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Abstract: Improving plant photosynthesis provides the best possibility for increasing crop yield
potential, which is considered a crucial effort for global food security. Chlorophyll fluorescence
is an important indicator for the study of plant photosynthesis. Previous studies have intensively
examined the use of spectrometer, airborne, and spaceborne spectral data to retrieve solar induced
fluorescence (SIF) for estimating gross primary productivity and carbon fixation. None of the
methods, however, had a spatial resolution and a scanning throughput suitable for applications at the
canopy and sub-canopy levels, thereby limiting photosynthesis analysis for breeding programs and
genetics/genomics studies. The goal of this study was to develop a hyperspectral imaging approach
to characterize plant photosynthesis at the canopy level. An experimental field was planted with
two cotton cultivars that received two different treatments (control and herbicide treated), with each
cultivar-treatment combination having eight replicate 10 m plots. A ground mobile sensing system
(GPhenoVision) was configured with a hyperspectral module consisting of a spectrometer and a
hyperspectral camera that covered the spectral range from 400 to 1000 nm with a spectral sampling
resolution of 2 nm. The system acquired downwelling irradiance spectra from the spectrometer
and reflected radiance spectral images from the hyperspectral camera. On the day after 24 h of the
DCMU (3-(3,4-dichlorophenyl)-1,1-dimethylurea) application, the system was used to conduct six
data collection trials in the experiment field from 08:00 to 18:00 with an interval of two hours. A
data processing pipeline was developed to measure SIF using the irradiance and radiance spectral
data. Diurnal SIF measurements were used to estimate the effective quantum yield and electron
transport rate, deriving rapid light curves (RLCs) to characterize photosynthetic efficiency at the
group and plot levels. Experimental results showed that the effective quantum yields estimated by the
developed method highly correlated with those measured by a pulse amplitude modulation (PAM)
fluorometer. In addition, RLC characteristics calculated using the developed method showed similar
statistical trends with those derived using the PAM data. Both the RLC and PAM data agreed with
destructive growth analyses. This suggests that the developed method can be used as an effective tool
for future breeding programs and genetics/genomics studies to characterize plant photosynthesis at
the canopy level.
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1. Introduction

The global population is likely to exceed 10 billion by 2050, presenting great challenges for
agriculture [1]. To fulfill the needs of the rapidly growing population, the current agricultural yield
must be doubled by that time, which translates into an annual increase of 1.75% total factor productivity
(TFP) [2]. Currently, the global TFP growth rate is approximately 1.5%, leaving a gap of 0.25% annually.
Even worse, the TFP growth rate is only approximately 0.96% in developing countries, which is far
behind the required growth rate. Cotton (Gossypium) is one of the most important textile fibers in
the world, accounting for about 25% of total world textile fiber use [3]. Thus, improvement of cotton
production is vital for fulfilling the fiber requirements of over ten billion people by 2050 [4].

As with all agricultural crops that have reproductive structures of economic importance, the yield
of cotton can be expressed as a function of total seasonal light interception, radiation use efficiency,
and harvest index [5]. Thus, yield improvement can be achieved by increasing any one of these three
variables. The “Green Revolution” introduced dwarfing genes into the most important C3 cereal
crops (e.g., rice and wheat), allowing an increased biomass allocation to grain with a reduction in
the total aboveground biomass (thus, an increased harvest index) [6]. Breeding programs have
continued to increase carbon allocation into grain [7], and in cotton specifically, genetic yield
improvement historically has also been associated with an increase in biomass partitioning to
reproductive units (bolls) [8,9]. One study [10], however, suggested that future yield improvements
in high potential environments would likely be achieved by (1) selecting cotton varieties that exhibit
a more indeterminate growth habit (i.e., capitalize on the high insolation levels experienced in long
growing season environments); and (2) increasing photosynthetic efficiency either through breeding or
biotechnology efforts. Photosynthesis is a process that converts radiant energy into biochemical energy,
and is the basis of plant growth. In contrast with efforts to breed for desirable plant growth habits or
greater harvest index, photosynthetic improvement has not yet been achieved for breeding programs,
and remains a promising avenue for increasing agricultural productivity in the future. In addition,
variations in photosynthetic efficiency can be used as indicators of plant stress, which can be used
for selecting genotypes with high levels of stress tolerance or for making management decisions at
the field scale [11]. Furthermore, there is a tremendous amount of interest in using remote sensing to
model gross primary productivity of natural ecosystems according to the original framework of [5,12].
In order to achieve this, the photosynthetic efficiency of the canopy must be estimated.

Chlorophyll fluorescence parameters are often used to evaluate photosynthetic performance and
stress in plants [13]. These parameters include three measurable variables; i.e., minimal fluorescence
(F0 or F

′
0) when photosystem II (PSII) centers are open, maximal fluorescence (Fm or F

′
m) when PSII

centers are closed, and steady state fluorescence (Fs or F
′
s). There are several derived variables, such as

variable fluorescence (Fv = Fm − F0 or F
′
v = F

′
m − F

′
0) and difference in fluorescence (Fq = Fm − Fs or

F
′
q = F

′
m − F

′
s) between Fm (or F

′
m) and Fs (or F

′
s). Variables denoted by primes are for light-adapted

states, and are otherwise for dark-adapted states. These parameters can be used to calculate the

maximum ( Fv
Fm

or F
′
v

F′m
) and operating (

F
′
q

F′m
, also known as, ΦPSII) efficiencies of PSII photochemistry,

both of which are useful for photosynthetic efficiency evaluation and plant stress detection [14].
There are active and passive sensing approaches to measure chlorophyll fluorescence parameters.

Active techniques include pulse amplitude modulation (PAM) [15] and laser induced fluorescence
transience (LIFT) [16], both of which can emit predefined light to measure minimal fluorescence (F0),
steady state fluorescence (Fs), and maximal fluorescence (Fm), and can calculate variable fluorescence
(Fv). Based on active techniques, portable instruments (e.g., PAM fluorometers) have been developed
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and widely used for photosynthesis studies [17–22]. Active techniques rely on artificial illumination,
however, which limits their use for large scale applications [23].

Passive techniques retrieve chlorophyll fluorescence emission excited by solar illumination
(natural sunlight), which is termed solar induced fluorescence or sun induced fluorescence (SIF).
Upwelling radiance from plants under solar illumination is a mixture of SIF and surface reflectance,
and it is feasible to decouple SIF signals from the upwelling radiance in Fraunhofer lines of the
solar spectrum in which irradiance is substantially reduced because of atmospheric absorption
(e.g., hydrogen and oxygen). In the red and far-red spectral range, three Fraunhofer lines are frequently
used for SIF retrieval, including Hα at 656 nm because of hydrogen and O2-B at 687 nm and O2-A at
760 nm because of oxygen. Common SIF retrieval approaches include conventional Fraunhofer line
discrimination (FLD), improved FLD variants, and reflectance-based ratios [24]. Many studies explored
the use of ground based spectrometers to retrieve the SIF values of plant leaves, and reported high
correlations between SIF measurements and fluorescence measured using active techniques (e.g., PAM
fluorometers) [24–27]. Large national research institutions (e.g., the European Space Agency, the EPA,
and the National Aeronautics and Space Administration (NASA)) launched programs to investigate
the use of hyperspectral imagery sensed remotely from planes and satellites to monitor SIF changes
at the regional and global levels, to estimate carbon fixation (or flux of carbon dioxide) and gross
primary productivity (GPP). Multiple studies have shown strong correlations between gross primary
productivity (whole canopy photosynthesis) and SIF through various modeling methods [12,28,29].
When using SIF to track GPP, there is usually a strong association with the absorbed photosynthetically
active radiation (PAR). In situations where light intensity is constant and extreme stress (such as heat
stress) limits canopy photosynthesis, however, the relationship is somewhat degraded, because excess
energy that cannot be dissipated through non-photochemical quenching (NPQ) might be emitted
as increased fluorescence [30]. Thus, it is important to develop a method to generate canopy level
quantum yields and photosynthetic activities if the method can be broadly applicable under a range of
environmental conditions. These data would be invaluable for research studies and policy-making to
secure the food supply [28,29,31–33].

Spectrometer-based approaches can provide the highest accuracy of measurement location
(a specific point on a leaf), but have an obvious limitation in the scanning throughput (point by point).
By contrast, airborne and spaceborne solutions provide a substantially faster scanning throughput,
but have compromised spatial resolutions (sub-meter to meters). Neither approach, therefore, would
be suitable for breeding programs and plant-science studies at the canopy or sub-canopy levels.
Ground-based hyperspectral imaging would be a viable solution to address those issues because
it provides a higher scanning throughput (usually line by line) and a better spatial resolution (sub
meter or higher). Many researchers have explored the use of ground-based hyperspectral imaging
for extracting vegetative indices that can be correlated with plant aboveground biomass [34], leaf
area index [35], and various plant pigments (e.g., chlorophyll) [36]. Although these studies showed
some success, they required either sophisticated model calibration and validation [36] or artificial
illumination [34]. A few studies examined the use of ground hyperspectral imaging to measure SIF,
showing high measurement accuracies and the potential of spatial variation analysis [37,38]. However,
these studies were restricted to the scope of instrumentation validation and did not utilize retrieved
SIF for characterizing whole-canopy photosynthesis.

It should be noted that passive hyperspectral sensing systems can also measure canopy reflectance
indices to monitor photosynthetic activities. For instance, the photochemical reflectance index (PRI)
was introduced by Gamon et al. [39], and has been studied extensively [40–42]. It is calculated
as (R531 – R570)/(R531 + R570) and has been correlated with photosynthetic efficiencies previously.
However, some studies reported that the PRI is somewhat limited, in that measurements are highly
sensitive to viewing angle and are strongly influenced by soil background at leaf area index (LAI)
values less than 3 [12,41]. In particular, a previous study found no correlation between PRI and light
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use efficiency (LUE) [43]. Thus, it would be of great interest to focus on the measurement of SIF rather
than other reflectance indices for photosynthetic activity evaluations, especially at the canopy level.

A particularly notable limitation to using SIF to estimate canopy-level photosynthetic efficiency
is the method for estimation of maximal fluorescence (F′m) at the canopy level, which has not been
reported previously [44]. If F′m could be determined for the canopy using SIF, real-time estimates
of crop-level photosynthetic efficiencies could be obtained using passive sensing approaches. Direct
measurement of F′m faces a significant challenge: the maximum intensity of solar illumination on
the ground is far less than a “saturating” flash intensity used by PAM fluorometers, so maximal
fluorescence at the canopy level cannot be directly measured. In fact, it has been demonstrated that
leaves of plants previously acclimated to high light environments often do not close all reaction centers
despite exposure to such a “saturating” flash intensity, preventing even direct measurement of F′m by
using PAM fluorometry. A multi-phase flash approach was developed, however, to estimate F′m and
electron transport rate (ETR) without the “saturating” light [45]. Using this method, a leaf sample is
successively exposed to flash intensities in either ascending or descending order, and the intensity of
chlorophyll fluorescence is quantified at each step. Fluorescence intensity (F) is then plotted against
the reciprocal of PAR. A function is fit to the data to obtain the y intercept and an estimate of apparent
F′m at an infinite light intensity when all reaction centers would hypothetically be closed. Since it is
often necessary to expose single leaf samples to different PAR levels in succession to obtain an estimate
of F′m, it might also be possible to estimate F′m for the canopy by taking advantage of natural, diurnal
variations in PAR and SIF.

The overall goal of this study was to develop a ground-based hyperspectral imaging approach to
characterize photosynthesis at the canopy level. Specific objectives were to (1) develop a ground-based
hyperspectral imaging system to measure diurnal SIF changes using the FLD method; (2) calculate
effective quantum yield and ETR to derive light curves for characterizing plant photosynthesis; and
(3) validate the efficacy of the characterization method by comparing the hyperspectral imaging
derived measurements with PAM-derived measurements and destructive crop growth analysis.

2. Materials and Methods

2.1. Plant Materials and Experimental Design

To evaluate the utility of diurnal SIF measurements for estimating whole canopy photosynthetic
efficiency, a field experiment was established at the University of Georgia Lang-Rigdon research farm
near Tifton, GA. Two cotton cultivars (PHY 841 RF and PHY 340 W3FE) were planted on 19 June, 2018
at a 2.5 cm depth, with a seeding rate of 11 seeds per m2. Individual plots were 1 row with a length of
9 m and an inter-row spacing of 0.91 m. Plots were arranged along the east–west direction. The two
cultivars planted represent two different species of cotton adapted to different cotton production
regions of the southern United States (US) and were previously shown to differ in leaf anatomical
characteristics and photosynthetic response to light intensity [46]. PHY 841 RF is a Pima cotton
(Gossypium barbadense) cultivar widely grown in the arid southwestern US, whereas PHY 340 W3FE
is an upland cotton (Gossypium hirsutum) cultivar primarily grown in the humid southeastern US.
To generate large differences in photosynthetic efficiency of the canopy, once the crop had reached
the initial stages of floral bud development (referred to as “squaring”), plots received one of two
possible herbicide treatments. Untreated control plots received only water applied as a foliar spray at
a rate of 130 L/ha. Diuron (3-(3,4-dichlorophenyl)-1,1-dimethylurea) treated plots had a 41% solution
of DCMU (w/w; Diuron 4L) applied at a rate of 2.35 L/ha and a total application volume (water
plus Diuron solution) of 130 L/ha. Diuron is a highly selective herbicide that specifically blocks the
transfer of electrons from PSII to plastoquinone during the thylakoid reactions of photosynthesis.
There were two rows of buffer plants between adjacent herbicide treatments to prevent drift onto
non-target plants. Fertility, pest control, and irrigation were managed according to University of
Georgia’s Cooperative Extension recommendations [47]. The experiment was arranged as a split plot,
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randomized complete block design, wherein DCMU treatment represented the whole plot factor and
cultivar represented the sub-plot factor. There were eight replicate plots for each cultivar within a
particular herbicide treatment.

2.2. Data Acquisition

2.2.1. Hyperspectral Data Acquisition

The GPhenoVision system was configured with a spectral module for spectral data acquisition [48].
The spectral module consisted of one spectrometer (Flame VIS-NIR, Ocean Optics Inc., Largo, FL, USA)
and one hyperspectral camera (MSV500, Middleton Spectral Vision, Middleton, WI, USA) (Figure 1).
Both sensors were calibrated radiometrically and spectrally (also spatially for the hyperspectral
camera), covering the spectral range from 400 nm to 1000 nm with a spectral sampling resolution
of 2 nm. For the spectral calibration, the spectrometer was calibrated by the manufacturer, whereas
the hyperspectral camera was calibrated by the authors using three calibration lamps. Details of
spectral and spatial calibration can be found in a previous study [37]. For the radiometric calibration,
the spectrometer, the hyperspectral camera, a spectroradiometer (Ocean Optics Inc., Largo, FL, USA),
and an illumination source (DC-950, Fiber-Lite, Dolan-Jenner Industries, Boxborough, MA, USA) were
attached to an integrating sphere (4P-GPS-060-SF, Labsphere, North Sutton, NH, USA). By adjusting
the illumination intensity at different levels, calibration models between digital counts and irradiance
were established for the spectrometer and hyperspectral camera. The spectrometer was equipped
with a cosine corrector (field of view of 180◦) facing towards the sky, whereas the hyperspectral
camera was positioned nadir to the ground. The spectrometer acquired the irradiance spectra of the
sunlight. Depending on the solar irradiance intensity, the sampling frequency of the spectrometer
varied from 20 Hz to 50 Hz, so that signal intensities could stay in the optimal range without saturation.
The hyperspectral camera was positioned 2.15 m above the ground, collecting radiance spectral images
of plant canopies of two plots at a time. To ensure the spatial aspect ratio, the hyperspectral camera
ran at 100 frames per second (FPS) and the platform moved at an approximate speed of 0.5 m/s.
The system moved sunward along the plot direction (east-west direction) to avoid potential issues
caused by shading effects. Six data collection trials were conducted on 9 August 2018 (beginning
approximately 24 h after Diuron application) at 08:00, 10:00, 12:00, 14:00, 16:00, and 18:00, respectively.

Figure 1. Illustration of data collection system: (a) picture of the “GPhenoVision” system and
(b) diagram of the system configuration and sensor installation.

2.2.2. Fluorometry Measurement

Active chlorophyll fluorescence measurements were conducted simultaneously with
hyperspectral imaging collection. A human operator followed the GPhenoVision system and used a
portable pulse-amplitude-modulation (PAM) fluorometer (OS5p+, Opti-Sciences, Inc., Hudson, NH,
USA) to measure the uppermost fully expanded leaf at approximately the fourth mainstem node below
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the plant terminal. Three leaves per plot were measured. At each diurnal sampling time, the leaf
blade was clipped so that the orientation of the exposed adaxial surface relative to incoming solar
radiation was left unchanged, and steady state fluorescence (F

′
s) was measured under ambient light

conditions using a 660 nm modulation measuring beam under naturally occurring solar irradiance as
our actinic light source. While measuring fluorescence, PAR at the leaf surface was estimated using
a PAR sensor integrated into the leaf clip. Subsequently, maximal fluorescence intensity (F

′
m) was

estimated using a multi-phase flash (provided by a 35 W halogen bulb) approach comparable to the
methods described in [45], wherein relative fluorescence intensity is plotted versus the reciprocal of
PAR following exposure of the leaf sample to a sequence of flashes with increasing intensity (2850,
5700, and 8550 µ mol/m2/s) for a total duration of 0.95 s. A linear function was fit to the resulting data
set to estimate F

′
m at infinite light intensity. This represents fluorescence intensity when all reaction

centers are closed.

2.3. Characterization of Canopy-Level Photosynthetic Efficiency

2.3.1. Retrieval of Solar Induced Fluorescence

Collected spectral data were used to retrieve SIF values at the canopy level (Figure 2). Irradiance
spectra of the sunlight and radiance hyperspectral cubes of the plant canopy were synchronized using
timestamps, resulting in meta-hyperspectral cubes of each scanning row, where individual pixels had
both irradiance and radiance spectra. Based on the spatial information, a meta-hyperspectral cube
was further split into two sub-cubes, with each sub-cube containing irradiance and radiance data for
one plot.

The following processes were performed for the meta hyperspectral cube of a single plot. Based
on preliminary tests, grayscale images at 749 and 685 nm were used to generate a band ratio image
(I749/I685). A threshold was applied to the band ratio image to create the mask of plant canopies in
that plot. An arbitrary value of 3 was used in the present study based on the trial-and-error method.
Chlorophyll absorbs incident light (particularly blue and red light in the visible spectral range) and
emits fluorescence in the red and far-red spectral range. Upwelling radiance spectra of plant canopies
thus contain both reflectance and fluorescence signals in the red and far-red spectral range. Fraunhofer
lines are a set of spectral absorption lines in the spectrum of sunlight related to particles in the solar and
terrestrial atmosphere. Hα at 656 nm, O2-B at 687 nm, and O2-A at 760 nm are three Fraunhofer lines
in the red and far-red spectral range. The reduction of solar irradiance in the Fraunhofer lines results
in a decrease of the canopy reflectance and an increase in the ratio of fluorescence and reflectance
signals, which maximizes the suitability of decoupling chlorophyll fluorescence from the canopy
reflectance. A standard Fraunhofer line discrimination (sFLD) method has been developed to use
irradiance and radiance signals at two spectral bands [49]. One band is one Fraunhofer line, and the
other band is a wavelength near the corresponding Fraunhofer line. In the present study, based on
previous literature review [24], the O2-A band (approximately at 761 nm) and its neighboring band
(759 nm) were used to calculate SIF values of individual pixels using Equation (1). It is noteworthy
that the sFLD method was used, because the present study focused on exploring the possibility of
using hyperspectral imaging for SIF retrieval and successive canopy-level photosynthetic analysis.
Other Fraunhofer line discrimination models (e.g., 3FLD and improved FLD) can be used to improve
SIF retrieval accuracy in future studies [24].

SIFp =
E759

p L761
p − E761

p L759
p

E759
p − E761

p
, (1)

where SIFp was the SIF value (W/m2/nm/sr) of a pixel p. E·p and L·p represented the irradiance
(W/m2/nm) and radiance (W/m2/nm/sr) intensities of p at a certain wavelength.
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Figure 2. Flowchart of image processing from collected raw data to meta-SIF (solar induced
fluorescence) images. In the meta-hyperspectral cube, each pixel had both irradiance and radiance
spectra covering the spectral range from 400 to 1000 nm with a spectral resolution of 2 nm.

The plant canopy mask was multiplied with retrieved SIF values, forming the SIF image of the
plot. As each image line of a radiance hyperspectral cube had a corresponding irradiance spectrum,
PAR values were calculated for individual lines of SIF images using Equation (2). Pixels along
individual lines in a radiance hyperspectral cube shared the same irradiance spectrum measured by
the spectrometer.

PARp =
1

Asts

∫ 700

400

Eλ
p

eλ
dλ =

1
Asts

∫ 700

400

Eλ
p λ

hc
dλ, (2)

where PARp was the PAR value (µ mol/m2/s) of a pixel p. As was the surface area (m2) of the cosine
corrector equipped with the spectrometer, and ts was the integration time (s) of the spectrometer. Eλ

p
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was the irradiance of p at the wavelength λ (nm). eλ was the energy of a photon at the wavelength λ, h
was the Planck constant, and c was the light speed in a vacuum. One PAR value corresponded to the
average value for all pixels in one line of a hyperspectral cube.

Subsequently, a meta-SIF image was generated for a plot, consisting of a plot SIF image and a
PAR curve (PAR values for lines along the row direction of the corresponding SIF image).

2.3.2. Calculation of Effective Quantum Yield and Electron Transport Rate

For data derived from hyperspectral images (HSI), the potential maximum SIF value was
estimated for each of four combinations of genotype and treatment. In each genotype-treatment
combination, a regression model was used to fit SIF measurements over reciprocals of PAR, and the
model’s y-interception (the reciprocal of PAR equaled to zero) was treated as the maximum SIF value
for all plants in that combination. An exponential model was used for the two control treatment
combinations, whereas three different models were used for the two Diuron combinations due to a
lack of obvious data distribution patterns (likely due to damage to the photosynthetic apparatus and
resulting non-photochemical quenching). The three models for the Diuron combinations included a
linear regression model, quadratic regression model, and average model that used the mean value of
SIF measurements as the maximum SIF. After obtaining the maximum SIF value for each approach,
the effective quantum yield of PSII (φPSII) and photosynthetic ETR were calculated using Equations (3)
and (4) for data points in each combination.

φPSII =
SIFm − SIF

SIFm
= 1− SIF

SIFm
(3)

ETR = PAR× φPSII × Alea f × RPSII , (4)

where φPSII was the effective quantum yield of PSII for a SIF value (SIF). SIFm was the estimated
maximum SIF value for a genotype-treatment combination. Alea f was the leaf absorbance of incident
light, and a typical value (0.84) for C3 species (e.g., cotton) was used in this study [50,51]. RPSII was
the distribution ratio of absorbed energy between photosystem I (PSI) and photosystem II (PSII), which
was assumed as an equal distribution (0.5) [52].

For PAM fluorometry data, the maximal fluorescence intensity and PAR were obtained, so φPSII
was calculated using Equation (5) [53], while ETR was still calculated using Equation (4).

φPSII =
F
′
m − F

′
s

F′m
= 1− F

′
s

F′m
, (5)

where φPSII was the effective quantum yield of PSII. F
′
s and F

′
m were the steady state and maximal

fluorescence intensities under actinic light.

2.3.3. Rapid Light Curve and Standardized ETR

Because light intensity influences electron transport rates and can fluctuate throughout the day or
even within the same measurement period for a given plot, rapid light response curves were generated
from diurnal data to provide a standardized measure of maximum electron transport rate for each
plot. ETR and PAR values were used to generate rapid light curves (RLCs) using the method proposed
by [54]. To quantitatively analyze RLCs, RLCs were fitted using an empirical model (Equation (6)) [55].

ETR = mETR× (1− e−α×PAR/mETR), (6)

where mETR was the photosynthetic capacity at saturating light by which all reaction centers were
hypothetically closed, and α was the initial slope of the RLCs before the onset of saturation; i.e., the
slope of the light-limiting region of RLCs.
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RLCs were generated and modeled at two levels: the group level and the plot level. RLCs at
the group level were calculated using all data points (N = 48) of a group (a genotype-treatment
combination), and RLC parameters were compared to evaluate differences in canopy-level
photosynthetic efficiency among the four groups. In order to test the statistical significance of these
differences, RLCs at the plot level were calculated using data points (n = 6) of individual plots in each
group. Consequently, an individual group had 8 replicates for conducting statistical analyses.

While mETR can be used to compare differences of photosynthetic efficiency between groups,
standardized ETR (sETR) values were calculated by setting PAR equal to 1500 µ mol/m2/s, which is a
common value in the study area and is generally considered a saturating light intensity for cotton [56].

2.4. Calculation of Standardized Photochemical Reflectance Index

Photochemical reflectance index (PRI) values were computed from collected hyperspectral
images for individual plots at different sampling time periods. For each plot, a logarithmic model
(PRI = a× ln(PAR) + b) was established between diurnal PRI and PAR. To compare the potential of
using PRI and SIF for characterization of photosynthetic activities, standardized PRI (sPRI) values
were calculated by setting the same PAR (1500 µ mol/m2/s) used for sETR calculation.

2.5. Growth Analysis

Crop performance was also verified by destructively harvesting all aboveground plant material
in a 2 m long section of each row on two sampling dates to derive classical crop growth indices. Plants
were sampled on 9 August 2018 (immediately after SIF measurements) and 23 August 2019 (a two
week interval). On each sampling date, plants were placed in plastic bags with moist paper towels to
ensure that plant tissues did not desiccate between harvest and measurement. In the laboratory, plants
were separated into leaves and stems, and leaf area was determined using a leaf area meter (LI-3100,
LI-COR Corp., Lincoln, NE, USA). Total dry weight was assessed following a 48 h drying period at
80 ◦C in a forced-air oven.

Five growth parameters were calculated, including crop growth rate (CGR), net assimilation
rate (NAR), relative growth rate (RGR), the difference in leaf area index (∆LAI), and the difference
in leaf mass fraction (∆LMF) between the two sampling dates. The five parameters were defined by
Equations (7)–(11).

CGR =
Wtotal

t2 −Wtotal
t1

(t2− t1)× Aland (7)

NAR =
Wtotal

t2 −Wtotal
t1

t2− t1
×

ln Alea f
t2 − ln Alea f

t1

Alea f
t2 − Alea f

t1

(8)

RGR =
ln Wtotal

t2 − ln Wtotal
t1

t2− t1
(9)

∆LAI =
Alea f

t2 − Alea f
t1

Aland (10)

∆LMF =
W lea f

t2

Wtotal
t2
−

W lea f
t1

Wtotal
t1

, (11)

where W lea f and Wtotal represented the leaf and total dry weights. Alea f and Aland represented the
leaf and land areas. In the present study, the Aland was 1.82 m 2 (0.91 m × 2 m). t2 and t1 were the
sampling dates in days after planting (DAPs).

2.6. Statistical Analysis

Least squares linear regression analyses were performed to calculate the correlation between
HSI- and PAM-derived φPSII measurements, which evaluated the goodness of different methods
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for maximal fluorescence estimation. To avoid potential effects due to outliers, these analyses were
conducted using robust regression option (“bisquare”) in MATLAB (The MathWorks, Inc., Natick, MA,
USA). To test the effectiveness of standardized ETR values, ANOVA tests were performed on the five
growth parameters and standardized ETR values estimated using four approaches (PAM and three
HSI-based methods). After testing the effects due to genotype, treatment, and the interaction between
genotype and treatment, ANOVA tests were further performed on the traits between treatments for
each genotype. ANOVA tests were performed at the significance level of 0.05 in R [57]. In addition
to ANOVA tests, Pearson correlation analysis was conducted between growth traits, sETR, and sPRI,
evaluating the potential of using the sETR for growth prediction. Pearson correlation analyses were
also conducted in R.

3. Results

3.1. Representative Meta-SIF Images

Meta-SIF images showed obviously different trends between the control and Diuron-treated
groups (Figure 3). In the control groups, SIF values had the same trend as PAR values: SIF values
increased with the increase of PAR values and decreased with the reduction of PAR values. In contrast,
SIF values for Diuron-treated plots exhibited no relation with PAR values: SIF values were low and
relatively constant, irrespective of PAR changes throughout the day. This observation agreed with
the experimental design. The control groups were healthy, showing fluorescence intensity changes
along with varied PAR levels, whereas an inhibitor of electron transport beyond PSII would be
expected to cause damage to the photosynthetic apparatus and potentially increase the NPQ of the
fluorescence signal.

Figure 3. Representative meta-SIF images for control and Diuron-treated plots. In meta-SIF images,
each pixel had both an SIF value and a corresponding photosynthetically active radiation (PAR) value.
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In addition, variations were observed within a plot (see the control group at 1400 h in Figure 3).
Leafy regions in the plot showed higher SIF signals than less leafy regions, because the leafy regions
usually had a faster vegetative growth (and thus more mature leaves), resulting in a higher capacity
for photosynthesis. This suggests that calculated meta-SIF images could be used for analyzing the
spatial variation of photosynthesis. As the present study aimed to explore the possibility of using
SIF measured by passive HSI method to characterize photosynthetic efficiencies at the canopy level,
experiments were not designed to analyze spatial variations of SIF in a plot. Thus, successive studies
are needed to take the full advantage of HSI data to analyze spatial variations of SIF (and potentially
other photosynthetic parameters).

3.2. Estimated Maximal Fluorescence

Generally, the control groups were well (R2 = 0.85) fitted by the exponential model, whereas the
Diuron-treated groups showed large variations in the model that best fit the SIF response to PAR
(Figure 4). As exponential models showed a strong relationship between SIF and PAR in control
groups, it was reasonable to use the y-intercepts of the models as the maximal fluorescence intensities.
In contrast, the three models for the Diuron–treated groups provided different goodness-of-fit and
maximal fluorescence values. Regarding goodness-of-fit, the quadratic model provided the best
estimation of the maximal fluorescence, followed by the linear model and average model. This was
possibly because the level of NPQ in Diuron-treated plots would have been higher under the highest
light intensities where the most damage would have been expected. Although a previous study
showed a linear relationship between chlorophyll fluorescence and PAR under high light intensities
(over 2800 µ mol/m2/s) [45], no strong linear relation was observed between SIF and PAR under solar
illumination (up to 2000 µ mol/m2/s) in the present study. In particular, the linear model provided
a reduced goodness-of-fit than the quadratic model, suggesting that the linear model might not be
optimal for estimating the maximal fluorescence for the Diuron-treated groups. However, there was a
reasonable consideration for using the average model, despite the worst goodness-of-fit. No obvious
trend was identified between SIF and PAR values in the Diuron-treated groups, and thus variations
among data points could be considered random measurement errors. Granting that, it was acceptable
to use the mean value as the group measurement (and thus the maximal fluorescence of that group),
thereby reducing the measurement error. Nonetheless, the three models provided different values for
maximal fluorescence intensity, and would have had different effects on the successive data processing.

3.3. Calculated Effective Quantum Yield and RLCs

Overall, the Pima and Upland cultivars showed the similar trends and patterns for φPSII and
ETR values calculated using PAM and hyperspectral data (Figure 5). For all four methods, φPSII
values decreased with increasing PAR values in the range from 0 to 2000 µ mol/m2/s for control
groups, whereas φPSII values were relatively lower and showed no correlation with PAR values
for Diuron-treated groups. Control and Diuron-treated groups were distinctively different from
each other in φPSII over PAR calculated using PAM data. While control and Diuron-treated groups
were still separable, overlaps between the two groups were identified with different magnitudes in
φPSII over PAR calculated using HSI data. The overlaps between control and Diuron-treated groups
for quantum yield were the largest when φPSII values were calculated using maximal fluorescence
estimated by the linear model, and the overlaps became smaller, being minimal when φPSII values were
calculated using maximal fluorescence estimated by the average and quadratic models, respectively.
This occurred primarily because of the differences between estimated maximal fluorescence values
for the Diuron-treated groups. The HSI quadratic model provided the lowest value of the estimated
maximal fluorescence, resulting in the lowest φPSII values. In particular, a lower maximal fluorescence
value led to more negative φPSII values that were treated as zero, which increased the magnitude of
the differences between the control and the Diuron-treated groups.
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ETR values rapidly increased with increasing PAR values in the range from 0 to 600 µ mol/m2/s,
and gradually reached a plateau afterwards for control groups. This trend held true for ETR values
calculated using PAM- and HSI-derived φPSII . ETR values calculated using PAM-derived φPSII
remained low (near zero) in the PAR range from 0 to 2000 µ mol/m2/s for Diuron-treated groups,
showing a clear separation from control groups. In contrast, ETR values calculated using HSI-derived
φPSII showed different magnitudes of overlap between control and Diuron-treated groups. In the PAR
range from 0 to 1500 µ mol/m2/s, all three HSI-based methods showed a distinction between control
and Diuron-treated groups, with the largest overlap by the HSI linear method followed by average and
quadratic methods. In the PAR range from 1500 to 2000 µ mol/m2/s, the HSI linear method showed
no distinction between two treatment groups, whereas the HSI quadratic and average methods still
showed a distinct difference. This matched with the observations of φPSII .

Figure 4. Estimation of maximal fluorescence values for control and Diuron treatments. An exponential
model was used to fit the SIF and PAR reciprocal values for plots in the control group, whereas three
models (linear, quadratic, and average) were used to fit the SIF and PAR reciprocal values for plots in
the Diuron-treated group. The maximal fluorescence value was defined as the value when the PAR
reciprocal equaled zero.
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Figure 5. Calculated effective quantum yield of PSII (φPSII) and electron transport rate (ETR) for the two
genotypes under control and Diuron treatments. PAR is short for photosynthetically active radiation.

Quantitative RLC models further validated the aforementioned observations (Table 1). For all four
methods, control groups had a substantially higher value of mETR and a lower value of initial slope (α)
than Diuron-treated groups for both cultivars. Although the HSI linear method provided ETR values
that had a large overlap between control and Diuron-treated groups, the quantitative characteristics of
the fitted RLC models were dramatically different from each other, showing that even in the worst case
(HSI linear method), the developed method could be used to identify the photosynthetic efficiency
difference between the two groups. Although different methods showed a similar trend in the RLC
characteristics between different treatments, the absolute values of those characteristics were different.
mETR values calculated using HSI methods were 60% to 70% lower than those calculated using the
PAM method, and α values were 15% to 20% higher. The reduction of absolute values for mETR was
partially because the PAM and HSI methods provided measurements at different levels. The PAM
method measured a single leaf near the top of a plant with little or no shading, whereas the HSI
methods measured a whole canopy that had leaves at different levels of shading. So, it would be
expected that the HSI methods provided a lower ETR than the PAM method. In addition to herbicide
treatment differences, the two cultivars showed certain differences. The Pima cultivar had a lower



Remote Sens. 2020, 12, 315 14 of 22

minimum saturating irradiance (estimated by mETR
α [55]) than the Upland cultivar. This suggests that

the Pima cultivar would enter into the stage dominated by non-photochemical quenching at lower
light intensities than the Upland cultivar [58]. This finding is in agreement with a previous study
showing that individual leaves of Pima cotton reached light saturation for net photosynthesis at a
lower light intensity than Upland cotton [46].

Table 1. Rapid light curves (RLCs) calculated using ETR and PAR values for each genotype-treatment
combination. The RLC model was ETR = mETR× (1− eα×PAR/mETR).

Method Cultivar Treatment mETR α Ek R2

PAM Pima Control 296.70 0.3989 743.73 0.94
PAM Pima Diuron 0.00 0.5000 0.00
PAM Upland Control 303.90 0.3771 805.98 0.99
PAM Upland Diuron 2.12 0.5000 4.24
HSI_Linear Pima Control 177.51 0.4780 371.33 0.92
HSI_Linear Pima Diuron 50.13 77.0580 0.65
HSI_Linear Upland Control 210.07 0.4348 483.13 0.99
HSI_Linear Upland Diuron 46.19 93.9418 0.49
HSI_Quadratic Pima Control 177.51 0.4780 371.33 0.92
HSI_Quadratic Pima Diuron 0.00 0.5000 0.00
HSI_Quadratic Upland Control 210.07 0.4348 483.13 0.99
HSI_Quadratic Upland Diuron 0.00 0.5000 0.00
HSI_Avg Pima Control 177.51 0.4780 371.33 0.92
HSI_Avg Pima Diuron 0.00 95.0250 0.00
HSI_Avg Upland Control 210.07 0.4348 483.13 0.99
HSI_Avg Upland Diuron 0.00 0.5000 0.00

φPSII measured using different HSI methods also showed different correlations with those
measured using the PAM method (Figure 6). In fact, a high correlation (R2 = 0.73) was achieved
between PAM and HSI methods for control groups. Differences in correlations mainly came from
the measurements for Diuron-treated groups. The quadratic model provided the best estimate of
maximal fluorescence, exhibiting the strongest correlation between PAM and HSI-based estimates of
quantum efficiency at the canopy level. This suggests that the quadratic model could be an optimal
method for estimating maximal fluorescence for Diuron-treated groups. The average model showed a
reduced but comparable performance with the quadratic model. Considering its engineering rationale,
the average model could also be an option for estimating maximal fluorescence for Diuron-treated
groups. Additional experiments are needed to determine which method (the quadratic or average
model) would be the most optimal in terms of model generalization capability to different datasets.
However, the linear model provided the lowest correlation, suggesting that the linear model would
not be suitable for maximal fluorescence estimation for Diuron-treated groups.
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Figure 6. Coefficient of determination (R2) between the effective quantum yield of PSII (φPSII) values
derived from PAM and HSI data: (a–c) are for the Pima cultivar and (d–f) are for the Upland cultivar.
φPAM indicates values calculated using PAM data. φHSIL, φHSIQ, and φHSIA indicate values derived
from hyperspectral data using the maximal fluorescence value estimated by the linear, quadratic,
and average models. It is noteworthy that to avoid potential effects due to outliers, all R2 values were
obtained from least-squares linear regression analyses with robust option (“bisquare”) in MATLAB.

3.4. ANOVA Test Results

Generally, growth traits and sETR calculated using four methods showed significant differences
between treatments but no difference between genotypes (Table 2). This suggests that the sETR
measurements were effective in identifying the differences in plant growth between control and
Diuron-treated groups. It should be noted that although an interaction effect was identified for
∆LMF and sETR calculated using the HSI methods, control groups still showed higher values than
Diuron-treated groups irrespective of genotype, indicating the validity of main effect (treatment)
significance for those traits. RGR was the only trait showing a significant difference between genotypes.

For each cultivar, growth traits and sETR calculated using four methods had statistically higher
values for control groups than Diuron-treated groups (Figure 7). Growth traits (e.g., CGR, NAR, RGR,
and ∆LMF) were positive for control groups, indicating normal plant growth, whereas those traits
were close to zero or even negative, indicating plant loss of mass and leaf area in Diuron-treated
plots. The same patterns were observed for sETR calculated using four methods. An exception was
∆LMF, which represents dry matter partitioning to leaf area. Both cultivars showed negative ∆LMF
for control and Diuron-treated groups, meaning both cultivars distributed a smaller fraction of total
dry matter to leaves at the later sampling times irrespective of treatment. The Pima cultivar exhibited
a greater decline in LMF for the Diuron-treated group than the control group, likely reflecting the
damage caused by Diuron treatment and resulting defoliation that led to leaf mass fraction reduction.
In contrast, the Upland cultivar showed no difference of ∆LMF between treatments. This is likely
because the total growth was negatively affected to a comparable extent as leaf mass.
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Table 2. The p-values of ANOVA tests on the growth traits, and standardized ETR values estimated
using four approaches.

Trait Cultivar Treatment Interaction between Cultivar and Treatment

CGR 0.1568 0.0001 0.8406
NAR 0.1229 0.0002 0.3513
RGR 0.0128 0 0.2899
∆LAI 0.1801 0.0018 0.3906
∆LMF 0.9069 0.0008 0.006
sETRPAM 0.0792 0 0.65
sETRHSIL 0.2661 0 0.0237
sETRHSIQ 0.0864 0 0.0411
sETRHSIA 0.1663 0 0.0241

Figure 7. ANOVA tests on the growth traits and standardized ETR values estimated using four
approaches. Asterisks indicate statistical differences between two treatments at different significance
levels: * < 0.05, ** < 0.01, and *** < 0.001. CGR, NAR, RGR, and sETR values are in the units of g/m2/d,
g/m2/d, g/g/d, and µmol/m2/s, respectively.

3.5. Correlation between Traits

High correlations (r = 0.92 to 0.95) were achieved for sETR values calculated using the PAM
and HSI methods, further indicating the validity of using the developed method for canopy-level
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photosynthetic efficiency quantification (Figure 8). sETR, irrespective of calculation method, also
showed moderate correlations (r = 0.46 to 0.67) with growth traits, indicating the potential of using
calculated sETR for crop growth prediction. Among the three HSI methods, the HSI linear method
provided the lowest correlation, whereas the HSI quadratic and average methods showed relatively
higher correlations. This demonstrates that the estimation of maximal fluorescence affects the capability
of using sETR for growth prediction as well.

Figure 8. Pearson correlation values between growth traits and standardized ETR values estimated
using four approaches. Values in the upper triangle are correlation values between traits indicated
by a row and a column. Subplots along the main diagonal are the value distribution of individual
traits, whereas subplots in the lower triangle are scattering plots between traits indicated by a row
and a column. Significant (p-value < 0.05) correlation values are rendered by red color, and values are
otherwise black color.

Compared with sETR, sPRI showed poorer correlations with other traits, especially for
Diuron-treated plots. A possible reason was that PRI tends to reach a plateau value at a relatively
low PAR. When the PAR value of 1500 µ mol/m2/s was used, most sPRI fell into a small value range
irrespective of plant growth status, resulting in a poor correlation with growth traits. This observation
agreed with a previous study [59]. This suggests that the SIF-based characterization of photosynthetic
activity might be broadly applicable under a range of environmental conditions.
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4. Discussion

The developed approach used a passive hyperspectral imaging system to retrieve diurnal SIF
values that were used for estimating maximal fluorescence, effective quantum yields of PSII, and ETR
values at the canopy level. Irrespective of the approach utilized to model SIF to diurnal light intensity,
the following conclusions can be made. Maximal fluorescence estimates for the canopy, derived
from the best fit function of SIF versus the reciprocal of PAR in both the Diuron-treated plots
and the control plots were used to calculate actual quantum yield of the canopy. φHSI estimates
were strongly correlated with φPAM estimates when considered across multiple diurnal sampling
times of all treatments or for the two different species of cotton evaluated (Figure 6). Furthermore,
φHSI values were used to calculate ETR at a given diurnal PAR level, and diurnal light response
curves were generated for both PAM and HSI-based methods. From these data, a standardized
measure of ETR at a common light intensity (1500 µ mol/m2/s) was calculated for both PAM
and HSI-based methods. There was a strong correlation between HSI- and PAM-derived sETR
values (r = 0.95; Figure 8), and canopy estimates of ETR were also predictive of whole-crop growth
responses in the weeks following treatment. Thus, we suggest that is possible to estimate canopy-level
photosynthetic efficiency from passive, diurnal measurements of SIF and PAR at the canopy at the time
of measurement. This is a particularly notable achievement, since a number previous studies have
collected diurnal SIF measurements at the agro-ecosystem scale in attempts to model gross primary
productivity [12,60,61]. The methodology reported herein would allow researchers to obtain a direct
measure of ecosystem-scale photosynthetic efficiencies from existing data sets. Furthermore, the use
of hyperspectral imaging to delineate plot-scale photosynthetic efficiencies would allow for direct
selection of genotypes with higher diurnal photosynthetic activities. Last, the developed method
measures chlorophyll fluorescence in field conditions, which could expand fluorescence-based early
detection of plant stresses (described by [62–64]) from the laboratory to the field. This could be
particularly useful for agricultural production systems.

The developed approach has two major limiting factors, however. First, ETR values measured
by HSI data showed a larger absolute differences than those measured by PAM data. This can be
solved by improving the spectral sampling resolution [65]. The hyperspectral camera and spectrometer
used the spectral sampling resolution of 2 nm in the present study, utilizing only around 50% depth
of the Fraunhofer O2-A line [65]. This limits the SIF retrieval accuracy, and thus, the derivation of
effective quantum yield of PSII and ETR values. On the contrary, the spectral sampling resolution of
the hyperspectral camera and downwelling spectrometer can be configured to approximately 0.2 nm,
which could provide greater potential for further improvement of measurement accuracy. The finest
spectral resolution will result in a large increase of data volume, presenting potential challenges in
data collection, management, and processing. In addition to the hardware improvement, other SIF
retrieval methods (e.g., 3FLD and improved FLD) can be used to increase the retrieval accuracy [24].
Second, estimation of maximal fluorescence dramatically affected the calculations of effective quantum
yield, ETR, and RLC models. In the present study, a linear model provided the poorest results in
which control and Diuron-treated groups showed a large overlap. Although fitted RLC models
still showed a significant difference between treatments, it could be problematic to identify subtle
differences of photosynthetic efficiency among genotypes. This could limit the potential of using the
developed method for genetics/genomics studies and breeding programs. Future studies, therefore,
need to validate the efficacy of the three models used in the present study and examine new ways to
estimate maximal fluorescence using passive sensing methods. For instance, maximal fluorescence
estimation models for stressed plants can be established and validated in a full PAR range from 0 to
6000 µ mol/m2/s in a controlled environment, and transferred to field applications where data are
acquired in a part of the full PAR range.

We should also acknowledge some other limitations identified in the present study. First,
the present study was based on a single-year, single-location field experiment, which might present
concerns (e.g., environment variations) from the agronomic viewpoint. The present study, however,
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focused on methodology development to advance sensing and data analytics that can be potentially
used for agricultural applications. Specifically, we aimed to develop and validate a ground
hyperspectral imaging-based approach for diurnal SIF measurement and canopy-level photosynthesis
characterization. In this context, diurnal data collection and trait extraction can be considered repeated
experiments. High correlations between imaging- and fluorometer-derived measurements suggest
high accuracy and repeatability of the developed system and analysis method, which, together, meet
the study goal and objectives. Nonetheless, multi-year, multi-location experiments will be required to
reveal agronomic and physiological findings in the future. Second, we only validated the developed
approach through measurements (i.e., effective quantum yield of PSII and ETR) that can be obtained
from a PAM-based fluorometer, which might limit the use of the approach for studies broadly related
to photosynthesis. It is necessary to conduct successive experiments to comprehensively validate the
developed approach through measurements that can be obtained by other well-established methods,
such as SIF from instruments with high spectral resolution and gas exchange measurements.

5. Conclusions

The developed method showed promising results when using passive hyperspectral data to
estimate effective quantum yield, ETR, and RLC models for the whole canopy. Patterns observed using
calculated RLC characteristics agreed closely with growth traits, indicating that the developed method
can be used to differentiate plants under extreme differences in photosynthetic efficiency. Regression
analysis results confirmed that the calculated values had potential for plant growth prediction. Future
studies will focus on exploring various estimation methods for maximal fluorescence of the canopy
and potential applications in breeding programs and genetics/genomics studies.
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