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Abstract: Satellite and reanalysis precipitation products perform poorly over regions with low-density
ground observation networks. In order to improve space-dependent parameterization of precipitation
estimation models in data-scarce environments, the delineation boundaries of precipitation regimes
should be accurately identified. Existing approaches to characterize precipitation regimes by
seasonal or other climatological properties do not account for small scale spatial-temporal variability.
Precipitation time series can be used to account for this small-scale variability in regime classification.
Unfortunately, precipitation products with global coverage perform poorly at small time scales over
data scarce regions. A methodology of using satellite-based cloud-top temperature (CTT) time series
as a proxy of precipitation time series for precipitation regime classification was developed, and its
potential and uncertainty were analyzed. A precipitation regime in this study was defined on the
basis of characteristic small-scale temporal distribution and variability of precipitation at a given
place. Dynamic time warping was used to calculate the distance between two time series. Criteria to
select the optimal temporal scale of time series for clustering and the number of clusters were also
developed. The method was validated over Germany and applied to Tanzania, characterized by
complex climatology and low density ground observations. This approach was evaluated against
precipitation regime classification based on a satellite precipitation product. Results show that
CTT outcompetes satellite-based precipitation for classification of precipitation regime classification.
The CTT-based classification can be used as precursor to spatially adapted precipitation estimation
algorithms where parameters are calibrated by gauge data or other ground-based precipitation
observations, and parameterization can be used for satellite-precipitation estimates, precipitation
forecasts in numerical or stochastic weather models, etc.

Keywords: cloud-top temperature; precipitation regime classification; time series classification;
dynamic time warping

1. Introduction

Precipitation estimates at high spatial and temporal resolution are required for many meteorology,
hydrology, and agriculture related applications, such as drought and flood warnings, water resources
assessment and management, and sowing and irrigation planning. This need is on the increase
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nowadays, as extreme weather happens more frequently and more intensely, with increasing variability,
due to climate change [1].

Gridded precipitation estimates can be achieved by: (i) interpolation of rain-gauge and/or
other ground-based measurements, such as high-resolution gridded precipitation of the Climatic
Research Unit Time Series [2], the Global Precipitation Climatology Project daily precipitation [3],
and Climate Prediction Center (CPC) Unified Gauge-based analysis of daily precipitation [4];
(ii) ground-based radar precipitation estimation; (iii) reanalysis systems involving a numerical model
to simulate precipitation-related physical mechanisms, such as the European Centre for Medium-range
Weather Forecasts Reanalysis Interim [5] and National Centers for Environmental Prediction Climate
Forecast System Reanalysis [6]; (iv) translating satellite radiance data (mostly infrared or passive
microwave spectral information) to precipitation, such as Global Precipitation Climatology Project
1-Degree Daily Combination [7], the Tropical Rainfall Measuring Mission Multi-satellite Precipitation
Analysis [8], Integrated Multi-satellite Retrievals for the Global Precipitation Measurement mission [9],
and precipitation data derived from CPC MORPHing technique [10]; and (v) merging multiple sources
of data, such as Multi-Source Weighted-Ensemble Precipitation [11] and Climate Hazards group
InfraRed Precipitation with Stations [12].

The gauge or other in-situ measurements can provide direct and accurate local precipitation data
at high time-resolution. However, spatial interpolations of these data are only valid over regions where
the gauge density is sufficient to capture meteorological variability. The reanalysis and satellite-based
gridded precipitation estimation methods provide a near-global coverage, typically at higher resolution
than gauge networks, which is an attractive feature for many applications. However, they all require
model/parameter calibration based on in-situ measurements (usually gauge data) to relate indirect
remote sensing data or numerical precipitation simulation schemes to precipitation intensities [5,8].
Due to the high spatial and temporal variability of precipitation, it is a challenge to find calibration
settings that reproduce temporal variability and to effectively extend the calibrated parameters to
non-gauge locations, especially over gauge-scarce regions, such as much of Africa, southeast Asia,
and Latin America [13]. A central question in developing parameterizations for precipitation estimation
is to determine whether two locations belong to the same precipitation regime, so parameters at the
two locations can be calibrated together, and whether parameters calibrated for one location are valid
for others. This is an important reason why many precipitation products are performing much better
at gauge-dense regions (such as Europe and US) than at gauge-scarce regions (such as Africa) [14].
For a full review of products over Africa, see [15]. For precipitation products using globally uniform
parameters, data-scarce regions are strongly underrepresented in the calibration process. Even for
products using spatially varied parameters, there can be large representitiveness errors over regions
with low gauge-density.

To improve parameterization, schemes for precipitation estimation should use spatially varied
parameters based on reliable classification of precipitation regimes. To do this, a reliable method is
needed to identify: (1) which gauges have similar precipitation patterns so their data can be used
together for parameter calibration, and (2) for non-gauge locations, which regime they belong to,
so appropriate parameters can be selected for creating precipitation estimates.

Current methods for precipitation regime classification have two shortcomings. First, features
of annual or seasonal precipitation patterns from long-term average climatologies are used for
classification [16,17], such as annual mean, and maximum or minimum monthly means for a whole
year, summer or winter seasons, etc. These features lack temporal variability and are not sufficient
for the aim of replicating precipitation variability. To improve classification of precipitation regimes
for spatially varied precipitation estimation, other features and statistical properties of precipitation
should also be included to characterize the precipitation regime, such as dry-spell and wet-spell
distribution, onset and the length of the wet season, occurrence and length of precipitation events,
etc. These properties can be fully represented in time series of spatially varied precipitation estimates.
Second, they use gridded precipitation estimates or data from weather stations [16,17], which have



Remote Sens. 2020, 12, 289 3 of 18

large uncertainties and representativeness errors over gauge-scarce regions. One possible solution is
to use a time series extracted from a precipitation proxy dataset that has good spatial coverage and
resolution, and is close to source data directly measured by satellite. This way, fewer uncertainties are
introduced and it avoids intrinsic errors in the precipitation estimation products.

Cloud-top temperature (CTT) is one of the commonly used precipitation proxies, and many
algorithms or indices for cloud classification and precipitation estimation have been developed from
it. For instance, Arkin and Meisner [18] proposed the geostationary operational environmental
satellite (GOES) precipitation index (GPI), which assigns a constant precipitation rate to pixels with
a CTT below 235 K. Later on, a series of adjustments on GPIs were developed by giving time and
space-calibrated GPIs [19], making the parameters variable in space or time [20], or fitting another
CTT-precipitation relationship, such as a power-law function [21]. Precipitation products Climate
Hazards group InfraRed Precipitation with Stations [12] and Tropical Applications of Meteorology
using SATellite data and ground-based observations[22] link precipitation rates to the duration time
of a cold cloud (with CTT below a precipitation-specified threshold, e.g., 235 K). More complicated
schemes like Precipitation Estimation from Remotely Sensed Information using Artificial Neural
Networks (PERSIANN) [23] and PERSIANN Cloud Classification System [24], use coldness variations
in the neighborhood of a pixel or other coldness features of a cloud patch to estimate precipitation,
classify cloud features into groups, and link precipitation rates to each group. This implies that CTT
and precipitation are strongly related, and CTT time series can be used as an alternative to precipitation
data to characterize and classify precipitation regimes.

In this study, we explored the potential of using CTT time series for precipitation regime
classification. We define the precipitation regimes on the basis of similarity in characteristic small-scale
temporal distribution and variability of precipitation at a given place. These temporal characteristics
indirectly reflect loosely the physical association with oceanic and continental influences, latitude and
physiography. To solve the space-time mismatch between satellite and ground observations, we used
dynamic time warping (DTW, [25]) to find the optimal alignment between time series. We applied
the method in two regions with very dense and sparse gauge networks and to a satellite-based
precipitation dataset, to evaluate the performance. This work can be viewed as a precursor for
developing regime-specific CTT-precipitation estimation models in our next research step. Such a
regime-specific model will be computationally fast, since the parameterization is implemented offline,
after which precipitation estimation will be applied separately for each individual regime. The regime
classification method can also be used for other precipitation models that require parameter calibration
by gauge data, especially over gauge-scarce regions.

The paper is organized as follows. Section 2 describes the datasets used in this study and the
data preprocessing. Section 3 presents the methodology for precipitation regime classification, and for
the extension of gauge-calibrated parameters to the whole regime domain. Section 4 shows results
on exploration and interpretation of the CTT-precipitation relationships, followed by testing and
validation of the methodology over Tanzania and Germany. Conclusions are presented in Section 5.

2. Datasets

2.1. Precipitation Climatology and Data for the Two Study Regions

Germany’s precipitation patterns are largely controlled by atmospheric cyclones embedded in
general mid-latitude circulation [26]. Therefore, frontal or cyclonic precipitation occurs frequently
under low-altitude clouds with relatively higher cloud temperature compared to convective
precipitation. For Tanzania, tropical convective precipitation influenced by the intertropical
convergence zone dominates the precipitation system. These storms are usually linked to low cloud
temperature in the high-altitude clouds and are accompanied by a drop in the cloud temperature
during the rising and cooling process of clouds [27].
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Over Germany, quality-controlled rain-gauge data provided by Deutscher WetterDienst Climate
Data Center (CDC) were used at daily scale, which can be downloaded from link (ftp://ftp-cdc.
dwd.de/pub/CDC/observations_germany/climate/daily/more_precip/historical/). The quality
control steps are explained by Kaspar et al. [28]. The data used in this study were collected from
728 DWD stations, covering the period from 2000 to 2015, with their locations shown in Figure 1a.
The 728 stations were selected such that their data cover the period of study, and that one grid cell (at
resolution 0.25◦ × 0.25◦) contains at most one station. This dataset represents one of the highest gauge
density networks worldwide.
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Figure 1. Locations of weather stations and topography of Tanzania and Germany with: (a) Climate
Data Center (CDC) stations and topography over Germany, where red dots are stations for clustering
with their CDC station numbers and purple dots are for classification; and (b) Tanzania Meteorological
Agency (TMA) stations with their station names and topography over Tanzania. Black lines are political
boundaries and blue lines are boundaries of waterbodies, such as lakes and oceans.

For Tanzania, daily rain-gauge data of high quality from the Tanzania Meteorological Agency
(TMA) were used, which cover the years from 1970 to 2006. These country-level records can only
be accessed privately and contain more data than those that are publicly available. Locations of the
16 TMA stations and topographical information of Tanzania are illustrated in Figure 1b. This dataset
represents gauge density in data-scarce regions [13].

CTT time series on a daily scale were extracted from CM SAF cLouds, Albedo RAdiation data
record, AVHRR-based, Edition 2 (CLARA-A2) product, which covers the period from 1982 until
2015, with a spatial resolution of 0.25◦ × 0.25◦ [29]. This product can be accessed by link (https:
//wui.cmsaf.eu/safira/action/viewProduktDetails?eid=21482&fid=18).

Satellite-based precipitation time series were extracted from CMORPH, a precipitation dataset
based on CPC MORPHing technique; they cover years 1998 to present, with a spatial resolution of
0.25◦ × 0.25◦ [10]. This dataset can be downloaded from link (ftp://ftp.cpc.ncep.noaa.gov/precip/
CMORPH_V0.x/RAW/0.25deg-DLY_00Z). There are also two other CMORPH products which
merge gauge data; however, the chosen satellite-only dataset avoids bias towards gauged pixels
as a result of the gauge-based merging. We chose to use CMORPH, because it is a satellite-only
product with quasi-global coverage. It covers latitudes 60◦S–60◦N (https://www.cpc.ncep.noaa.gov/
products/janowiak/cmorph_description.html), including Germany but not the polar regions. In fact,
any satellite-only product with appropriate temporal and spatial coverage could have been used for
the purpose of comparison to the CTT-based analysis. The aim is merely to provide a benchmark
against which to compare the performance of CTT-based analysis when accounting for small scale
spatial-temporal variability.

ftp://ftp-cdc.dwd.de/pub/CDC/observations_germany/climate/daily/more_precip/historical/
ftp://ftp-cdc.dwd.de/pub/CDC/observations_germany/climate/daily/more_precip/historical/
https://wui.cmsaf.eu/safira/action/viewProduktDetails?eid=21482&fid=18
https://wui.cmsaf.eu/safira/action/viewProduktDetails?eid=21482&fid=18
ftp://ftp.cpc.ncep.noaa.gov/precip/CMORPH_V0.x/RAW/0.25deg-DLY_00Z
ftp://ftp.cpc.ncep.noaa.gov/precip/CMORPH_V0.x/RAW/0.25deg-DLY_00Z
https://www.cpc.ncep.noaa.gov/products/janowiak/cmorph_description.html
https://www.cpc.ncep.noaa.gov/products/janowiak/cmorph_description.html
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Based on the completeness of datasets in precipitation and CTT time series, the period 2000–2006
was selected over Tanzania, and 2000–2015 over Germany.

2.2. Data Preprocessing

Two data preprocessing steps were conducted. First was to fill in data gaps and second was to
aggregate data from daily to 5-day moving average (i.e., mean of values over the previous n days),
pentadal (5-day), dekadal (10-day), and monthly scales to investigate different time scales. We defined
every calendar month to contain six pentads and three dekads; i.e., not exactly 5-days or 10 days for
the last slots of some months.

CLARA contains 2.7% and 2.5% missing data over Germany and Tanzania, respectively; CMORPH
contains 0.006% and 0%; TMA stations contain 0.09%; and CDC stations contain 0.003%. In-filling of
missing data was conducted by different interpolation approaches for gauge data and satellite-based
datasets. Missing data from the gauge precipitation time series were filled in by simply interpolating
between the temporally closest good data, since the data gaps were small. Missing data from CLARA
CTT and CMORPH precipitation gridded data were filled in by radial basis function interpolation [30]
of good data in a neighborhood with spatial (horizontal) influence distance of σh = 150 (km) (equivalent
to about 5 pixels) and temporal influence distance of σt = 3 (day). The weights were computed by
normalizing a Gaussian kernel of the interpolated data computed by Equation (1):

weight(dh, dt) = e
−

d2
h

2σ2
h
− ft

d2
t

2σ2
t , (1)

where dh denotes the horizontal distance between interpolated data and target data, dt denotes the
time difference, and ft = 2 is the scaling factor of temporal weighting. New time series of CTT and
precipitation at a daily scale were extracted from the filled-in datasets, which were used to compute
the 5-day moving-average, pentadal, dekadal, and monthly time series.

3. Methodology

3.1. Methodological Framework

In order to effectively classify precipitation regimes using a precipitation proxy (CTT) with the
help of in-situ observations (from gauges), we follow two steps, as illustrated in Figure 2. First,
our proposed method clusters the gauges by clustering the satellite grid cells overlapping rain gauge
locations based on similarity of precipitation regime. The precipitation regime is represented by time
series of a proxy, in our case, CTT. Similarity of time series is computed by DTW as explained in
Section 3.3. To achieve the most effective clustering and regime classification results, we search the
optimal parameters for clustering, such as the optimal time scale and optimal number of regimes,
based on criteria we developed, as explained in Sections 3.4 and 3.5, respectively. Second, we used
CTT time series to assign satellite grid cells in the whole domain to the identified precipitation regime
clusters. Eventually, to investigate whether, using CTT, a precipitation predictor closer to source
data is better than using precipitation estimates to classify precipitation regime, we applied the
clustering-classification procedure to a reference precipitation product, CMORPH.

We have two study regions: Germany and Tanzania. Over Germany with high gauge density,
the method was tested and validated. The gauges were divided into a “clustering” group and
a “classification” group. Only 5% (37) of the CDC stations were used for clustering, to mimic a
gauge-scarce environment, and 95% (691) of independent CDC stations were used for classification
as validation. Cross validation was also conducted by resampling the 37 stations (for clustering) and
repeating the whole process to test the robustness of the method. Over Tanzania, where stations are
sparsely-distributed, the method was applied using all 16 TMA stations for clustering, after which
satellite grid cells were classified according to the clusters. Both CTT and CMORPH data were applied
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and compared over the two regions. Since both datasets have a spatial resolution of 0.25◦, the sizes of
the grid cells in both regions are also 0.25◦.
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Figure 2. Flowchart of the methodology. Red parallelograms are important outputs of the method; i.e.,
clustering of gauges and classification of grid cells, where labels of classes mean satellite pixels labeled
to precipitation regime clusters. For the German case, we conducted the process of classification in the
dashed rectangular using both satellite data and gauge data, and then compared the resulting two sets
of labels for validation of the methodology.

To summarize, we used time series from the same satellite-based datasets (either CTT or
precipitation) for clustering and classification. Gauge data were used in clustering for optimal
parameter searching procedure over both Germany and Tanzania, and for classification over Germany
for validation.

3.2. Clustering of Stations and Classification of Satellite Grid Cells

Clustering is a technique that groups similar data points, such that a data point is more similar to
a point in its own group than to any points in other groups (single-linkage), more similar to its group
average than to other group averages (average-linkage), or following other linkage criteria. If the
number of objects is large, k-means clustering is a preferred, as it has lower computational cost. Since
the number of objects (i.e., 16 TMA stations and 5% of CDC stations) was small in our case, hierarchical
clustering was used, which is based on the dissimilarity distances between each possible pair of data
points and pairs of clusters. Each data point starts as its own cluster (group), and the most similar pairs
of clusters are merged to move up the hierarchy. A dendrogram can be used to show the hierarchy
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of clusters in a distance tree, as illustrated by Figure 3a. The tree can be cut by a threshold to form
clusters. The threshold can be preset based on maximum distance or can be based on a preset number
of clusters as needed. The latter was used.
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Figure 3. Dendrograms, clustering, and classification results using daily time series from CLARA
CTT, CMORPH precipitation, and CDC stations over Germany. (a,b) Dendrograms based on CDC
and CLARA, respectively. (c,d) Clustering of 37 CDC station locations using CDC and CLARA data,
respectively. (e,f) Classifications of 691 CDC station locations using CDC and CLARA data over
Germany. (g,h) Dendrograms based on CDC and CMORPH, respectively. (i,j) Clustering of CDC
stations using CDC and CMORPH data, respectively. (k,l) Classification of CDC stations using CDC
and CMORPH data over Germany.

Satellite-based time series (either CTT or precipitation) at pixel-containing stations were used
to cluster the pixels representing the same precipitation regime based on dissimilarity distances,
as explained in Section 3.3. This can be viewed as clustering of the stations. Average-linkage was
applied to obtain clusters of stations, since the center (i.e., the mean) of a cluster was assumed to be
most representative of its climatology.

Classification is a technique to assign data points to a set of predefined classes, in this case, the K
clusters identified in the previous step. A given grid cell will be assigned to the cluster having the
most similar satellite-based time series; i.e., having the smallest distance value computed by DTW (in
Section 3.3). Over Germany, 95% of CDC stations, an imitation of grids in the country, were classified
to the clusters of the other 5% of CDC stations using satellite data. Then, a comparison was made
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between results of clustering and classification using gauge data for validation. Over Tanzania, satellite
grid cells were classified by satellite-based time series to the clusters of TMA stations identified based
on time series from the same satellite-based datasets.

3.3. Time Series Distance Using Dynamic Time Warping

Clustering and classification techniques require a dissimilarity distance measure between data
points, in our case, time series. As shown in Figure 2, distance matrices were generated from gauge- or
satellited-based time series. Minkowski distance was used to compute the distance of two time series
at different locations, following Equation (2):

DMink(X, Y) = (∑
i
|Xi −Yi|p)1/p, (2)

where both X and Y are either CTT or precipitation time series, Xi and Yi are the elements of time
series series X and Y, respectively, at time level i. The value of p was chosen as 1 or 2 for tests in this
study. When p = 2, the distance is more sensitive to large distance values at some time levels, such as
days with extreme precipitation, similar to root mean square error, while p = 1 indicates more of the
average of the distances between X and Y over all time levels, resembling mean absolute error.

It is a challenge to find a match for identifying moving storms in different time series, or to relate
multiple precipitation events in two time series to the same precipitation season. Therefore, dynamic
time warping (DTW, [25]) was used to find the optimal alignment along the time axis between X and
Y based on the defined distance measure (Equation (2)), following Equation (3):

DDTW(X, Y) = (∑
i
|Xi −Yi→j|p)1/p, (3)

where i→ j represents the optimal path found by DTW, and Yj has closest value to Xi in time series
Y during a period around time i. DTW allows for time shifts and variations in duration of the
corresponding precipitation events in the two time series, and the time shift in precipitation-rate to
form the same precipitation season, as illustrated by Figure 4b, with a comparison of Minkowski
distance as shown by Figure 4a.
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Figure 4. Illustration of Minkowski distance, dynamic time warping (DTW) distance and Sakoe–Chuba
band using CTT time series at pixels of TMA stations Dodoma and Kigoma, with (a) Mikowski distance;
(b) DTW distance and its optimal path along the time axis; and (c) Sakoe–Chuba band with bandwidth
r = 10.
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Constraints in the form of Sakoe–Chuba Band [31] were added to the DTW algorithm, in order
to speed up the computation and limit the maximum time shift length. Figure 4c illustrates the
Sakoe–Chuba band method with bandwidth r being the distance between the dashed lines. This means
event Xi can only correspond to events during period of [i− r, · · · , i + r] in sequence Y, or |i− j| ≤ r
in Equation (3).

Finally, the distance between X and Y was scaled by the maximum of the mean of X or Y for
precipitation and by the minimum of mean of X or Y for CTT, as follows:

D(X, Y) =


DDTW (X,Y)

max(mean(X),mean(Y)) , if X and Y are precipitation time series
DDTW (X,Y)

min(mean(X),mean(Y)) , if X and Y are CTT time series,
(4)

where mean(X) and mean(Y) are means over the full time series. The scaling is necessary to align the
distance between time series from two wet regions and from two dry regions to the same level, and
to eliminate unexpected enlargement in the distance value resulting from heavy precipitation events
(related to very cold CTTs).

Different maximum time shift lengths (r in Sakoe-Chuba Band) were tested, in the computation
of DTW distance. For a daily scale and a 5-day moving-average, bandwidths of five and 10 days were
tested; for the pentadal scale, one and two pentads; for dekadal and monthly scales, one dekad and
one month, respectively.

3.4. Selection of Temporal Scale

Assume DSat
j = [DSat

j (1), · · · , DSat
j (j− 1), DSat

j (j+ 1) · · · , DSat
j (M)], j = 1, · · · , M, defines time

series distances between pixels overlapping station j and all other stations based on satellite data
(CTT or precipitation), and its counterpart DGau

j defines the time series distances based on gauge
data, with M being the number of stations. The Pearson correlation coefficient and Spearman’s rank
coefficient for distances of time series were computed between DSat

j and DGau
j , following Equations (5)

and (6), and denoted as RD and RD
s , respectively. The two correlation coefficients range from –1 to +1,

and larger positive values indicate stronger correlations in this case. RD explores the linear correlation
between DSat

j and DGau
j , while RD

s explores monotonic correlation. Strong correlation between all pairs

of DSat
j and DGau

j indicates that for two given locations, satellite time series are similar, when gauge
time series are similar, and vice versa.

RD =
1
M

M

∑
j=1

∑M
i=1,i 6=j[D

Sat
j (i)− DSat

j )(DGau
j (i)− DGau

j ]√
∑M

i=1,i 6=j[D
Sat
j (i)− DSat

j ]2
√

∑N
i=1[D

Gau
j (i)− DGau

j ]2
, (5)

where DSat
j and DGau

j are means of DSat
j and DGau

j , respectively.

RD
s =

1
M

M

∑
j=1

[1−
6 ∑M

i=1,i 6=j |rank(DSat
j (i))− rank(DGau

j (i))|2

M(M− 1)(M− 2)
], (6)

where rank(DSat
j (i)) is the rank of the ith element by values of DSat

j in the ascending order, and

rank(DGau
j (i)) defines similarly.

A criterion was developed to select among five temporal scales for clustering, daily, 5-day
moving-average, pentadal, dekadal, and monthly, following Equation (7):

x̂ = arg max
x

(
max(abs(RD), abs(RD

s ))
)

:= {∀x|x in the 5 temporal scales.} (7)

This means we select the scale which gives the largest absolute values among all RD and RD
s .

Here we define the largest value as Scri, i.e., Scri = max(abs(RD), abs(RD
s )), when x = x̂.
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3.5. Selection of Number of Clusters

In order to select the number of clusters, both satellite-based and gauge-based time series at gauge
locations were used for clustering. After clustering, the stations were divided into k clusters, labeled
as 1, · · · , k. An alignment score is proposed to measure how well the gauge-based clustering and the
satellite-based clustering match. It is computed by a ratio as defined in Equation (8), the range being
[0, 1], with 1 indicating the perfect match.

Salign = Ncrr/Ntot, (8)

where Ncrr is the number of stations which have the same label in satellite-based clustering and
gauge-based clustering, and Ntot is the total number of stations. Cluster numbers of 2 to 8 were tested,
and the number K resulting in the largest Salign was selected as optimal.

Since both satellite-based and gauge-based time series were used for classification over Germany,
the alignment score Salign was also used in the classification case to quantify the accuracy of
satellite-based time series (CTT or precipitation) for precipitation regime classification.

4. Results and Analysis

4.1. Validation over Germany

This section validates our methodology of precipitation regime classification based on CTT time
series and investigates its uncertainty. First, 37 of the CDC stations were used for clustering to
construct the precipitation regime clusters. Then, 691 of CDC stations were assigned to the clustered
precipitation regimes using CTT time series. The uncertainty was quantified by comparing the
CTT-based classification to that of the gauge time series. Results based on the CMORPH precipitation
were also compared to those based on CTT. Cross validation was conducted by repeating ten times the
random selection of the 37 stations for clustering.

According to the correlation coefficients shown in Figure 5a,b, the daily scale was selected for the
clustering of 37 CDC stations over Germany into three groups based on the highest alignment score
(Salign = 1), and the results are shown in Figure 3a–f. Figure 3a,b illustrate dendrograms of the distance
trees and the clusters defined based on distances for CDC precipitation time series and CLARA CTT
time series. The dendrogram shows the distance between merged clusters in a monotonically ascending
order starting at zero distance for single stations to, e.g., 0.7 mm/day and 0.018 K minimum distance
between two stations in the CDC and CLARA datasets respectively. In Figure 3a, with a threshold of
1.06 mm/day, the precipitation distance tree can be cut into three groups that are illustrated by different
colors. In Figure 3c, the CTT dendrogram can also be divided into three groups by a threshold of 0.035
K. The clustering based on gauge data and on CTT data match perfectly, as shown in Figure 3c,d.

Classification of the other 691 CDC stations was conducted on a daily scale as well, according to
the three clusters (precipitation regimes). Results are shown in Figure 3e,f using gauge data and using
CTT data, respectively. It can be observed that most of the stations are categorized into the same class
for both cases, with Salign = 0.96. This means CTT time series is an effective proxy for precipitation
regime classification for any location in Germany, with an accuracy equal to 0.96. Given that each grid
cell contains at most one CDC station and 691 stations represent 94% of the total number of satellite
grid cells over Germany, the classification result provides a validation of the method’s performance.

We implemented the method also for CMORPH data, in which case daily precipitation time series
were used to cluster the stations into two clusters, based on the selection criteria shown in Figure 5c,d.
After alignment, the clustering and classification results using CDC and CMORPH data are shown
in Figure 3i,j. The alignment scores are Salign = 0.81 for clustering and Salign = 0.77 for classification,
which indicate the accuracy of using CMORPH data is lower than using the CLARA dataset.
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Figure 5. Statistical scores computed for CLARA CTT data and CMORPH precipitation data over
Germany and Tanzania. The left column shows the criteria values (correlation coefficients) for selecting
optimal temporal scales, with (a,c) computed respectively using CLARA and CMORPH data over
Germany, and (e,g) respectively using CLARA and CMORPH over Tanzania. The right column shows
the criteria values (alignment scores) for selecting numbers of clusters, with (b,d) computed respectively
using CLARA and CMORPH data over Germany, and (f,h) respectively using CLARA and CMORPH
over Tanzania. Dots in the plots represent the selections made by the criteria.

Cross validation gives an average alignment score S̄align = 0.95 for clustering and S̄align = 0.92
for classification using CLARA CTT; and S̄align = 0.80 for clustering and S̄align = 0.78 for classification
using CMORPH precipitation. CTT is more robust for precipitation regime classification, since eight
out of 10 experiments resulted in two regimes, but CMORPH can produce 2–6 regimes with similar
possibilities. However, the resulting distributions of the regimes are similar, which can be observed by
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comparing Figure 3 and one of the samples in Figure 6. The performances of the ten samples for cross
validation are summarized in the supplement.
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Figure 6. One sample from cross validation for clustering and classification of CDC stations over
Germany using daily CLARA CTT and CMORPH precipitation data. (a–d) CLARA case and
(e–h) CMORPH case.

4.2. Application over Tanzania, a Data-Scarce Environment

In this section we show the method over Tanzania, using TMA stations and CTT time series
for clustering and comparing CLARA CTT time series and CMORPH precipitation time series
for classification.

Based on correlation values shown in Figure 5e, a 5-day moving average was used for clustering
CLARA and TMA time series and they were clustered into three groups, based on the alignment scores
in Figure 5f. CTT clustering of grids cells overlapping TMA stations matches perfectly with the clusters
based on TMA precipitation time series (Figure 7b,d), with Salign = 1. All satellite grid cells in the
domain were then classified according to the identified clusters using CTT 5-day moving averages,
as illustrated in Figure 7e, with precipitation regimes shown in different colors.

The same procedure was repeated using CMORPH data, based on 5-day moving averages and
using two clusters based on selection criteria shown in Figure 5g,h. Comparing CMORPH and
TMA-based clustering (Figure 8b,d) results in Salign = 0.75 , much lower than that of the CLARA CTT
time-series. Results in Figure 8 show that both the clusters of stations and the classification of grid cells
are very different for CMORPH versus CLARA and TMA data. When one takes into consideration the
topography of the stations (shown in Figure 1b), i.e., their horizontal distance, elevation, proximity to
coast, and large waterbodies, the clustering and classification results using CTT data are more realistic
than those for CMORPH. The purple region and cyan region in Figure 7e, respectively, correspond
to the coastal plains and central plateau separated by north-to-south highlands in Figure 1b. The red
region in Figure 7e covers large waterbodies along the boundary of Tanzania shown by blue lines in
Figure 1b.
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4.3. Discussion

The case studies over Germany and Tanzania show the feasibility of using CTT-time-series for
identification and clustering of precipitation regimes. The results match very well with results from
a recent study by the German Weather Service (https://www.dwd.de/EN/ourservices/rcccm/nat/
rcccm_nat_monthly.html?nn=495490). However, our method uses full time series to characterize
precipitation features, instead of monthly or annually precipitation statistics, which are more generally
applicable, and more efficient and robust, especially for development of regime-specific precipitation
models (satellite-based or physically-based). Moreover, the use of satellite-based CTT data extends
applicability of the method to any region across the globe.
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Figure 7. Clustering of TMA stations and classification of grid cells over Tanzania using TMA or
CLARA CTT 5-day moving averages. (a,b) Dendrogram and clustering of TMA stations based on TMA
data. (c–e) Dendrogram and clustering of TMA stations, and classification of Tanzania grid cells based
on CLARA data.

DTW is used in the computation of distance between time series. It can deal with the time shift of
a corresponding precipitation event observed at two different locations, or match heavy precipitation
seasons at two locations to the same period. This is more effective for taking into account heavy
precipitation and seasonality in precipitation regime classification than the Minkowski distance.

https://www.dwd.de/EN/ourservices/rcccm/nat/rcccm_nat_monthly.html?nn=495490
https://www.dwd.de/EN/ourservices/rcccm/nat/rcccm_nat_monthly.html?nn=495490
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The result was shown to be more effective than using satellite-based precipitation estimates
(CMORPH). Possible reasons could be that CMORPH applies further steps to estimate precipitation
fields from cloud properties (liquid content and ice particles in the cloud), which introduce model
uncertainty or result in a loss of physical information when the precipitation estimation models based
on human understanding are incapable of fully representing the reality of the physical relationship
between clouds and precipitation.
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Figure 8. Clustering of TMA stations and classification of grid cells over Tanzania using TMA or
CMORPH precipitation 5-day moving averages. (a,b) Dendrogram and clustering of TMA stations
based on TMA data. (c–e) Dendrogram and clustering of TMA stations, and classification of Tanzania
grid cells based on CMORPH data.

The CTT-based precipitation regime method opens the possibility for parameter calibration in
spatially varied precipitation models in two steps: (1) use precipitation from stations in one cluster and
predictor data from grid cells overlapping the stations to calibrate model parameters, and (2) assign
the calibrated parameters to all grid cells in the precipitation regime identified by the cluster.

There is extra information for the construction of a CTT-precipitation model. The RD and RD
s

scores show that correlation of CTT versus rain gauge data is strong at daily scale but decreases at
larger temporal aggregation scales for both cases, with a stronger decreasing rate over Germany than
over Tanzania. This implies that trends and variations and other characteristics of CTT time series



Remote Sens. 2020, 12, 289 15 of 18

capture the patterns in precipitation time series at small temporal scales. In addition, stations with
similar CTT time series are clustered in the same precipitation regime where precipitation time series
are also similar. This further indicates that similar CTT time series at two locations indicate similar
precipitation time series at small temporal scales (5-day moving averages for Tanzania and daily for
Germany), and vice versa. Since convective precipitation dominates the weather system over Tanzania
and frontal precipitation occurs often over Germany, CTT time series may be used for precipitation
estimation in all precipitation types, while current satellite-based CTT-precipitation models account
mainly for convective precipitation.

Note that the missing records in the datasets are small over the study regions and periods; in-filling
of the missing data does not influence the results significantly. The interpolation scheme in Section 2.2
may have a smoothing effect in space and time that could locally reduce the spatial-temporal variability
of precipitation or CTT. The impact is limited given the small data gaps, but can be large if heavy
precipitation or abrupt changes such as precipitation in dry season are removed. The effects of missing
precipitation with similar events nearby is compensated for by using DTW.

5. Conclusions

Precipitation estimates based on satellite observations often perform poorly at small (daily,
subdaily) time scales, especially in regions where ground observations are scarce. One of the
reasons is that estimation products are often based on global parameterizations or parameterizations
derived in gauge-dense regions (US, Europe) and extrapolated to other regions. In this paper,
we present a methodology for precipitation regime clustering as a first step towards development
of region-specific precipitation models. We use CTT data from a globally available satellite dataset
(CLARA), independent of ground observations.

This method first identifies clusters of similar precipitation regimes using CTT time series at grid
cells overlapping rain gauge locations. The optimal time scales for clustering and optimal number
of clusters are decided upon based on correlation between CTT and rain gauge time series. Then,
every satellite grid cell is assigned to a precipitation regime cluster in a classification step also using the
CTT time series. For both clustering and classification steps, the time series distances were computed
using dynamic time warping (DTW), which allows a pre-defined time shift to match rain gauge and
CTT time-series, accounting for the frequently occurring time mismatch between rain gauge and
satellite observations. The method was validated via comparison with precipitation regimes derived
from rain gauge data over Germany, with a very dense rain gauge network and for Tanzania, covered
by a much sparser network.

This is a step towards space-dependent precipitation models with parameters that vary over
precipitation regimes for data-scarce regions. The models can be precipitation estimation from satellite
observation, numerical weather models, or stochastic weather generators. The parameters in one
precipitation regime can be calibrated by using the gauge data in the same cluster. The method can be
extended to other ground-based precipitation observations (such as weather radar) by clustering CTT
time series at observation locations.

A comparison was made using a satellite-based precipitation product, CMORPH, for clustering
and classification. The results show that there is a 100% consistency between CTT and gauge
precipitation clustered gauges, and a 96% consistency between CTT and gauge precipitation classified
gauges. For clustering and classification based on satellite precipitation data, the accuracies are 0.81 and
0.77, respectively. When applied over Tanzania, a data-scarce region, the method had an accuracy
of clustering 1.0 based on CTT and accuracy of 0.75 based on CMORPH precipitation. These results
indicate that CTT time series are more effective for precipitation regime classification and that the
satellite precipitation product performs worse over regions with low density of ground observations.
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In addition, over both Germany with frontal precipitation and Tanzania dominated by convective
precipitation, small temporal scales (daily and 5-day moving averages) of CTT time series were selected
as optimal to represent precipitation time series. Locations with similar gauge precipitation time series
also had similar CTT time series, as indicated by the good match between clustering based on CTT
and on gauge data. This means, theoretically, CTT time series can be a predictor for precipitation time
series for all precipitation types, and the variations and patterns at small scales may be more effective
for precipitation modeling than averaged values over time. Experiments over more regions with more
climate types should be conducted to be able to generalize conclusions to other regions.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/12/2/289/s1,
PDF S1: Summary of the Cross Validation.
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