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Abstract: The accuracy of land surface temperatures (LSTs) acquired by an unmanned aerial vehicle 

(UAV) was verified by comparison with in-situ LSTs of various land cover materials at the Changwon 

National University Campus, Changwon City, South Korea. UAV imaging and in-situ measurements 

were performed on July 31st and August 2nd, 2019. During the in-situ measurements, LST was 

measured at 160 points using an infrared thermometer. The linear regression model between the 

UAV and in-situ measurements exhibited a very high correlation on both days, with R2 values greater 

than 0.7004. The root mean square error (RMSE), however, was 4.030 ℃ on July 31st and 5.446 ℃ on 

August 2nd, and it also varied depending on the land cover type. These results may depend on various 

factors, such as the field of view and performance of the TIR (Thermal infrared radiance) camera, as 

well as the weather and atmospheric conditions. Accurately diagnosing the thermal characteristics of 

urban areas based on the spatial elements can be used to accurately analyze the thermal 

characteristics of urban areas and to make effective policy decisions. Techniques for verifying and 

improving the accuracy of UAV TIR LST data for various land cover materials are required to enable 

precise investigation of the thermal characteristics of urban areas. 
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1. Introduction 

Urban areas are subjected to thermal stresses, such as heat waves and tropical nights, due to the 

urban heat island (UHI) phenomenon, in which urban areas are hotter than surrounding suburban 

areas. This phenomenon occurs because the land surface temperature (LST) increases as urban green 

areas are replaced by artificial land cover materials with high solar radiation absorption, and the 

temperatures of urban areas become higher than those of suburban areas [1]. Also, UHI is caused by 

differences in evaporation and radiation absorption during the day and heat storage on the surface 

at night. In order to reduce the UHI, it is necessary to identify the effect of LST on the phenomenon 

by considering various spatial characteristics of urban areas [2–5]. In this respect, knowledge of LSTs 

is important for analyzing the thermal characteristics of urban areas and the UHI. 

With the recent development of remote sensing technologies, many studies have been conducted 

to analyze LST using satellite images. Thermal infrared (TIR) satellite images can be used to monitor 

UHI on a large scale and analyze time-series changes because they can periodically acquire LST data 

over large areas [6–9]. They can also analyze LST characteristics based on their spatial patterns, and 

thus can be useful in identifying the distribution of the UHI resulting from urban development 

[10,11]. The types of TIR satellite images include the Moderate Resolution Imaging Spectra 

radiometer (MODIS), Landsat, and the Advanced Spaceborne Thermal Emission and Reflection 
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Radiometer (ASTER), each with specific spatiotemporal resolution [12]. TIR satellite images have 

limitations in identifying the thermal characteristics of urban areas as a function of the complex and 

diverse land cover materials due to low spatial resolution (MODIS: 500 m, Landsat: 120 m, ASTER: 

90 m) [13–15]. Moreover, there are limitations in acquiring spatiotemporal satellite images because 

satellite images are captured according to a fixed time and route [1,16,17]. To overcome these issues, 

studies have been actively conducted using unmanned aerial vehicles (UAVs). 

UAVs can capture LST data when equipped with TIR cameras (in the bandwidth 3.5-14 μm). 

They can precisely identify LST characteristics as a function of the land cover material because, unlike 

satellite images, they can acquire high-resolution images. They can also collect image data without 

time and location constraints [18]. While satellites operate at high altitudes and thus have problems 

acquiring accurate image data due to weather conditions in the atmosphere, UAVs can acquire more 

accurate and precise LST than satellite images because they fly at low altitudes of around 100 m and 

thus mitigate the influence of weather conditions. 

For this reason, UAVs with TIR cameras are being used in various areas of research to observe 

LST patterns. Naughton and McDonald (2019) observed LST in a complex urban environment and 

reported that LST is affected by the characteristics of land cover materials, weather, urban geometry, 

and traffic [1]. Kraaijenbrink et al. (2018) performed mapping of LST on the Lirung Glacier in the 

central Himalayas by comparing UAV TIR LSTs, Landsat 8 TIR images, and in-situ LSTs [19]. Tucci 

et al. (2019) analyzed the thermal characteristics of dry-stone wall terraced vineyards in Chianti, 

Tuscany, Italy, and detected microclimate dynamics induced by dry-stone terracing [20]. Gaitani et 

al. (2017) produced a map that combined LST, albedo, and apparent thermal inertia using a UAV to 

improve the classification of fine land cover materials and energy balance models in urban areas and 

to acquire microclimatic information [18]. Kang et al. (2018) derived the usability of UAV TIR LSTs 

in analyzing the thermal environment of urban green areas. As described above, many studies have 

analyzed LST using TIR cameras mounted on UAVs [21]. However, few studies have verified the 

accuracy of LSTs acquired from UAV TIR cameras through in-situ measurements. Although some 

studies compared UAV TIR LSTs with in-situ LSTs for several land cover materials using thermal 

imaging cameras or contact-type surface thermometers [19,21–23], the studies that verified the 

accuracy of UAV TIR LSTs for various land cover materials distributed in complex urban areas are 

insufficient. TIR satellite images are used in urban planning to alleviate the UHI by verifying the 

accuracy of LSTs and correcting them using the measured data [11,24–28]. Therefore, to identify the 

thermal characteristics of the land surface using LST data collected from UAVs, and to utilize such 

data for improving the thermal environment in urban areas, it is necessary to first verify their 

accuracy by comparing them with measured data.  

Therefore, in this study, an attempt was made to analyze the accuracy of the LSTs acquired from 

a UAV TIR camera of various urban land cover materials in an area of the Changwon National 

University Campus located in Changwon City, South Korea. To this end, high-resolution (2 cm) LST 

images were collected using a UAV TIR camera and in-situ measurements were performed 

considering various land cover types to measure LST. In addition, the UAV TIR LSTs and in-situ LSTs 

for the various measurement points were compared. 

2. Materials and Methods  

2.1. Study Area 

This study was conducted in an area of the Changwon National University Campus 

(N35°14’30”, E128°41’50”) located in Changwon City, South Korea (Figure 1). Changwon City has 

mild weather with an average annual temperature of approximately 15 ℃, and an average annual 

precipitation of 1,400 mm (https://www.changwon.go.kr). It has four distinct seasons—in summer 

(June to August), heat waves with temperatures higher than 30 ℃ and tropical nights are observed, 

whereas intensive rainfall occurs during the rainy season [29]. The city is located in a basin 

surrounded by mountains with elevations of approximately 600 m. As air circulation is not good in 

the city, the UHI and air quality problems occur constantly in the area. 
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UAV imaging and in-situ measurements were performed in a 0.15 km2 area in the Changwon 

National University Campus, where the engineering college building is located. Five-story buildings 

are located around pedestrian paths in the area. The paths are approximately 20 m in width and are 

covered with sidewalk bricks. Wooden decks, lawns, and trees are located around the paths. The 

trees are approximately 4 m high and do not have large leaves. Roads paved with asphalt occur 

around the paths. The building roofs are covered with water-proof paint in various colors, such as 

gray, green, and white. The paint on some of the building roofs has been removed considerably by 

aging. 

 

 

China 

Japan 

South Korea 

Changwon city 

Figure 1. Location map and images of the study area (Changwon National University Campus). 
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2.2. Acquisition of UAV TIR images 

The UAV TIR images were captured on July 31st and August 2nd, 2019 at 12 noon, when the 

influence of shadow was minimal due to the highest solar altitude. As for the weather conditions 

observed by the nearby automatic weather measurement device (http://bangjae.changwon.go.kr), the 

temperature was approximately 32.6 ℃ with no rainfall and almost no wind (wind speed: 0 m/s) on 

July 31st, although it was cloudy. On August 2nd, it was very hot with a temperature of 37.2 ℃, but 

the rainfall and wind speed conditions were the same as those on July 31st—it was a clear day with 

few clouds. 

The UAV TIR LST images were captured with a FLIR Vue Pro R TIR camera (spectral range: 7.5–

13.5 μm, accuracy: ± 5 ℃, and emissivity: 0.98) mounted on a DJI Inspire 1. Using the longwave 

radiance obtained from a FLIR Vue Pro R TIR camera, the LST is calculated using the following 

equation in the Pix4D Mapper program. Table 1 shows the detailed specifications of the devices used 

for capturing UAV images. 

 

UAV LST (℃) = 0.04 × Longwave radiance – 273.15 

 

UAV operation began at 12 noon, and TIR images of the study area were captured three times 

for 30 minutes. The UAV flight altitude was 150 m, and the image-overlapping ratio was set at 85 %. 

Orthoimages were produced from the captured images using the Pix4D Mapper software, and the 

spatial resolution was set at 0.2 cm. 

Table 1. Detailed specifications of Inspire 1 and FLIR Vue Pro R. 

Item Detailed specifications 

 
Inspire 1 

Weight: 2.935kg 

Max. flight time: 18~20 min 

Max. speed: 22m/s 

Operating temperature: -10 to 40℃ 

 

 
FLIR Vue Pro R 

Size: 58 × 45 mm 

Spectral range: 7.5–13.5 μm 

Accuracy: ± 5 ℃ 

Weight: 92–113 g 

Operating temp. range: -55–95 ℃ 

Field of View (FOV): 6.8 mm, 45° × 35° 

Resolution: 336 × 256 pixels 

2.3. In-situ measurement of LST 

A total of 160 points were selected for the in-situ measurement, taking into consideration the 

land cover types distributed in the study area shown in Figure 2 and the measurement time. Fewer 

measurement points were selected for the barren (2 points), urethane (4), concrete (4), wooden deck 

(6), and gravel (8) types that occupied relatively small areas. On the other hand, many points (34 each) 

were selected for the sidewalk brick and asphalt types, which covered the pedestrian space and roads, 

while 44 points were selected for the grassland type because it occupied the largest area. In addition, 

the green urethane (9), gray concrete (10), and white urethane (5) that covered the building roofs were 

also measured. Figure 3 shows the actual view of the land cover types. 
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The in-situ measurement was performed by three teams of two persons. One person performed 

the measurement at a 10 cm height from the land surface using an infrared thermometer (Testo 381, 

accuracy: ± 1.5 ℃, emissivity: 0.98), and the other recorded the measurements in a field book. At each 

measurement point, measurement was performed three times and the average value was calculated 

to determine the LST of the point. 

The in-situ measurement was initiated at the same time as the UAV operation. The measurement 

was completed within 30 minutes to minimize changes in LST with time. 

 

 

  

Figure 2. Image of measurement points, which are color-coded by land cover type. 
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Figure 3. Actual images of land cover materials. 

2.4. Comparison between the UAV TIR LSTs and in-situ LSTs 

 The UAV TIR LSTs were compared with the in-situ LSTs for the measurement points to 

verify their accuracy. For the comparison, the UAV TIR LSTs were constructed at the measurement 

points and their differences from the measured values were analyzed, and statistical techniques, such 

as scatter plot analysis, linear regression analysis, and root mean square error (RMSE) were applied. 

In addition, buffers with 20 and 50 cm radii were set around each measurement point to allow for the 

inaccuracy in the measurement points in the UAV images. The average UAV TIR LST was calculated 

for each buffer, and the RMSE with respect to the measured values was analyzed. 

3. Results 

3.1. UAV TIR LST  

Figure 4 and Figure 5 showing the UAV TIR LST images. The overall LST was higher on August 

2nd than on July 31st, 2019. When the LST profiles were analyzed for line A–B, the average LSTs were 

40.45 ℃ on July 31st and 49.33 ℃ on August 2nd, resulting in an 8.88 ℃ difference. This large difference, 

despite only a 3-day difference in the measurements, appears to be due to a difference in solar 

radiation, as it was cloudy on July 31st. The nearby weather station also showed that the temperature 

was approximately 5 ℃ higher on August 2nd than on July 31st, due to the differences in solar radiation 

(July 31st: 32.6 ℃, August 2nd: 37.2 ℃).  

When the LST characteristics of each land cover type were investigated through the profile 

analysis, it was found that the cover types with the highest LSTs were urethane (July 31st: 54.69 ℃, 

August 2nd: 68.37 ℃) and wooden deck (July 31st: 53.67 ℃, August 2nd: 70.79 ℃). On the other hand, 

the land cover type with the lowest LSTs was vegetation (July 31st: 34.30 ℃, August 2nd: 38.43 ℃). The 

LSTs of the white roof were also low (July 31st: 36.84 ℃, August 2nd: 41.85 ℃) and were not much 

different from those of the vegetation type. 

When UAV TIR LST characteristics were analyzed for each measurement point, the difference 

in LST between the measurement dates was found to be 12.118 ℃ (July 31st: 45.255 ℃, August 2nd: 

57.373 ℃), which was larger than the profile analysis result. The land cover types with the highest 
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LSTs were wooden deck (July 31st: 53.281 ℃, August 2nd: 71.385 ℃) and urethane (July 31st: 55.074 ℃, 

August 2nd: 69.004 ℃). On the other hand, vegetation (July 31st: 37.222 ℃, August 2nd: 46.104 ℃) and 

white urethane roof (July 31st: 36.313 ℃, August 2nd: 41.102 ℃) exhibited the lowest LSTs.  

When the LST characteristics of each land cover type were analyzed from the profile analysis 

and measurement points, similar tendencies were observed. In particular, it was found that the LST 

of the white roof was even lower than that of vegetation.  

In locations where the UHI frequently occurs, projects to increase the reflectivity of building 

roofs and create cool roofs have been actively undertaken worldwide as measures to reduce indoor 

and outdoor temperatures. The white urethane roof in the study area was applied to create a cool 

roof, and its LSTs were lower than those of concrete roofs and vegetation. The effects of cool roofs 

have been proven in many previous studies [30–34]. The TIR LST data from the UAV also 

demonstrated the temperature reduction effect of the cool roof through a comparison with other land 

cover types. 

 

 
(a) 31st June 2019 

 

A 

B 
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(b) 2nd August 2019 

 

Figure 4. LST distribution in UAV TIR images showing the location of the A–B profile with a black 

line: (a) 31st June, 2019; (b) 2nd August, 2019. 

 

 

Figure 5. Profile analysis results for line A–B. 

3.2. In-situ LSTs 

 Table 2 shows the results of measuring the LSTs of each land cover type in the study area. 

The land cover types with high LSTs were found to be urethane (July 31st: 61.850 ℃, August 2nd: 66.667 

℃) and wooden deck (July 31st: 59.939 ℃, August 2nd: 70.728 ℃). On the other hand, the land cover 

types with low LSTs were vegetation (July 31st: 37.274 ℃, August 2nd: 39.677 ℃) and white urethane 

roof (July 31st: 35.713 ℃, August 2nd: 39.467 ℃). The average LST for August 2nd was 7.255 ℃ higher 

than that for July 31st. The land cover types that exhibited large differences between the two dates 

were wooden deck (10.789 ℃), asphalt (10.380 ℃), and green urethane roof (10.030 ℃). On the other 

hand, those that exhibited small differences were concrete (1.475 ℃), vegetation (2.403 ℃), and white 

urethane roof (3.754 ℃). 
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Even the same land cover types exhibited different LSTs at different measurement points. The 

average standard deviation was larger on July 31st than on August 2nd (July 31st: 2.462 ℃, August 2nd: 

1.93 ℃). Grassland was the land cover type with the largest standard deviation as its standard 

deviation was 4.555 ℃ on July 31st and 3.887 ℃ on August 2nd. Asphalt also exhibited relatively large 

standard deviations (July 31st: 3.110 ℃, August 2nd: 2.831 ℃). Wooden deck exhibited a large standard 

deviation of 3.028 ℃ on July 31st but a small value of 0.736 ℃ on August 2nd. The land cover types 

with small standard deviations were found to be concrete (July 31st: 1.272 ℃, August 2nd: 0.966 ℃), 

green urethane roof (July 31st: 1.826 ℃, August 2nd: 1.290 ℃), and white urethane roof (July 31st: 1.186 

℃, August 2nd: 0.648 ℃). It appears that even the same land cover types exhibited different LSTs 

because they were covered with foreign materials or they deteriorated with aging. The land cover 

types located on building roofs exhibited smaller standard deviations than those located on the 

ground surface. This is because building roofs are less likely to deteriorate without frequent human 

access, but the ground surface deteriorated in many cases because it mostly comprises pedestrian 

paths and roads. For vegetation, on the other hand, it appears that the LSTs were significantly 

different depending on the measurement points, not because of deterioration due to foreign materials 

or aging, but because vegetation and non-vegetation areas were mixed or the absorption of solar 

radiation varied depending on the leaf direction. For these reasons, it is necessary to reduce 

differences by continually securing in-situ measurement data.  

3.3. Verification of the accuracy of the UAV TIR LSTs 

3.3.1. Difference between the UAV TIR LST and in-situ LST 

 Based on the results in Table 2, the difference between the UAV TIR LST and in-situ LST 

was analyzed. On July 31st, the difference was 2.672 ℃, indicating that the in-situ measurement was 

higher than the UAV TIR LST. On August 2nd, however, the difference was -2.191 ℃, indicating that 

the UAV TIR LST was higher than the in-situ LST. On July 31st, solar radiation was not consistently 

incident on the land surface compared to August 2nd because there were many clouds and the 

temperature was somewhat lower. On the other hand, on August 2nd, solar radiation was consistently 

incident because there were few clouds and the temperature was high. These results show that UAV 

TIR LST overestimated LST. As this study conducted analyses only on two dates in summer, it is 

necessary to compare the UAV TIR LSTs with in-situ LSTs considering seasonal factors and the influx 

of solar radiation. 

When the land cover types were compared, wooden deck (6.658 ℃) and urethane (6.776 ℃) 

exhibited large differences on July 31st. They were the land cover types with the highest in-situ LSTs. 

On the other hand, vegetation and white urethane roof, for which the in-situ LSTs were lowest, 

exhibited small differences of 0.052 ℃ and -0.600 ℃, respectively. These results indicate that land 

cover types with higher LSTs exhibit larger differences between the UAV TIR LSTs and in-situ LSTs. 

On August 2nd, vegetation exhibited a large difference of -6.427 ℃ and the in-situ LST was lower than 

the UAV TIR LST. The other land cover types, however, showed differences of less than -2 ℃. 

When such points were examined in Figure 6, the points with higher in-situ LSTs (red, over 10 

℃) and those with higher UAV TIR LSTs (black, under 10 ℃) were generally located in the vicinity 

of vegetation and buildings. This indicates that LSTs were not accurately detected from UAV TIR 

images due to the influence of shadows formed by vegetation and buildings. On August 2nd, the UAV 

TIR LST was found to be more than 10 ℃ higher on asphalt that was not adjacent to buildings or 

trees. This appears to have been because foreign materials were measured instead of asphalt. On the 

other hand, the difference in LST was small (less than 3 ℃) for building roofs without the influence 

of nearby buildings or trees. As the field of view of the TIR camera used in this study was 44° × 33°, 

the LST at the edge of an image could be concealed by buildings or trees. Song and Park (2014) also 

indicated that there were differences from the measured values in spaces with dense buildings and 

trees due to the off-nadir viewing angle of satellite images. Therefore, it appears that there were slight 

differences between the UAV TIR LSTs and in-situ LSTs when three-dimensional physical features 

were closely adjacent, such as buildings and trees, as a function of the field of view of the TIR camera. 
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Table 2. UAV TIR LSTs and in-situ LSTs by land cover type. 

Land cover N 

UAV In-situ Difference 

31st June 2nd August 31st June 2nd August 31st 

June 

2nd 

August Mean S.D. Mean S.D. Mean S.D. Mean S.D. 

Vegetation 44 37.222 3.352 46.104 4.844 37.274 4.555 39.677 3.887 0.052 -6.427 

Barren 2 40.095 0.488 52.523 2.003 41.950 2.617 50.400 1.167 1.855 -2.123 

Wooden deck 6 53.281 0.990 71.385 0.583 59.939 3.028 70.728 0.736 6.658 -0.657 

Sidewalk brick 34 42.856 2.398 54.617 2.567 43.887 2.511 53.306 2.230 1.031 -1.311 

Asphalt 34 47.405 2.526 60.018 3.940 47.767 3.110 58.147 2.831 0.362 -1.871 

Gravel 8 44.784 3.001 56.456 2.316 44.988 2.074 54.542 2.612 0.204 -1.914 

Concrete 4 44.552 0.954 58.720 0.575 50.550 1.272 57.025 0.966 5.998 -1.695 

Roof (Green) 9 46.325 1.770 58.774 0.723 47.407 1.826 57.437 1.290 1.082 -1.337 

Roof (Gray) 10 49.893 1.499 62.400 2.205 50.873 2.496 59.607 1.968 0.980 -2.793 

Roof (White) 5 36.313 0.652 41.102 0.808 35.713 1.186 39.467 0.648 -0.600 -1.635 

Urethane 4 55.074 0.626 69.004 0.484 61.850 2.409 66.667 2.908 6.776 -2.337 

Mean - 45.255 1.660 57.373 1.913 47.927 2.462 55.182 1.931 2.672 -2.191 

S.D.: Standard deviation, N: Number   

 

 

 

(a) 31st June 2019 



Remote Sens. 2020, 12, 288 11 of 17 

 

 

(b) 2nd August 2019 

 

Figure 6. Difference between in-situ LST and UAV TIR LST at each measurement point. 

3.3.2. Linear regression and RMSE 

Figure 7 shows the results of the linear regression analysis for the in-situ LST and UAV TIR LST. 

Both July 31st and August 2nd exhibited very high correlations as the values of R2 were higher than 0.7 

(July 31st: 0.7004, August 2nd: 0.8136). In addition, the slopes were 0.6727 on July 31st and 0.7743 on 

August 2nd, indicating that the increment in the UAV TIR LST was smaller than that in the in-situ 

LST. 

In Table 3, the RMSE between the in-situ LST and UAV TIR LST was analyzed. The mean RMSE 

was 4.030 ℃ on July 31st and 5.446 ℃ on August 2nd, indicating that the difference between the UAV 

TIR LST and in-situ LST was larger on July 31st. On July 31st, the RMSE values for wooden deck (7.150 

℃), concrete (6.149 ℃), and urethane (7.231 ℃) were higher than 6 ℃, and they were larger than 

those of the other land cover types. The standard deviation of wooden deck was relatively high (3.03 

℃) in the in-situ measurement results above (Table 2), but it was smaller than the difference between 

the UAV TIR LST and in-situ LST. This indicates that the UAV TIR LST of wooden deck was 

somewhat different from the in-situ LST. For concrete and urethane, the standard deviations of the 

in-situ measurement results were 1.27 ℃ and 2.41 ℃, respectively, which were smaller than the RMSE 

values, as was the case with wooden deck. The land cover types with small RMSE values were green 

urethane roof (1.973 ℃) and white urethane roof (1.748 ℃). They also exhibited the lowest standard 

deviations for the in-situ LSTs (1.83 ℃ and 1.19 ℃, respectively).  

On August 2nd, vegetation exhibited the highest mean RMSE of 8.216 ℃. The standard deviation 

of the in-situ LSTs was 2.93 ℃, which was smaller than the RMSE value, indicating that the analysis 

results were reliable. Vegetation also exhibited a relatively high RMSE value of 4.748 ℃ on July 31st. 

This is because the surface of leaves was measured in in-situ measurement, but some soil material 

could be measured instead of leaves in UAV TIR images. In addition, trees in vegetation could be 

affected by shadows due to their three-dimensional geometry unlike other flat land cover types, such 

as asphalt and concrete. For these reasons, the vegetation type appears to have exhibited large 

differences between the in-situ LSTs and UAV TIR LSTs. Asphalt (4.974 ℃) and concrete (4.218 ℃) 

also exhibited high RMSE values (more than 4 ℃). On the other hand, white urethane roof (1.922 ℃) 

under -10°C
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-3 - 0°C
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and green urethane roof (2.123 ℃) exhibited the lowest RMSE values, as on July 31st. Wooden deck 

(1.222 ℃) and concrete (2.103 ℃) showed very high RMSE values on July 31st but low RMSE values 

on August 2nd, thereby exhibiting the largest differences between the two dates (wooden deck: 5.928 

℃, concrete: 4.042 ℃). The land cover types that showed small differences in RMSE between the two 

dates were barren (0.479 ℃), sidewalk brick (0.668 ℃), gravel (0.002 ℃), green urethane roof (0.151 

℃), and white urethane roof (0.174 ℃).  

When the RMSE values were compared considering buffer ranges around the measurement 

points, the RMSE values were largest when the buffer range was 20 cm (July 31st: 4.043 ℃, August 

2nd: 5.456 ℃), but the differences with the RMSE values of the other buffer ranges were small (less 

than 0.04 ℃). When the differences of 20 and 50 cm buffers with the 0 cm buffer were compared by 

land cover type, concrete (20 cm buffer: -0.104 ℃, 50 cm buffer: -0.129 ℃) and urethane (20 cm buffer: 

-0.106 ℃, 50 cm buffer: 0.201 ℃) exhibited large differences in RMSE on July 31st. On August 2nd, 

concrete also exhibited a difference of -0.148 ℃ with a 20 cm buffer, while gray urethane roof showed 

a large difference of -0.278 ℃ with a 50 cm buffer. For some land cover types, the RMSE between the 

in-situ LST and UAV TIR LST was large or small depending on the buffer range. As the differences 

in RMSE were less than 0.2 ℃, however, the target points in the UAV TIR images appear to coincide 

with the measurement points. 
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Figure 7. Results of the scatter plot analysis of the in-situ LST and UAV TIR LST. 
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Table 3. RMSE between the in-situ LSTs and UAV TIR LSTs (℃). 

Land cover 

RMSE (℃) 

Buffer 0 m Buffer 0.2 m Buffer 0.5 m Mean 

31st June 2nd August 31st June 2nd August 31st June 2nd August 31st June 2nd August 

Vegetation 4.711 8.269 4.781 8.206 4.752 8.173 4.748 8.216 

Barren 2.823 2.282 2.830 2.387 2.839 2.386 2.831 2.352 

Wooden deck 7.136 1.232 7.176 1.229 7.139 1.206 7.150 1.222 

Sidewalk brick 3.243 3.903 3.242 3.915 3.228 3.900 3.238 3.906 

Asphalt 3.235 4.957 3.224 5.016 3.220 4.949 3.226 4.974 

Gravel 3.259 3.275 3.195 3.242 3.273 3.205 3.242 3.241 

Concrete 6.063 2.014 6.167 2.162 6.216 2.143 6.149 2.106 

Roof (Green) 1.998 2.117 1.980 2.154 1.940 2.099 1.973 2.123 

Roof (Gray) 2.817 4.235 2.387 4.252 2.791 4.168 2.665 4.218 

Roof (White) 1.766 1.928 1.712 1.874 1.767 1.965 1.748 1.922 

Urethane 7.140 3.805 7.246 3.870 7.307 3.604 7.231 3.760 

Total 4.012 5.466 4.043 5.456 4.034 5.416 4.030 5.446 

 

4. Discussion 

 In this study, UAV TIR LSTs were compared with in-situ LSTs measured at specific 

measurement points, and the accuracy of the UAV TIR LSTs was examined through linear regression 

and RMSE analysis. The difference between the UAV TIR LST and in-situ LST varied depending on 

the land cover type, and it was also affected by physical factors, such as nearby vegetation and 

buildings. Moreover, it was found that the accuracy of the UAV TIR LSTs was affected by weather 

conditions, such as the influx of solar radiation and clouds. As a result of these various factors, the 

RMSE between the UAV TIR LSTs and in-situ LSTs was found to vary from 4 to 5 ℃. The land cover 

types with high LSTs, such as wooden deck, urethane, and concrete, generally exhibited higher RMSE 

values. As shown in the results of linear regression analysis, the coefficient of determination (R2) of 

the model was higher than 0.7, indicating a very high correlation.  

As for previous studies that compared LST data acquired using satellite images or UAVs with 

in-situ LSTs, Kraaijenbrink et al. (2018) measured and compared UAV TIR LSTs, Landsat 8 images, 

and in-situ LSTs of areas covered with glaciers [19]. The UAV TIR LSTs exhibited differences of -1.4 

± 1.8, 11.0 ± 5.2, and 15.3 ± 4.7 ℃ in three flights. Kelly et al. (2019) analyzed the accuracy of a non-

radiometric FLIR Vue Pro 640 camera mounted on UAVs based on laboratory and field experiments 

[22]. While the accuracy was stable (approximately 0.5 ℃) under laboratory conditions, it decreased 

to 5 ℃ in the field experiments due to the ambient conditions. They pointed to the non-linear 

relationship between the camera output and the sensor temperature under the influence of the wind 

and temperature generated during the UAV flight as the cause of performance degradation. As for 

studies on TIR satellite images, Song and Park (2014) reported that the difference between satellite 

image LSTs and in-situ LSTs varied depending on time, and that the difference could be larger than 

10 ℃ in summer when the temperature is high [24]. Voogt and Oke (2003), Hartz et al. (2006), Barring 

et al. (1985), and Eliasson (1992) reported that the difference between satellite image LSTs and in-situ 

LSTs was large in areas with very dense buildings due to the limited horizontal surface view [11,25–

27]. According to these authors, this phenomenon is caused by the accumulation of Earth radiation 

energy released to the atmosphere, which is large in spaces with dense buildings [35], and this cannot 

be detected by satellite images. 

These results indicate that the LST data captured from satellite images and UAVs are different 

from in-situ LSTs for various reasons. The UAV TIR LSTs acquired in this study also appear to be 

different from the in-situ LSTs due to several causes, such as weather conditions in the atmosphere, 

the field of view of the camera, and the camera certification, as in previous studies. Also, it is 
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determined that an error in measurement points may cause problems in the accuracy of the UAV TIR 

LSTs. These causes need to be clearly identified through the results of systematic experimentation. 

Furthermore, in order to alleviate the UHI, it is important to accurately identify the thermal 

characteristics of various land cover materials and spatial factors present in urban areas. This study 

revealed that the accuracy of the UAV TIR LSTs varies depending on the land cover material. This is 

a meaningful result in terms of the utilization of UAV TIR images in studying the alleviation of the 

UHI and indicates further research is required to improve accuracy. 

5. Conclusions 

 In this study, the accuracy of the LSTs acquired from a UAV TIR camera was verified in a 

university campus area featuring various land cover materials. To this end, the UAV TIR LSTs were 

compared with in-situ LSTs for 160 measurement points on two dates (July 31st and August 2nd). 

Both the UAV TIR LSTs and in-situ LSTs were high for asphalt, wooden deck, and urethane, but 

they were low for trees and lawns. The LSTs for the white urethane roof, referred to as a cool roof, 

were lower than those of trees and lawns. When the UAV TIR LSTs were compared with in-situ LSTs, 

the latter were 2.672 ℃ higher than the UAV TIR LSTs on July 31st, when the temperature was low, 

but the UAV TIR LSTs were 2.191 ℃ higher on August 2nd, when the temperature was high. The 

results of linear regression analysis show R2 values higher than 0.7, indicating a high correlation 

between the UAV TIR LSTs and in-situ LSTs. The RMSE values were 4.030 ℃ on July 31st and 5.446 

℃ on August 2nd, and the RMSE values varied depending on the land cover material. These results 

show that the UAV TIR LSTs were somewhat different from the in-situ LSTs. Various factors, such 

as weather conditions, UAV operation, and the certification and field of view of the TIR camera, 

appear to have caused these differences, which had been pointed out in previous studies.  

In order to effectively alleviate the UHI, it is extremely important to identify the thermal 

characteristics of various spatial factors distributed in urban areas. In this respect, UAVs can be used 

effectively to identify the LST and thermal characteristics of each land cover material. The accuracy 

of the UAV TIR LST data, however, needs to be verified to accurately diagnose the UHI and to 

implement measures for its alleviation. In this study, there were problems with the accuracy of UAV 

TIR LST data derived for various land cover materials in urban areas. The causes of these problems 

need to be identified through further research. Based on this, the utilization of UAVs should be 

gradually expanded to help alleviate the UHI and to mitigate heat waves and improve thermal 

comfort in urban areas. 
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