances of the LSTM networks depend heavily on the input features and excessive features
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or sparse time-series data seriously deteriorate its performances. Consequently, for both the LSTM
networks and time-series-information-based methods, most of the algorithms still concentrate on
extracting more effective features. However, since SAR data represent the compositive interaction
between radar signals and vegetation and soil [21], a variety of famous decomposition algorithms have
been proposed to efficiently extract polarimetric scattering features [37–40]. However, direct utilization
of many polarimetric features will cause a “dimension disaster” for most of the classification methods.
Therefore, effective feature dimension reduction from these redundant ones is a very important task.

In the area of data dimension reduction, early representative algorithms mainly include principle
component analysis (PCA) [41] and locally linear embedded (LLE) methods [42]. However, since
most engineering problems are nonlinear, PCA performs poorly due to its assumption that the
processed data are linear [43]. In addition, LLE can automatically extract low-dimensional nonlinear
feature representations from high-dimensional data and is easy to implement, but they are not robust
to outliers [44]. More recently, artificial neural network (ANN) and deep learning theory have
realized considerable development in terms of image classification [45], target recognition [46], data
dimensionality reduction [47], and other machine vision fields. With more than three hidden layers,
deep learning models contain sufficient complexity to learn effective features from the data itself [4].
Currently, deep learning has also been proven to be an extremely powerful tool in remote sensing data
analysis [48]. For instance, convolutional neural networks (CNN) and deep stack auto-encoder (S-AE)
are the most successful network architectures, showing excellent performances in image classification
and feature learning [16,49,50].

To make full use of multi-temporal PolSAR images and manage the serious problem of a “dimension
disaster”, this study first employed several common scattering decomposition algorithms to extract
detailed and quantitative parameters. Second, a three-hidden-layer stacked sparse auto-encoder (S-SAE)
network was built to effectively extract polarimetric features and reduce the feature dimensionality.
Third, the architecture of a deep CNN classifier was proposed to enhance the crop classification
performance with limited training ratios. The main contribution of this paper was to apply S-SAEs to
effectively reduce the feature dimension for crop classification improvements with multi-temporal,
quad-pol SAR images.

The remaining sections are arranged as follows. Section 2 reviews the PolSAR data structure and
polarimetric feature extraction. Furthermore, the main concept of an S-SAE and the architecture of
CNN classifier is also proposed and discussed in this section. In Section 3, the main configuration and
optimization of an S-SAE are analyzed and the performances of the proposed processing framework
are assessed using simulated Sentinel-1 data. Section 4 is the conclusion of this paper.

2. Methodology

For the purpose of crop classification with multi-temporal remote sensing data, this study employed
stacked sparse auto-encoders to learn low-dimensional features from a number of decomposed
scattering signatures, which were fed to CNN classifiers to achieve classification results with high
accuracies. The flowchart of the proposed method is shown in Figure 1, which was mainly composed
of three steps including scattering feature extraction, feature dimensionality reduction with an S-SAE,
and crop classification with CNN. It should be emphasized that the second step was the key of this
study. Its aim was to acquire the optimal low-dimension features to represent sufficient information
contained in the original multi-temporal data. In this section, the PolSAR data structure and features,
along with the stacked sparse auto-encoders, are reviewed, and the architecture of a proposed deep
CNN classifier is proposed and discussed.
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Figure 1. Flow chart of the proposed method. CNN: convolutional neural network, PolSAR: 
polarimetric synthetic aperture radar, S-SAE: stacked sparse auto-encoder. 
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Figure 1. Flow chart of the proposed method. CNN: convolutional neural network, PolSAR: polarimetric
synthetic aperture radar, S-SAE: stacked sparse auto-encoder.

2.1. PolSAR Data Structure and Features

In quad-pol SAR systems, the measured vector data can be expressed using a 2 × 2 complex
scattering matrix as the following format:

S =

[
SHH SHV

SVH SVV

]
, (1)

where SHH, SVH, SHV, and SVV are the four scattering elements from four independent polarization
channels, with “H” and “V” standing for the horizontal and vertical linear polarizations. With the
assumption of reciprocal backscattering, SHV is approximately equal to SVH and the polarimetric
scattering matrix can be rewritten as the Lexicographic basis vector:

h =
[

SHH
√

2SHV SVV
]T

, (2)

where the superscript “T” is the matrix transpose. Then, a covariance matrix can be constructed as:

C = hh∗T. (3)

Additionally, the Pauli-based scattering matrix can also be obtained as:

km =
1
√

2
[SHH + SVV, SHH − SVV, 2SHV]

T, (4)

Tm = kmk∗Tm (5)

where Tm is the one-look coherency matrix for the mth pixel, where (·)∗ denotes conjugate complex of
(·). Actually, PolSAR images are multi-look processed to suppress speckles such that the coherency
matrix is spatially averaged to become:

〈T〉 =
1
N

N∑
m=1

kmk∗Tm , (6)
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where N indicates the number of equivalent looks. It has also been proven that the covariance and
coherency matrices are linearly related and can be easily converted to each other [51].

According to the covariance and coherency matrices, several obvious features, including the
polarization intensities of |SHH |, |SHV |, and |SVV |, can be directly obtained, where |·| denotes the
absolute value of ·. With the deeper research on the mechanisms of PolSAR data, various coherent
and incoherent scattering decomposition algorithms based on the covariance and coherency matrices
have been employed to extract a variety of detailed and quantitative parameters from multi-temporal
PolSAR data. Consequently, several features can be extracted for single and multiple temporal PolSAR
images. Bai summarized a 123-dimensional feature vector extracted from single temporal quad-pol SAR
images [52]. Furthermore, some new features have also been proposed recently [15]. These tremendous
features encounter the great difficulty of the curse of dimensionality at high dimensionalities. To
take full advantage of the wealth of multiple temporal PolSAR images for crop classification, feature
dimension reduction is essential and important.

2.2. Auto-Encoder

In the past few years, feature learning with neural network architectures has attracted increasing
attention, which can be used to extract optimal features from high-dimension data. An auto-encoder
(AE) is an unsupervised learning algorithm and its goal is to set the target values to be approximately
equal to the inputs. A single-layer AE network comprises three main steps (i.e., encoder, activation,
and decoder), having one visible input layer (x) of w units, one hidden layer (y) of s units, and
one reconstruction layer (z) of w units, which is shown in Figure 2, where f (·) and g(·) denote the
activation functions.
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Figure 2. Single-layer auto-encoder (AE) network.

Considering the input data xi ∈ Rw, where i is the index of ith data point, the AE network first
maps it to the latent representation yi ∈ Rs. This process is named the encoding step and can be
mathematically represented as:

yi = f (Wyxi + by), (7)

where Wy ∈ Rs×w is the encoding matrix and by ∈ Rs is the bias. Here, the logistic sigmoid function of

f (I) = (1 + e−I)
−1 is adopted.

The decoder has a similar structure to the encoder and maps the compressed data to a reconstruction
zi ∈ Rw with the weight matrix Wz ∈ Rw×s, bias bz ∈ Rw, and an activation function g(I) = f (I) =

(1 + e−I)
−1, which can be represented as:

zi = g(Wzyi + bz). (8)
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For simplification, the assumption of the weights strategy Wy = WT
z = W is used. Consequently,

the three parameters
{
W, by, bz

}
need to determined. An auto-encoder can be trained by minimizing

the cost function (i.e., the error between the inputs and reconstructed ones):

ψ(x, z)= arg min
W,by,bz

1
2n

n∑
i=1

‖xi − zi‖
2, (9)

where n is the number of training samples. In addition, a weight attenuation term can be added in the
cost function to control the degree of the weight reduction such that the term inhibits the influence
of noise on the irrelevant components in the target and weight vector, significantly improves the
generalization ability of the network, and effectively avoids over fitting. The cost function is defined as:

τ(x, z,λ) = ψ(x, z) + λ ·Ωweights, (10)

Ωweights =
1
2

u∑
l=1

s∑
i=1

w∑
j=1

(W(l)
i j )

2, (11)

where λ is used to control the regularization strength, u is the number of hidden layers, and Ωweights is
the weight attenuation term named L2 regularization. By using the Stochastic gradient descent (SGD)
algorithm, the weight matrix and bias are trained and optimized [53].

2.3. Stacked Sparse Auto-Encoder

A sparse auto-encoder is the foundation of an S-SAE, which is developed from an AE. By adding
sparsity constraints to an AE, the sparsity constraints act on hidden layer units. This method can
preferably express high-dimensional features [54]. In order to realize the inhibitory effects, an SAE uses
a Kullback-Leibler (KL) divergence to force it to be close to a given sparse value ρ (sparsity parameter)
by constraining the average activation value ρ̂ of the hidden layer neuron output. KL divergence is
added to the cost function as a penalty term. Therefore, the cost function of an SAE can be updated in
accordance with Equation (11). Furthermore, the penalty term is called a sparse regularization term,
which is expressed in Equation (12).

E(x,λ, β,ρ) =
1

2n

n∑
n=1

‖xi − zi‖
2 + λ ·Ωweights + β ·Ωsparsity (12)

Ωsparsity =
D∑

i=1

KL(ρ‖ρ̂i) =
D∑

i=1

ρ log(
ρ

ρ̂i
) + (1− ρ) log(

1− ρ
1− ρ̂i

) (13)

In Equation (12), the average activation values ρ̂i of all training samples on neurons i of the hidden
layer are defined as:

ρ̂i =
1
n

n∑
j=1

f (w(1)
i x j + b(1)i ), (14)

where x j is the jth training samples, w(1)
i is ith row of the weight matrix W in the first layer, and b(1)i is

the ith entry of the bias vector.
KL divergence is adopted because it can measure the difference between two different distributions

wel. If ρ̂i = ρi, KL(ρ̂i‖ρi) = 0. If the difference between ρ and ρ̂ is large, KL divergence will force them
to be close. In Equation (11), β (0 < β < 1) is used to control the weight of the sparse regularization
term. In order to inhibit most neurons, the value is generally close to 0. If the value is 0.03, the average
activation value of each neuron on the SAE will be close to 0.03 through this constraint.

S-SAE is a deep learning architecture constructed by linking several sparse auto-encoders in series,
in which the outputs of each layer are fed to the following layer. The training of an S-SAE is through
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greedy training layer by layer. An S-SAE with the Softmax regression neural network [49] can train
and adjust network parameters again, which is called fine-tuning. The structure and training process
of an S-SAE are given in Figures 3 and 4, respectively.
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Figure 4. S-SAE network fine-tuning process.

In the network, the number of labels is equal to the dimension of the output vector y(u). Here,
W(l) and b(l), l ∈ {1, 2, 3 . . . u}, are the parameters of the lth layer, where W(l) is the weight matrix of the
lth layer and b(l) is the bias vector. According to the known labels, the whole S-SAE network is finely
tuned to determine the parameters of W and b using backpropagation.

2.4. Architecture of the Proposed Deep CNN Classifier

A convolutional neural network (CNN) is one of the most successful network architectures in deep
learning methods. The learning process of CNNs is computationally efficient and insensitive to shifts
in data like image translation, making CNN a leading model to recognize 2D patterns in images [31].
In remote sensing studies, a deep learning network based on CNN has been widely used in remote
sensing, such as in large-scale image recognition, semantic segmentation, and target classification [48].
In the field of remote sensing target classification, since the ground truth data collection is always a
hard task, the aim of this paper was to construct a lightweight CNN network to achieve classification
results with a high accuracy and the classical LetNet was selected as the basic structure. Additionally,
it is difficult to obtain better classification performance by deepening the network due to the small
size of the input data cubic. Consequently, this paper promoted the LetNet configuration using two
parallel branches inspired by the characteristics of GoogLeNet [55]. The proposed structure of a CNN
classifier is given in Figure 5. It mainly comprises four convolutional layers, one average-pooling
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layer, one addlayer layer, one fully connected layer, and a Softmax classifier. Basically, it retains the
same elements as GoogLeNet and utilizes the average pooling layer to reduce the number of fully
connected layers. Furthermore, the network uses two convolution branches with different depths and
the addlayer structure to fuse the features from different depths, enhancing the relevant features to
achieve a fast convergence. The dimension of the input data is 15 × 15 ×M where M indicates the
number of input features. First, the input is through one convolution layer with 32 filters whose size
is 5 × 5 and the stride is 1. The dimension of the generated feature cubic is 15 × 15 × 32 using zero
padding. Second, the generated feature maps are fed into two pathways, where one pathway contains
two convolution layers and another is one convolution layer. These three convolution layers have
the same 64 filters with the same size of 3 × 3 and the strides are 2, 1, and 2. Third, the feature maps
from the upper pathway are activated using a Rectified Linear Unit (ReLU) function and combined
with the feature from the lower pathway. Thus, the feature maps with dimension of 8 × 8 × 64 are
obtained. Fourth, the combined maps are downsampled by one average-pooling layer with the size of
2 × 2 and the stride is 2. Finally, in order to use Softmax to calculate the probability for each class, one
fully connected layer is applied to map the data to a vector.
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3. Experiments and Results

3.1. Experimental Sites and PolSAR Data

The performances of the proposed method were assessed with two data sets from two experimental
sites. The first experimental site was an approximate 14 km × 19 km rectangular region located in the
town of Indian Head (103◦66′87.3”W, 50◦53′18.1”N) in southeastern Saskatchewan, Canada [56,57]. The
second one was a 13 km × 9 km rectangular region located in Flevoland (5◦33′53.67”W, 52◦26′45.73”N),
Netherlands. The location maps of the study areas are shown in Figure 6. These two sites were
established by the European Space Agency (ESA) to evaluate the performances of crop classification
with Sentinel-1 data. Both study sites contained various crop types. There are mainly 14 classes of
crops and the corresponding planting areas are summarized in Table 1.

The two experimental PolSAR data sets were both simulated with Sentinel-1 system parameters
from real RADARSAT-2 data by ESA before launching real Sentinel-1 systems. The real RADARSAT-2
data were collected from April to September (i.e., Indian Head data set: 21 April, 15 May, 8 June, 2
July, 26 July, 19 August, and 12 September; Flevoland data set: 7 April, 1 May, 25 May, 12 June, 5 July,
29 August, and 22 September) in 2009, almost covering the whole growing cycles of the main crops.
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The multi-temporal images have already been coregistered and filtered for speckle noise suppression
using an averaged structure Lee filter [58]. For the performance evaluation, optical images of high
resolutions and ground surveys were combined to establish the ground truth maps, which are shown
in Figure 7.

1 
 

 

 

 

Figure 6. Location maps of the experimental sites from Google Earth: (a) Indian Head and (b) Flevoland.

1 
 

 

 

 
Figure 7. Ground truth maps of the experimental sites: (a) Indian Head and (b) Flevoland.
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Table 1. Data acquisition dates and basic information of the main crops in the experimental sites.

Experimental
Sites

Acquisition
Dates Category Code Crop Type Number of

Pixels Proportion

Indian
Head(Canada)

21 April
15 May
8 June
2 July

26 July
19 August

12 September

H1 Lentil 215,659 10.62%
H2 Durum Wheat 98,927 4.87%
H3 Spring Wheat 571,205 28.13%
H4 Field Pea 252,277 12.43%
H5 Oat 70,541 3.47%
H6 Canola 452,068 22.27%
H7 Grass 23,452 1.16%
H8 Mixed Pasture 14,608 0.72%
H9 Mixed Hay 27,135 1.34%

H10 Barley 106,022 5.22%
H11 Summer fallow 22,067 1.09%
H12 Flax 127,757 6.29%
H13 Canary seed 45,915 2.26%

H14 Chemical
fallow 2682 0.13%

Flevoland(Netherlands)

21 April
15 May
8 June
2 July

26 July
19 August

12 September

F1 Carrots 440 0.1%
F2 Flower bulbs 11,499 2.58%
F3 Fruit 10,198 2.29%
F4 Grass 33,787 7.58%
F5 Lucerne 2255 0.51%
F6 Maize 18,253 4.09%
F7 Misc 31,573 7.08%
F8 Onions 41,001 9.19%
F9 Peas 7105 1.59%
F10 Potato 100,040 22.43%
F11 Spring barley 6340 1.42%
F12 Spring wheat 17,991 4.03%
F13 Sugarbeet 58,403 13.09%
F14 Winter wheat 107,142 24.02%

3.2. Results and Analysis for the Indian Head Site

3.2.1. Polarimetric Feature Extraction

For the subsequent experiments, polarimetric scattering features were first derived from seven
time-series PolSAR images separately using various methods. Some of these features were based on
the measured data and directly obtained, and others were calculated with Freeman decomposition [37],
Huynen decomposition [38], Yamaguchi decomposition [39], and Cloude decomposition [40]. It should
be noted that the parameter “A” from Cloude decomposition was substituted by the theta parameter
proposed in Ji et al. [34] and the null angle parameters were from Chen and Tao [15]. In total, 252
features from 7 time series were prepared, which are summarized in Table 2 and some typical features
(i.e., amplitude of HH-VV correlation where HH and VV stands for the complex SAR images from
horizontal and vertical channels respectively, phase difference of HH-VV, co-polarized ratio, and null
angle parameters) are shown in Figure 8.
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Table 2. The 36 dimensional features from a single temporal PolSAR image.

Feature Extraction Methods Features Dimension

Features based on measured data

Polarization intensities
(|SHH |, |SHV |, |SVV |)

3

Amplitude of HH-VV correlation

(
∣∣∣∣∣SVVS∗HV/

√
|SHH |

2
· |SVV |

2
∣∣∣∣∣) 1

Phase difference of HH-VV
(atan

[
Im

(
SHHS∗VV

)
/Re

(
SHHS∗VV

)]
) 1

Co-polarized ratio
(10 log10

(
|SHV |

2/|SVV |
2
)
)

1

Cross-polarized ratio
(10 log10

(
|SVV |

2/|SHH |
2
)
)

1

Co-polarization ratio
(10 log10

(
|SHV |

2/|SHH |
2
)
)

1

Degrees of polarization
(|SHV |

2/
(
|SHH |

2 + |SVV |
2
)
,|SVV |

2/
(
|SHH |

2 + |SHV |
2
)
)

2

Incoherent decomposition

Freeman decomposition 5
Yamaguchi decomposition 7

Cloude decomposition 3
Huynen decomposition 9

Other Decomposition Null angle parameters 2

Sum 36

* Re[·] and Im[·] are the real and imaginary parts, respectively. 5 of 9 
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Figure 8. Some typical features: (a) amplitude of HH-VV correlation, (b) phase difference of HH-VV,
(c) co-polarized ratio, (d) null angle parameters—θ_Re[T12], and (e) null angle parameters—θ_Im[T12].
H: horizontal polarization, V: vertical polarization.

3.2.2. S-SAE Configuration and Optimization

1. Selection of unsupervised training samples for pretraining the parameters of an S-SAE item

Unsupervised pretraining is the first key step to constructing an S-SAE. The ratio of selected
training samples significantly affects the performance and computation time. For simplification, a
single-layer sparse auto-encoder with the regularization term λ of 0.001, sparsity regularization term β
of 4.5, and the sparsity parameter ρ of 0.25 was used to compress 252 input features down to 9 features.
To investigate the performances of an S-SAE with different training samples, this section compares the
performances of different training sample ratios of 0.3%, 1%, 5%, 10%, 20%, and 50%. The pretraining
epochs were 400. After the dimensionality reduction, the nine reduced features were fed into a support
vector machine (SVM) classifier. The ratio of the supervised training samples for the SVM classifier
was 1% and randomly selected, and the remaining 99% were for testing. In the experiments, crop
classifications were carried out ten times and the averaged classification accuracy was utilized for the
evaluation. The overall accuracy (OA) and kappa coefficient of the classification results are plotted in
Figure 9a. Figure 9b gives the training calculation time with different ratios of unsupervised training
samples. From Figure 9, it can be seen that the classification accuracy increased with the increase of
unsupervised pretraining samples. For the case of a 50% training ratio, the OA and kappa were raised
by about 6% and 5%, respectively, relative to those for the 0.3% training ratio. However, the training
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time also became longer. Therefore, taking the computational efficiency into account, the ratio of the
unsupervised pretraining samples was fixed to 0.3%, 1%, and 5% in the following experiments.
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Figure 9. Classification accuracies and training time with different training ratios: (a) classification
accuracy and (b) training time.

2. Depth and supervised fine-tuning of the parameters of an S-SAE

In order to investigate the performance of an S-SAE with different depths, this section sets five
AEs with one to five layers (i.e., AE, S-AE2, S-AE3, S-AE4, and S-AE5), where AE is a single layer
auto-encoder, S-AE is stack auto-encoder. These five S-SAEs were first pretrained, as discussed in the
last section, and then finely tuned with supervised training samples. The ratios of the pretraining
samples were 0.3%, 1% and 5%. The ratio of the supervised training samples for fine-tuning was
set to be 1%. In order to reduce the disturbance of other parameters, λ, β, and ρ of the five S-AEs
were all set to 0.001, 0, and 0. The number of epochs of pretraining and fine-tuning training were
400 and 800, respectively. Again, the nine reduced features were fed into the SVM classifier after the
dimensionality reduction. The OA and kappa of the classification results with five different S-AEs are
shown in Figure 10 (1% pretraining ratio), and the evaluation parameter values were calculated and are
listed in Table 3. From Figure 10 and Table 3, it is clear to see that: 1) The accuracy of the classification
results increased with the increase of pretraining samples, which is consistent with the conclusion
of previous step. 2) Comparing Table 3 and Figure 9a, the parameters of λ, β, and ρ improved the
accuracy, especially in the case of the 0.3% pretraining samples. 3) The fine-tuning of S-SAE raised
the classification accuracy dramatically. However, the power of improvement became weaker with
the increase of pretraining samples, which was mainly due to the insufficient training caused by the
decreased ratio of fine-tuning samples to pretraining ones. 4) As the number of layers increased, the
classification accuracies became gradually higher [55]. However, when the network contained more
than three layers, the performance did not increase. Therefore, the network architecture of 252-100-50-9
was configured as the optimal one and used in the following experiments.
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Table 3. Classification accuracy using S-SAEs with different depths.

Algorithm Architecture Method
Classification Accuracy (%)

0.3% PRA Ratio 1% PRA Ratio 5% PRA Ratio

OA Kappa OA Kappa OA Kappa

AE 252 - 9
PRA 63.61 52.30 67.01 57.26 70.35 62.01

PRA+FT 73.10 65.75 76.74 70.51 78.91 73.55

S-AE2 252 - 100 - 9
PRA 73.09 65.83 74.34 67.57 76.23 70.12

PRA+FT 76.42 70.31 77.23 71.35 77.74 72.05

S-AE3 252 - 100 - 50 - 9
PRA 73.08 65.79 74.77 68.01 76.56 70.48

PRA+FT 76.45 70.27 79.75 74.67 79.31 74.07

S-AE4 252 - 100 - 50 -110 - 9
PRA 72.91 65.56 74.30 67.38 77.00 71.03

PRA+FT 74.16 67.23 77.82 72.13 77.51 71.73

S-AE5 252 - 100 - 50 -110 - 30 - 9
PRA 72.37 64.83 74.12 67.14 76.47 70.73

PRA+FT 75.91 69.58 78.46 73.00 78.14 72.56

PRA stands for pretraining, PRA+FT stands for pretraining and fine-tuning, OA stands for overall accuracy.

3. Size of the hidden layers

For an AE network, the number of learned features is decided by the hidden layer. To investigate
the effects of the hidden layers on crop classification, a group of experiments were conducted. Here,
the goal was still to reduce the 252 input features to 9, where the optimal network with the hidden
neurons of 252-100-50-9 in the previous step was chosen as the original network configuration. Let
L1 and L2 denote the number of units contained in the two hidden layers and the searching intervals
were [35, 260] and [20, 200], respectively. In the experiment, the grid search strategy with a step of 15
was employed to determine the optimal number of hidden neurons. The values of λ, β, and ρ were
still set to 0.001, 0, and 0. The nine compressed features were fed into the SVM classifiers trained
with 1% supervised samples. The OA and kappa of the classification results are shown in Figure 11.
From Figure 11, it is clear that the effects of the size of the hidden layer were strong. The highest OA
was approximately 10% higher than the lowest. The zone with the higher classification accuracy was
mainly distributed in the top-left area, appearing as an inverted triangle, marked by a yellow line in
Figure 11. In this area, the optimal interval for the size of the second hidden layer shrunk gradually
with the decrease of the size of the first hidden layer. Consequently, the size of the first hidden layer
was much bigger than that of the second one. In addition, when the size of the first hidden layer was
close to the size of the input data, a better performance of the dimension reduction was obtained,
which was mainly because having more neurons could raise the ability of feature learning and improve
the performance of the whole S-SAE. Finally, the best classification accuracy with an OA of 80.45% and
kappa of 75.42% was achieved when L1 and L2 were 215 and 95, and thus the S-SAE with the structure
of 252-215-95-9 was the optimal configuration. 6 of 9 
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4. Parameters of λ, β, and ρ
The determination of λ, β, and ρ is the final step to constructing an optimal S-SAE. In order to

study the effects of these three parameters, this study carried out some comparison experiments for a
single-layer AE network.

For λ, the grid search of ∆ log10 λ was carried out with a stride of 1 and an interval of [−7, 1]. The
other remaining implementation was similar with that in the previous step. The OA and kappa of the
classification results with an SVM classifier are plotted in Figure 12, where the highest accuracy was
obtained with a λ of 0.1 (i.e., log10 λ = −1), and a λ of 10 generated the lowest accuracy.
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For β and ρ, two groups of experiments with a log10 λ of −2 and −1 were compared. For β, the
searching interval and step were [0.5, 4.5] and 1. For ρ, the searching interval and step were set to [0.05,
0.45] and 0.1. The AEs were configured with these parameters and the reduced features were fed into
the SVM classifiers. The OA and kappa were charted in Figure 13, where it was evident that: 1) the
values of λ, β, and ρ had a great impact on the recognition performances; and 2) the best results were
generated when λ, β, and ρ were set to 0.1, 2.5, and 0.45. The highest OA and kappa were 80.62% and
75.84%, which were both 5% higher than that of an SAE with the original parameters (i.e., λ = 0.001, β
= 0, ρ = 0). Additionally, clear regulations during the process of determining optimal parameters were
not found in these experiments.
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Figure 13. Classification accuracies using S-SAEs with different β and ρ: (a) log10 λ = −1 and (b)
log10 λ = −2.

Finally, after a variety of experiments, a group of optimal parameters were determined and are
listed in Table 4 for the S-SAE with the structure of 252-215-95-9. Consequently, the OA and kappa of
the classification results with the SVM were 81.77% and 77.20%, which were slightly higher than those
in the previous section.



Remote Sens. 2020, 12, 321 15 of 26

Table 4. Optimal parameter settings of each layer in an S-SAE for the Indian Head site.

Parameters L1 L2 L3

λ 0.0024 0.02 0.001
β 0.6 0.2 0.4
ρ 0.5 0.55 0.25

3.2.3. Comparison of Classification Results with the Different Methods

In this section, nine reduced features were extracted from the original 252 multi-temporal features
using different methods, including PCA, LLE, a single-layer AE(1) of 252-9, a finely tuned AE(2) of
252-9, a finely tuned S-AE(1) of 252-100-50-9, a finely tuned S-AE(2) of 252-215-95-9, and a finely tuned
S-SAE of 252-215-95-9 with the optimal parameters listed in Table 4. The λ, β, and ρ of AE(1), AE(2),
S-AE(1), and S-AE(2) were all set to 0.001, 0, and 0. The ratio of the supervised fine-tuning samples
for AE was 1%. For LLE, the number of neighbors was 300 and the max embedding dimensionality
was 9. Then, the extracted nine-dimensional features were fed into the SVM and the proposed CNN
classifiers. For the CNN classifier, the initial parameters were randomly selected and renewed with a
learning rate of 0.01, momentum parameter of 0.9, and weight decay of 0.0004.

First, the ratio of the training samples for the SVM and CNN classifiers were 1% and the other 99%
were for testing. The 14 types of crops were classified, including lentil, durum wheat, spring wheat,
field pea, oat, canola, grass, mixed pasture, mixed hay, barley, summer fallow, flax, canary seed, and
chemical fallow. Compared with the ground truth, some of the classification results along with the
error map are shown in Figure 14, and the OA and kappa for the SVM and CNN classifiers, along with
the correct classification ratio for each class, were calculated and are summarized in Tables 5 and 6,
respectively. The crop classification results showed that the optimal S-SAE had the best performances
for both the SVM and CNN classifiers. For the SVM classifier, OA from the S-SAE was 16.77% and
14.56% higher than those from PCA and AE(1). For the CNN classifier, OA from the S-SAE was raised
by 7.55% and 7.58% relative to those from PCA and AE(1). The combination of S-SAE and CNN
achieved the best classification results, of which the OA and kappa were up to 95.44% and 94.51%

Second, the classification methods with different training ratios (i.e., 1%, 5%, and 10%) for training
the SVM and CNN classifiers were compared. The quantitative evaluation parameters were calculated
and are listed in Table 7. Meanwhile, some results with the conventional Complex Wishart classifier,
LSTM in Zhong et al. [31] and Chen method [15] are also included. The 36 × 7 decomposed features
were the input of the LSTM and 14 decomposed roll-invariant features from 7 time series were taken as
the input of the Chen method.

From Figure 14, we can conclude that: 1) for feature dimension reduction, the SVM and CNN with
nine features from the S-SAE achieved the best classification results; 2) with the increase of the training
ratio, the recognition accuracy for all methods became better, as expected; 3) compared with the SVM
classifier, the CNN classifier improved the classification performance of the dimensionality reduction
features, especially for the crops with small planting areas; 4) among all the compared methods,
the proposed method achieved the highest classification accuracy. The LSTM wass not effective in
discriminating crop species with similar external morphologies, such as barley and durum wheat.
Moreover, the proposed method of S-SAE + CNN achieved excellent crop classification accuracies,
even with finite training ratios.
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Figure 14. Classification results and ground truth map for the Indian Head site: (a) ground truth map, 
(A) crop area, (b) complex Wishart classifier, (c) Chen + CNN, (d) long short-term memory (LSTM), 
(e) locally linear embodied (LLE) + CNN, and (f) S-SAE + CNN. (B–F) are the error maps of (b–f). 

Figure 14. Classification results and ground truth map for the Indian Head site: (a) ground truth map,
(A) crop area, (b) complex Wishart classifier, (c) Chen + CNN, (d) long short-term memory (LSTM), (e)
locally linear embodied (LLE) + CNN, and (f) S-SAE + CNN. (B–F) are the error maps of (b–f).
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Table 5. Comparison of the support vector machine (SVM) classification accuracy with different
dimension reduction methods for the Indian Head site. PCA: Principle component analysis.

Methods OA (%) Kappa
(%)

Classification Accuracy of the 14 Crops (%)

H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14

PCA 65.00 54.88 88 1 96 48 1 90 44 2 33 1 8 18 1 0
LLE 65.19 55.23 90 1 96 48 1 89 48 3 36 1 19 21 1 0

AE(1) 67.21 57.55 83 1 97 83 3 90 4 6 37 3 25 23 1 0
AE(2) 76.74 70.51 88 2 98 92 22 94 35 7 37 29 35 56 29 2

S-AE(3) 79.75 74.67 90 5 98 93 26 95 62 2 57 40 43 65 34 0
S-AE(4) 80.47 75.62 92 5 98 94 24 94 68 3 59 43 49 65 44 0
S-SAE 81.77 77.20 92 7 98 94 31 96 72 7 48 41 58 69 53 25

Table 6. Comparison of the CNN classification accuracy with different dimension reduction methods
in Indian Head site.

Methods OA (%) Kappa
(%)

Classification Accuracy of the 14 Crops (%)

H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14

PCA 87.59 84.87 96 55 96 92 56 98 78 50 79 61 76 80 49 23
LLE 88.30 85.80 97 51 94 94 62 99 76 62 79 63 86 84 60 61

AE(1) 87.86 85.29 91 44 92 97 63 99 88 59 71 70 89 79 75 31
AE(2) 93.03 91.58 96 70 96 99 79 99 88 55 83 80 89 87 86 92

S-AE(3) 94.74 93.65 98 69 97 99 81 100 85 58 88 84 95 94 93 61
S-AE(4) 94.95 93.92 98 71 97 99 81 100 83 59 82 92 91 94 98 79
S-SAE 95.44 94.51 99 78 97 99 80 100 89 57 86 88 97 94 94 75

Table 7. Classification accuracy with different methods and training ratios for the Indian Head site.

Methods
1% 5% 10%

OA (%) Kappa (%) OA (%) Kappa (%) OA (%) Kappa (%)

Complex Wishart 60.86 55.89 61.05 56.08 61.26 56.28
LLE + SVM 65.19 55.23 69.93 61.60 72.75 65.35

S-SAE + SVM 81.77 77.20 82..35 78.01 84.06 80.17
Chen + SVM 66.99 57.45 71.61 63.77 72.13 64.47
Chen + CNN 91.74 90.04 96.35 95.55 97.93 97.51

LSTM 69.67 61.31 80.74 76.07 82.83 78.76
LLE + CNN 88.30 85.80 96..66 96.00 99.23 98.95

S-SAE + CNN 95.44 94.51 99.08 98.89 99.61 99.53

3.2.4. Comparison of the Dimensionality Reduction Features with Different Methods

In order to further demonstrate the advantages of this method regarding feature extraction,
this section compares the dimensionality reduction features with different dimensionality reduction
methods for the following two aspects. First, according to the contribution of PCA and visual quality
of LLE and S-SAE, the first four extracted features from these three methods were visualized and are
shown in Figure 15, from which it can be seen that the features with S-SAE exhibited the best visual
effects. Second, the values of the standard deviation between different crops and within the same class
were calculated for quantitative comparison. The six main crops with the highest planting area in
the Indian Head site were selected for comparison: lentil, spring wheat, field pea, canola, barley, and
flax. Then, six local windows with the size of 100 × 100 were used to choose samples for the six main
crops, and the standard deviations of the optimal feature (i.e., the first column in Figure 15) from each
method were calculated and plotted in Figure 16 (in Figure 16a, the number of the horizontal ordinate
stands for the six selected crops; in Figure 16b, the number of the horizontal ordinate stands for three
crops, including the current and neighboring crops), which shows the maximum standard deviation
between different crops and the minimum within the same crop. Consequently, the features with the
S-SAE had a better classification ability and are expected to improve the accuracy of crop recognition
and classification.
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3.3. Results and Analysis for the Flevoland Site 

In order to further verify the reliability of the proposed method, another experiment with multi-
temporal data from Flevoland was carried out and is reported on in this section. The methods of 
dimensionality reduction and classification maintained the same setup as the previous one. For a fair 
comparison, according to the contribution rate (i.e., more than 90%) of reduced parameters using 
PCA method, the original 252 features were all reduced to 12 features. 

First, various dimensionality reduction methods, including PCA, LLE, a single-layer AE(1) of 
252-12, a finely tuned AE(2) of 252-12, a finely tuned S-AE(1) of 252-100-50-12, a finely tuned S-AE(2) 
of 252-215-95-12, and an S-SAE of 252-215-95-12 were used to extract 12 low-dimension features from 
the original 252 multi-temporal features. In addition, the comparison methods also included a finely 
tuned SAE of 252-12 with λ , β , and ρ  being 0.1, 2.5, and 0.45. The determined optimal 
parameters of an S-SAE of 252-215-95-12 are listed in Table 8. Compared with the ground truth, some 
of the classification results and the error maps are shown in Figure 17, and the OA and kappa, along 
with the correct classification ratio for each class, were calculated and are summarized in Table 9, 
from which it can be seen that the optimal S-SAE still had the best performances. The combination of 
the S-SAE and CNN achieved the best classification results, of which OA and kappa were up to 
91.63% and 90.11%, respectively. Furthermore, the AE with a deeper structure and fine-tuning 
parameters improved the data dimensionality reduction ability. 

Table 8. Optimal parameter settings of each layer in the S-SAE for the Flevoland site. 
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Secondly, the classification methods with different training ratios (i.e., 1%, 5% and 10%) for 
training SVM and CNN classifiers are compared. The quantitative evaluation parameters are 
calculated and listed in Table 10. The experimental results show that the classification accuracy with 
Chen method is a little lower than that in Indian Head data. Other main conclusions are the same as 
those in the first study site.  
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3.3. Results and Analysis for the Flevoland Site

In order to further verify the reliability of the proposed method, another experiment with
multi-temporal data from Flevoland was carried out and is reported on in this section. The methods of
dimensionality reduction and classification maintained the same setup as the previous one. For a fair
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comparison, according to the contribution rate (i.e., more than 90%) of reduced parameters using PCA
method, the original 252 features were all reduced to 12 features.

First, various dimensionality reduction methods, including PCA, LLE, a single-layer AE(1) of
252-12, a finely tuned AE(2) of 252-12, a finely tuned S-AE(1) of 252-100-50-12, a finely tuned S-AE(2)
of 252-215-95-12, and an S-SAE of 252-215-95-12 were used to extract 12 low-dimension features from
the original 252 multi-temporal features. In addition, the comparison methods also included a finely
tuned SAE of 252-12 with λ, β, and ρ being 0.1, 2.5, and 0.45. The determined optimal parameters of an
S-SAE of 252-215-95-12 are listed in Table 8. Compared with the ground truth, some of the classification
results and the error maps are shown in Figure 17, and the OA and kappa, along with the correct
classification ratio for each class, were calculated and are summarized in Table 9, from which it can
be seen that the optimal S-SAE still had the best performances. The combination of the S-SAE and
CNN achieved the best classification results, of which OA and kappa were up to 91.63% and 90.11%,
respectively. Furthermore, the AE with a deeper structure and fine-tuning parameters improved the
data dimensionality reduction ability.

Table 8. Optimal parameter settings of each layer in the S-SAE for the Flevoland site.

Parameters L1 L2 L3

λ 0.001 0.02 0.001
β 0.6 0.2 0.4
ρ 0.25 0.55 0.25

Table 9. Comparison of CNN classification accuracy with different dimension reduction methods in
Flevoland site.

Methods OA (%) Kappa
(%)

Classification Accuracy of the 14 Crops (%)

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14

PCA 87.30 84.94 0 94 91 89 64 83 70 87 59 95 57 32 90 96
LLE 87.90 85.69 5 95 79 92 62 86 67 89 80 94 56 32 94 97

AE(1) 86.62 84.16 12 93 92 82 45 84 72 84 79 96 46 18 95 94
AE(2) 88.09 85.89 13 94 88 90 50 87 70 88 68 95 49 34 93 97

S-AE(3) 88.98 86.95 0 98 86 86 82 74 74 86 81 96 62 39 97 98
S-AE(4) 89.93 87.98 3 97 91 87 36 87 80 88 63 97 74 40 94 98

SAE 91.09 89.47 34 96 92 91 55 91 79 90 80 98 64 44 95 97
S-SAE 91.63 90.11 35 97 92 93 67 90 77 87 85 98 86 41 97 98

Secondly, the classification methods with different training ratios (i.e., 1%, 5% and 10%) for training
SVM and CNN classifiers are compared. The quantitative evaluation parameters are calculated and
listed in Table 10. The experimental results show that the classification accuracy with Chen method is
a little lower than that in Indian Head data. Other main conclusions are the same as those in the first
study site.

Table 10. Classification accuracy with the different methods and training ratios for the Flevoland site.

Methods
1% 5% 10%

OA (%) Kappa (%) OA (%) Kappa (%) OA (%) Kappa (%)

Complex Wishart 77.50 73.92 76.74 73.08 76.11 72.34
LLE + SVM 80.22 76.07 82.63 77.59 84.15 79.24

S-SAE + SVM 82.66 79.22 84.81 81.83 86.06 83.36
Chen + SVM 75.42 72.33 78.37 75.01 80.24 78.55
Chen + CNN 81.19 77.62 93.57 92.40 96.41 95.76

LSTM 73.93 68.51 76.52 71.72 79.77 75.71
LLE + CNN 87.90 85.69 94.99 94.09 97.28 96.30

S-SAE + CNN 91.63 90.11 95.90 95.17 97.57 97.14
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4. Discussions

The accuracy of the crop recognition and classification can be raised dramatically with
multi-temporal quad-pol SAR data. Recently, an increasing number of spaceborne SAR systems
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launched into orbit around the Earth can acquire a large amount of real data, providing a great
opportunity for multi-temporal data analysis [28]. Meanwhile, deep learning has shown powerful
abilities in the fields of remote sensing [48]. Based on these two considerations, this study attempted
to combine the effective feature dimension methods of AE and CNN classifiers to achieve crop
classification results with a high accuracy. Based on the theoretical analysis and experimental results
above, we provide the following discussions.

4.1. Contribution of Multi-Temporal SAR Data and Decomposed Features

Different from other ground objects, agricultural crops usually hold a stable and regular growing
cycle. Generally, the crop categories would not change during various growing stages. In this case,
single-temporal PolSAR images cannot provide sufficient information since the same crop shows
different external phenomena as it grows up. Compared with single temporal data, multi-temporal
remote sensing data can provide much richer information to improve the classification accuracy [29,30].

In order to better understand the polarimetric scattering mechanisms of various objects, a variety of
polarimetric feature decomposition techniques have been developed [37–40,59]. With these polarimetric
decomposition algorithms, a huge number of features can be extracted from PolSAR data that are used
to raise the classification accuracy. For multi-temporal data from M time series, the number of features
becomes M times greater. If a deep learning algorithm is directly applied, these tremendous features
encounter the serious difficulty of the curse of dimensionality at high dimensionality [50], especially
for quad-pol SAR images. Therefore, data dimension reduction and effective feature extraction are
very essential and important issues.

4.2. Network Construction and Parameter Optimization of an S-SAE

In this study, the S-SAE was employed to extract effective features from multi-temporal polarimetric
features. Furthermore, the effects of the training ratios, network configurations, size of the hidden
layers, and main parameters were studied in Section 3.2.2.

For the training ratios, the increasing training ratio of unsupervised training samples increased
the performances of S-SAE. However, the power of improvement became weaker with the increase in
pretraining samples, which was mainly due to the insufficient training caused by the decreased ratio of
fine-tuning samples to pretraining ones. In addition, the increasing training samples brought about a
heavy computation burden. Therefore, an appropriate training ratio is of paramount importance.

For network depths and the size of hidden layers, as the network deepened, the classification
accuracies became higher. However, the network depth was not as deep as possible [50,53]. When the
network contained more than three layers, the performance did not increase any more. Additionally,
by setting the step size of the searching grid to be smaller, this study provided new discoveries. If
the number of neurons in the first hidden layer approximated the number of input features and the
number of neurons in the second hidden layer kept a certain gap with the former and following layers,
a better performance of the data dimension reduction could be obtained.

For the parameters of λ, β and ρ, the regularization of λ and the sparsity terms of β and ρ had
uncertain impacts on the performances of the S-SAE. Appropriate values of these parameters improved
the OA of classification results by 5%, which was even higher than that of the optimal structure of
252-215-95-9. Unfortunately, clear regulations were not found in these experiments, which needs
further study in the future.

4.3. Differences from Existing Works

Regarding the purpose of classification with multi-temporal PolSAR data, Lee investigated the
regularities of distribution and applied statistical models to discriminate between different objects [8].
The proposed complex Wishart classifier only uses the statistical distribution of the covariance matrix
and can be easily extended to the case of multi-band or multi-temporal PolSAR images.
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With the development of polarimetric decomposition theory, various decomposed features can be
calculated, and it has been proven that the performances of target recognition and classification can be
improved greatly with these meaningful parameters [15,33]. Meanwhile, the CNN classifier was also
applied to classification with PolSAR images since it has shown great success in computer vision and
other fields [15,48]. In order to take full advantage of the polarimetric decomposition and the CNN
classifier, a feature dimension reduction was necessary. In this case, the conventional PCA and LLE
were used to extract effective information expressed by the reduced parameters.

In Section 3.2.3, for fair comparison, according to the contribution rate of the reduced parameters
using the PCA method, the original 252 features were all reduced to 9 features. The experimental
results show that the S-SAE performed best and the accuracy of the classification result obtained using
the S-SAE+CNN was the highest. For further comparison, PCA and S-SAE were used to reduce the
original 252 features to 3, 6, 9, and 12 low-dimensional features for the Indian Head site, and then the
reduced features were fed into the SVM classifier. The OA and kappa with different reduced features
are shown in Figure 18. It can be seen clearly that the classification accuracy increased as the number
of reduced features increased, as we expected. Regardless of the dimension of the reduced features,
S-SAE had a better performance than the conventional PCA method.
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4.4. Limitations and Future Work

First, only a limited number of polarimetric decomposition algorithms for quad-pol SAR images
were used in this paper. Polarimetric decomposition is still a rapidly developing area and many other
algorithms can also be used together to form a rather high-dimensional feature vector [52]. Second, the
proposed S-SAE feature dimension reduction method had a heavy computation burden, although it
performed much better than PCA. Third, the training ratio, network depth, size of the hidden layer,
and other main parameters can impact the performances of data dimension reduction, especially for a
multi-layer deep S-SAE. Finally, the proposed method was only assessed with Sentinel-1 data. The
performances with multiple SAR sensors and combination of SAR and optical data will be investigated
in future work.

5. Conclusions

To deal with the problem of the dimension disaster, this paper proposed an S-SAE to reduce the
data dimension of scattering features extracted from multi-temporal PolSAR images. To validate the
performances of the proposed S-SAE + CNN strategy, the Sentinel-1 data, along with the established
ground truth maps for two experimental sites, were used. Combined with the traditional SVM and
constructed CNN classifiers, the classification results were compared and evaluated. The experimental
results showed that the S-SAE could extract low-dimension features from original ones. For the CNN
classifier, this method could significantly improve the classification accuracy of small sample crops
compared with the traditional methods. With the increasing availability of PolSAR data, the proposed
method also provides an efficient way for crop classification with multi-temporal PolSAR data.
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In order to construct an optimal S-SAE, this paper also investigated the effects of the training
ratio, network depth, size of the hidden layer, network configuration, and other main parameters. The
experimental results showed that these factors could greatly impact the performance of the feature
dimension reduction. For this specific purpose, the configuration and main parameters of an S-SAE
should be optimized. It should be noted that the single-layer SAE could achieve a dimension reduction
performance that was close to the optimized S-SAE when the training parameters were set properly.
Due to the complexity of optimizing the parameters of a multi-layer S-SAE, the potential of multi-layer
S-SAE is not fully utilized. Methods to effectively determine the configuration and parameters for
constructing an optimal S-SAE will be discussed in a separate paper.
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