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Abstract: In recent years, deep learning technology has been widely used in the field of hyperspectral
image classification and achieved good performance. However, deep learning networks need a large
amount of training samples, which conflicts with the limited labeled samples of hyperspectral images.
Traditional deep networks usually construct each pixel as a subject, ignoring the integrity of the
hyperspectral data and the methods based on feature extraction are likely to lose the edge information
which plays a crucial role in the pixel-level classification. To overcome the limit of annotation samples,
we propose a new three-channel image build method (virtual RGB image) by which the trained
networks on natural images are used to extract the spatial features. Through the trained network,
the hyperspectral data are disposed as a whole. Meanwhile, we propose a multiscale feature fusion
method to combine both the detailed and semantic characteristics, thus promoting the accuracy of
classification. Experiments show that the proposed method can achieve ideal results better than the
state-of-art methods. In addition, the virtual RGB image can be extended to other hyperspectral
processing methods that need to use three-channel images.

Keywords: hyperspectral image classification; feature extraction; fully convolutional networks (FCN);
virtual RGB image; multiscale spatial feature

1. Introduction

The rapid development of remote sensing technology in recent years has opened a door for people
to more profoundly understand the earth. With the development of imaging technology, hyperspectral
remote sensing has become one of the most important directions in the field of remote sensing. Because
of their rich spectral information, hyperspectral images have been widely used in environmental
monitoring, precision agriculture, smart city, information defense, resource management and other
fields [1–3]. Hyperspectral classification is an important research branch of hyperspectral image
processing, which assigns each pixel its corresponding ground category label [4].

Since the sample labeling of hyperspectral images is very difficult, how to use finite samples
to obtain higher classification accuracy becomes the main problem in the field of hyperspectral
classification [5]. Researchers have conducted in-depth research on this issue. At present there are
mainly two directions, one is to extract more expressive features from hyperspectral images [6],
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and the other is to design better classifiers [7]. In terms of feature extraction, the feature of adding
spatial information performs better in the classification. Therefore, the commonly used feature is the
spatial–spectral fusion feature. In 2005, Benediktsson et al. proposed a method based on extended
morphology combined with spatial information, which is the earliest known method of combining
spatial and spectral features [8]. Afterwards, many scholars have expanded and proposed more
hyperspectral classification algorithms based on the joint of space and spectrum, such as [9–11] et al.
For the extraction of spatial features, scholars have adopted a variety of ways. Li et al. proposed loopy
belief propagation for classification [12], Jia et al. put forward a Gabor filter for feature extraction [13],
Pan et al. raised hierarchical guidance filtering to use a spatial feature [14]. On the design of classifiers,
the most classic is the support vector machine (SVM) [15–17]. Based on SVM, Gu et al. proposed a
kernel-based learning method, which combines various kernel functions in a weighted joint instead
of a single kernel to improve classification performance [18,19]. In addition, many other classifiers
are also applied on hyperspectral images, such as the semi-supervised method based on graphics
(LNP), the sparse representation based classifier (SRC), random forest (RF) and extreme learning
machine (ELM) [20–24]. Traditional machine learning hyperspectral classification methods solved
many problems in hyperspectral classification and can realize the classification of different species.
However, the methods cannot meet the requirement of accuracy on the condition that samples is very
limited. In recent years, deep learning technologies have been widely used in image processing,
the layer of networks is deepening [25–29], the tasks to solve are more and more varied [30–34].
Scholars gradually choose to apply deep networks solving the problem of hyperspectral classification.
Benefiting from the expression ability of deep features, the deep learning based methods obtain better
classification performance. However, due to the large number of samples required for deep learning
which contradicts the limited number of hyperspectral classification samples, there are still problems
for us to solve.

The deep learning method stacked auto-encoders (SAE) was applied on hyperspectral
classification by Chen in 2014 [35]. It is essentially a five-layer structure for extracting deep information
from original features. After then, a convolutional neural network (CNN) is widely used on
hyperspectral image classification [36–40]. With the development of various deep neural networks,
they are used to solve the hyperspectral classification tasks [41–45]. For example, Paoletti and
Wang respectively proposed capsule networks on classification, Paoletti used the hyperspectral
patches into the capsule network and Wang separately extracts the information in spatial and spectral
domains [41,42]. Zhong used deep residual networks (DRN) [29] to construct a 3D framework to
classify the hyperspectral data [43]. Mou and Zhu put forward recurrent neural network (RNN)
and generative adversarial networks (GAN) [31] on hyperspectral classification, respectively [44,45].
Actually, instead of processing the hyperspectral image itself as an image, the above methods
constructed each pixel as an image or a classification object. That is to say, the networks are proposed
to classify the features of each pixel as an object. These networks artificially construct a data volume
for each pixel to be classified as an input. This input can be seen as the simplest shallow features and
the method actually turned into a process to obtain the deep features from the input shallow features.

On account of the fact that CNN cannot get rid of the manual raw features construct, a fully
convolutional network (FCN) is introduced into the hyperspectral classification. The goal of an
FCN is to achieve pixel level segmentation [46], which is consistent with the task of hyperspectral
classification. An FCN does not construct features for each pixel that needs to be classified artificially,
thus, it is more suitable for the hyperspectral classification task. Jiao used an FCN for hyperspectral
image classification by inputting the dimension-reduced images to the trained model on natural
images [47]. The method used the spatial features linear mapped to the 20 classes of natural images,
which will cause information loss. Niu et al. extracted features using DeepLab [48], evaluated the
discriminative ability of the weighted fusion features by the visualization method, without further
utilization and analysis of spatial features. Li et al. proposed a convolution–deconvolution neural
network [49], by forming images of the first principal component and each band, generating multiple
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groups of images for network training and realizing the classification of hyperspectral images. In this
method, the connection between the bands of each spectrum is ignored, which may cause loss of
spectral information.

Aiming at the above problems, this paper proposes a multiscale deep spatial feature extraction
using a virtual RGB image method (MDSFV). Hyperspectral images are constructed into virtual
RGB images which makes the distribution of its color features more similar to the natural images
used in training network. The image is fed into the trained FCN model and multiscale features are
extracted. By combining these features in a skip-layer way, the semantic information in deep features
and edge and detail information in shallow features will be taken into account at the same time,
which is more conducive to the pixel-level classification of hyperspectral images. In this process, we
adopt a layer-by-layer normalization combining, in order to balance information from different layers.
Finally, spatial spectral fusion features are sent into the classifier for classification to obtain the final
objects’ distribution.

The main contributions of this paper are summarized as follows:

1. A new three-channel image is constructed to overcome the input limitation of FCN models.
The hyperspectral bands corresponding to RGB wavelength are selected out. By simulating the
Gaussian effect of photographic sensing on the RGB band, we introduced Gaussian weights to
combine the corresponding bands. Compared with the simple three-dimensional extraction of
the principal component, virtual RGB image is more suitable for the needs of the trained network,
and hopefully extracts more useful features. In addition to benefiting the depth model feature
extraction in this paper, this method can also be widely applied to any hyperspectral processing
algorithm that needs to construct three-channel images.

2. Based on fully convolution networks, a multi-layer feature fusion method is proposed. Compared
with the previous methods in which the spatial feature extraction is directly based on the feature
fusion of the network itself, the proposed method directly operates on the features of different
layers thus reduce the loss of classify-related information. After the multi-layer spatial features
extracted by FCN, features of different scales are combined via upsampling, cropping, combining,
etc. Deep features will provide more semantic information, which is more beneficial to the
discrimination of categories, shallow features will provide more edge and detail information,
which facilitate to the expression of contour information of ground objects. The cross-layer
jointing can preserve both sementic and detail information, making the feature more expressive.

3. For the characteristics of different layers, different dimensions and semantic scales, a new joint of
features is applied. After the scales of the features are unified, instead of simply concatenating the
features, the method unifies their dimensions by extracting the principal components and then
the different layer features are normalized and added together. The principal component analysis
(PCA) based feature change can retain as much information as possible. Then the features are
normalized and added layer-by-layer. Combining their corresponding layers directly can avoid
the drawbacks of the feature dimension increasing caused by directly concatenate them, is more
conducive to accurate and rapid classification.

The rest of this paper is organized as follows. In Section 2, we give a detailed description about
the proposed method. In Section 3, experiments on three popular datasets are provided. In Section 4,
we analyze the parameters involved in the algorithm. We conclude this paper in Section 5.

2. Materials and Methods

The labeled hyperspectral image data is very limited. In addition, the imaging conditions of
different hyperspectral images, the number of spectral bands and the ground objects are significantly
different, which make different hyperspectral data that cannot be trained together like natural images
and other remote sensing images. The fully convolutional network can be used to classify hyperspectral
images because its task is to perform pixel-level class determination of the entire image, which is
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consistent with the goal of achieving classification of hyperspectral images. There are many parameters
of the FCN, thus the single hyperspectral image cannot complete the update of all network parameters.
By constructing a three-channel virtual RGB image, this paper simulates the trained network model
on natural images for the pixel-level segmentation process, and better adapts to the characteristics of
existing models. In this way, multi-layer and multiscale spatial features are extracted, and multiscale
features joint is realized through various feature processing techniques, which enhances the feature
expression ability. Finally, the spatial and spectral features are fused together to realize the classification
of hyperspectral images. The procedure of the method is shown in Figure 1, mainly concluding
three-channel image construction, multi-layer multiscale feature extraction and jointing, the process of
the feature fusion and classification.
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Figure 1. The procedure of the multiscale deep spatial feature extraction using a virtual RGB image
method (MDSFV). The corresponding bands of RGB wavelength are selected and combined into a
virtual RGB image, then the images are fed into the trained fully convolutional network (FCN) model
to extract the multiscale features. The blue box shows the structure of the FCN convolution section
and the orange box shows the skip-layer feature fusion section which is detailed in the next figure.
The multiscale features are joined to obtain the spatial feature and the spectral feature is fused in the
last for classification.

2.1. Virtual RGB Image Construction

Hyperspectral imaging spectrometers can form approximately continuous spectral curves for tens
or even hundreds of bands, including red, green and blue bands of visible light and some near-infrared
bands. In recent years, many scholars have used the well-trained networks on natural images to
extract features from hyperspectral images, such as CNN [50] and FCN [47]. The common way is to
perform PCA on the whole spectrum of hyperspectral images, and then select the first three principal
components to form a three-channel image into the networks [47,49], detailed process can be find
in [47]. In this way, the difference between the bands of hyperspectral images vanishes, and the
advantages of wide spectral range and narrow imaging band may be lost. Here, considering that
the existing model is trained on the natural image of RGB (three-band), it may be more suitable for
the spatial feature extraction of RGB corresponding wavelength bands. So we construct a virtual
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RGB image to make full use of the hyperspectral’s rich band information through applying it to the
extraction of spatial features using existing networks. The specific implementation is as follows:

a. According to the information of the imaging spectrometer, the wavelength bands corresponding
to the wavelengths of red, green and blue, respectively, are selected from the hyperspectral
image. That is, the red band corresponds to the wavelength range 625–750 nm, the green bands
corresponds wavelength 495–570 nm and the blue bands represents wavelength 435–450 nm.
Since the luminance signal generated by the photosensitive device is not generated by single-band
illumination, here we simply establish a photosensitive model simulating its synthesis process in
the RGB bands.

b. The gray value of each band of the natural image is modeled as Gaussian synthesis of all narrow
bands in the red, green and blue bands. Take R band as example, suppose the band contains
b spectral bands, and the corresponding hyperspectral band tabs are c1, c2, . . . , cb and the band
reflection value is s1, s2, . . . , sb. Then we think that the distribution of the bands conforms to the
3σ principle, that is, the mean and variance of the Gaussian distribution are

µR = (c1 + cb)/2
σR = (cb − c1)/6.

(1)

Then we can get the weight of the band sk is

f (sk) =
1√

2πσR
exp− (ck − µR)

2

2(σR)2 . (2)

The resulting synthesized band reflection value is

IR =
∑b

i=1 sk f (sk)

∑b
i=1 f (sk)

. (3)

c. In order to ensure that the gray value range of the natural image is consistent, the R, G and B
gray values of all the pixels are adjusted to the range 0–255.

IR(x, y) = 256×
IR(x, y)−min

a,b
IR(a, b)

max
a,b

IR(a, b)−min
a,b

IR(a, b)
− 1 (4)

Similarly, we can get the equivalent gray value of G band and B band.
So far, we have obtained a virtual RGB image that simulates the RGB image, which will be used

as the basis for spatial feature extraction.

2.2. Spatial Feature Extraction and Skip-Layer Jointing

The method acquires pixel-wise spatial features by deep and shallow feature fusion. Here we
propose a method for extracting spatial features from models trained on natural images for
hyperspectral classification. We select FCN for feature extraction. The advantage of FCN is that
it has the same target with the hyperspectral image classification, aiming at pixel-wise classification.
We reasonably guess that compared to a CNN, features from the FCN are more useful. We applied
a well-trained network on natural images to extract multi-layer, multiscale features. Shallow
features contain more edge and detailed information of the image, which is especially important
for distinguishing the pixel categories of different objects intersections in hyperspectral images, while
deep features contain more abstract semantic information, which is important for the determination of
pixel categories. Therefore, we extracted both shallow edge texture information and deep semantic
structure information, and combined them to obtain more expressive features. We selected VGG16 to
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extract spatial features from the virtual RGB images. The parameters were transferred from the FCN
trained on ImageNet. In Figure 1, the blue box shows the structure of the convolution part.

During the pooling operation of the fully convolutional network (FCN), the down-sampling
multiples of spatial features increased gradually and the semantic properties of features were more
and more abstract. The fc7 layer provided semantic information and the shallower layers provided
more detailed information. So we chose both deep and shallow features, we extracted the detailed
features of the pool3, pool4 and fc7 layers and combined them.The down-sampling multiples from the
original image were 8, 16 and 32 times, respectively. We used a layer-by-layer upsampling skip-layer
joint to combine the extracted features of the three layers and obtained the final spatial features.

The joint is shown in Figure 2. The method mainly through the upsampling, cropping and two
layer feature maps joint to realize layer-by-layer joint expecting improve the ability of expressing
spatial characteristics. It can better preserve the depth of semantic information in the fc7 layer, and
simultaneously combine the edge texture information of the shallow features to improve the ability
of feature expression. Since the FCN adds a surrounding zero padding operation to ensure the full
utilization of the edge information during the convolution process, mismatch of the feature map and
the edge of the original image is caused. Therefore, we focused on the number of pixels that differ
between the different layer feature maps when combining skip-layer features. It seriously affects the
correspondence between different pixel information of each feature map, which is very important for
the pixel-level hyperspectral classification task. The edge pixels of the feature map corresponding
outside the reference map are usually defined as offset, and as is known to all, when passing the
pooling layer, the offset halves, and when through the convolution layer, the offset caused is

So f f = Spad − (Skernel − 1)/2. (5)

The process is mainly divided into the three operations: upsampling, cropping and the deep
features skip-layer joint. The upsampling is mainly based on bilinear interpolation, and in order not to
lose the edge information, there is a surrounding padding = 1 to the map. The shallow feature maps
occurred after the layer-to-layer convolution from the zero padded original image. The original image
only corresponds to a part of its center, and the number of pixels in other areas are the offset. So in
the cropping, we crop the maps by half of the multiple surrounding them. Since FCN’s upsampling
and alignment operations are well known to many scholars, we will not cover them further here.
We mainly introduce the skip-layer feature map jointing operation.

By cropping, we can guarantee that the two feature maps are equal in size and position, but the
dimensions of the two layers are different and cannot be directly added. If the two layers of features
are directly concatenated, the feature dimension is multiplied, which greatly affects the computational
efficiency and classification performance. Here we used principal component analysis (PCA), reducing
the dimension of the feature map with a high dimension to make the dimension of the two maps
the same and adding them layer by layer. In order to ensure the spatial information contribution
of the two-layer feature is equivalent, each dimension of the two layer feature map was normalized
before the addition. In the process of dimensionality reduction, by the characteristics of the PCA itself,
our available principal components are less than w× h− 1, w× h is the size of feature to PCA. So if
the dimension of the shallower is m and that of the deeper is n (m ≤ n), the size of the deeper map is
w× h, the dimension of the two maps is min(w× h− 1, m).
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Figure 2. Multiscale features to spatial features. The red word represents the name of the feature layers,
and the rest represents some processing of the feature map.

Combined with the convolution process of FCN, we conducted the following analyses for the
feature joint.

Offset during the convolution process.
A series of operations of the FCN in the convolution process were analyzed to obtain the scale

relationship and positional association before each feature map. According to (5), the parameters of
the convolution between the layers of the FCN are shown in Table 1.

Table 1. Detailed configuration of the FCN convolutional part.

Layer Kernel Stride Padding dim Offset Made

conv1_1 3 × 3 1 100 64 99
conv1_2 3 × 3 1 1 64 0

pool1 2 × 2 2 0 64 half
conv2_1 3 × 3 1 1 128 0
conv2_2 3 × 3 1 1 128 0

pool2 2 × 2 2 0 128 half
conv3_1 3 × 3 1 1 256 0
conv3_2 3 × 3 1 1 256 0
conv3_3 3 × 3 1 1 256 0

pool3 2 × 2 2 0 256 half
conv4_1 3 × 3 1 1 512 0
conv4_2 3 × 3 1 1 512 0
conv4_3 3 × 3 1 1 512 0

pool4 2 × 2 2 0 512 half
conv5_1 3 × 3 1 1 512 0
conv5_2 3 × 3 1 1 512 0
conv5_3 3 × 3 1 1 512 0

pool5 2 × 2 2 0 512 half
fc6 7 × 7 1 0 4096 -3
fc7 1 × 1 1 0 4096 0
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In Table 1, we can find the offset of fc7 and the original image is 0, so we used the fc7 layer as the
benchmark when combining skip-layer features, and the baseline was selected as the deeper feature
map when cropping.

Offset calculation between feature maps.
We discuss the calculation of the offset between the two layers of feature maps before and after

the pooling and other convolution operations. We assume that the offset of the deep feature relative to
the original image is Od, the offset generated by the convolution layer is Oc and during the upsampling
padding = 1, the offset is 1, then the offset of a feature layer former relative to the latter layer Ods,
is calculated as follows:

Ods = k× (Od −Oc)− k/2 (6)

where k represents the downsampling times of the two layers. There is a pooling layer between them,
so k = 2. The detailed offset between the layers through different feature levels are shown in Table 2.

Table 2. Different levels of feature joints and offsets.

Deep Feature Levels Feature Name Crop Offset

Two-Layer Joint

fc7 –

pool4 5

uppool4 27(pool4 upsample 16 times)

Three-Layer Joint

fc7 –

pool4 5

pool3 9

uppool3 31(pool3 upsample 8 times)

Four-Layer Joint

fc7 –

pool4 5

pool3 9

pool2 13

uppool2 35(pool2 upsample 4 times)

Unified dimension of deep and shallow feature maps.
We discuss the number of principal components retained by the deeper feature map after PCA

and the dimension of the shallower feature map. We take the feature of the upsampled PCA to reduce
the dimension, and finally take the dimension as the minumum of the shallower feature and the
dimension of the deeper feature after PCA. If the shallower’s dimension is the larger, PCA will be also
used on it to change the dimension to that of the deeper feature after PCA.

The detailed process of skip-layer feature joint is as follows:

Joint fc7 and pool4

First we upsampled the fc7 layer. The size of the fc7 and pool4 layer maps was different. Because
of the padding operation, the relative offset between the two layers was generated. From Table 1,
we knew that offset between fc7 and the original image is 0. In Table 2, the relative offset between
the two layers was 5, the pool4 layer was cropped according to the offset. PCA was performed on
the upsampled fc7 layer and we selected the same dimension of the upsampled fc7 and pool4. Then,
we added their features layer-by-layer to obtain the feature map after fusion. We named it fuse-pool4
layer, which was offset from the original image by 5.
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Joint fuse-pool4 and pool3

We combined the fuse-pool4 layer and the pool3 layer in the same way. We upsampled the
fuse-pool4 and selected the feature map after upsampling according to the uniform rules of the deep
and shallow feature dimensions. The relative offset between the two layers was 9 calculated, as shown
in Table 2. The pool3 layer was cropped according to the offset to obtain two layers of the same size.
Then they were added layer-by-layer to get the feature map fuse-pool3 after the fusion.

Upsample to image size

The fuse-pool3 layer was 8 times downsampled relative to the original image. We applied the
upsampling process to directly upsample the layer by 8 times, and then calculated the offset between
it and the original image. The offset between the upsampled feature map and the original image was
31 and we cropped the feature map after upsampling according to offset = 31, and the spatial features
corresponding to the pixel level of the original image were obtained.

So far, we have obtained the spatial features corresponding to the original image, which combines
the features of 8 times, 16 times and 32 times downsampling of deep neural network. They not only
include the edge and detail information required for hyperspectral pixel-level classification, but also
contains semantic information needed to distinguish pixel categories. The feature map corresponds
to the original image as much as possible, which can effectively reduce the possibility of generating
classification errors in the two types of handover positions. In the process of deep and shallow feature
fusion, we adopt the uniform of the dimension of two layer feature maps, and then add them layer
by layer. Compared with directly concatenating the features, the feature dimensions are effectively
reduced, and the ability of feature expression of the layers are maintained.

2.3. Spatial–Spectral Feature Fusion and Classification

We combined the hyperspectral bands of RGB-corresponding wavelengths to construct a virtual
RGB image, and then use FCN to extract multi-layer, multiscale features of the image. Through the
skip-layer joint of these features, the spatial features that characterize the spatial peculiarity of the
pixel and the surrounding distribution are obtained. However, in the process of extracting the feature,
we ignored the other hyperspectral bands and the close relationship between the bands. Therefore, we
extracted the spectral features associated with each pixel’s spectral curve and fused it with the spatial
features for classification.

Because the hyperspectral band is narrow and the sensitization range is wide, the number
of hyperspectral bands is huge. To ensure that the feature dimension is not too high during the
classification process and the expression ability of the feature is not affected as much as possible,
we carried out the spectral curve for PCA. After the PCA, we selected the former masters of the
composition as a spectral feature of the pixel.

We combined the spatial and spectral features of the corresponding pixels. For the characteristics
of different sources, the common joint was to directly concatenate the different features. Here,
we considered that the range of values and the distribution of data were different between the
spatial features obtained by the network extraction and the spectral characteristics represented by the
spectral reflection values. We normalized the features and combined them according to the equations
shown in Equations (8) and (9) to fuse spatial features and spectral features. Suppose Xspe is a spectral
feature, which is obtained from the original spectrum PCA taking the first se principal component, and
Xspa is the deep spatial feature with a dimension of sa, so we know

Xspe ∈ Rw×h×se , Xspa ∈ Rw×h×sa (7)
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where w× h is the size of the features to fuse. First, we do the following for Xspe, Xspa to normalize
them in Equation (8)

X̄d =
1

w× h

n

∑
i=1

n

∑
j=1

Xij

σd =
1

w× h

n

∑
i=1

n

∑
j=1

(Xij − X̄d)
2

f (Xij) = (
Xij − X̄d

σd
)/|X− X̄d

σd
|

(8)

In Equation (8), We perform the normalization operation of the layers of the spectral and spatial
features, that is, subtract the average then divide by the variance operation on the corresponding
features of each pixel, so as to achieve the uniformity of each feature dimension. Then we combine
features by concatenating them, the size of the fused feature is shown in Equation (9).

X f ∈ Rw×h×(sa+se) (9)

where se, sa is discussed in Section 4; the occurred X f is the feature after fusion, we fed it into the
classifier to implement classification.

3. Results

In this section, we evaluate the performance of the proposed MDSFV by comparing it with
some state-of-art methods. The experiments were performed on three datasets, mainly including
data from two hyperspectral imaging sensors, the Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS) and Reflective Optics System Imaging Spectrometer (ROSIS-3). Meanwhile, we also carried
out comparative experiments on different feature joint ways to verify the effectiveness of multiscale
skip-layer features and different three-channel image to verify the effectiveness of virtual RGB image.

3.1. Data Description and Experiment Setup

We selected the Indian Pines dataset, the Pavia University dataset and the Kennedy Space Center
dataset, which we will cover separately.

The Indian Pines dataset was collected in 1992 by the Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS) at the test site in northwestern Indiana. The dataset has a spatial dimension of
145×145 pixels with a spatial resolution of 20 m/pixel and a total of 220 wavelength reflection bands
covering a wavelength range of 0.4–2.5 µm with a nominal spectral resolution of 10 nm. After removing
the influence band of noise and water absorption ([104–108], [150–163], 220), the remaining 200 bands
were used for experiments. The scene is mainly agriculture and forests, including a small number of
buildings. The dataset contains a total of 16 classes. The sample size varies greatly among classes,
the minimum is only 20 and the largest class has 1428 samples. When selecting training samples,
we selected according to the ratio of the total number of samples. In this experiment, we selected
each class of 10% for training, and other samples for testing. The PCA first three components image,
the virtual RGB image and the corresponding objects label map are as shown in Figure 3.
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Figure 3. Indian Pines dataset, (a) shows the image of first three principal component by principal
component analysis (PCA); (b) shows the virtual RGB image by our method; the groundtruth is in (c).
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Pavia University dataset was taken in Pavia, Italy by the Reflective Optics System Imaging
Spectrometer (ROSIS-3). The sensor has a total of 115 spectral channels covering a range of 0.43–0.86 µm.
After removing noise and water absorption bands, there were 103 hyperspectral bands remaining.
The spatial dimension is 610×340, the spatial resolution is 1.3 m/pixel, and a total of 42,776 samples
were included, containing nine types of ground objects such as grass, trees and asphalt. Since each type
of labeled sample has a large amount, we chose 50 samples from each class to train and all remaining
samples to test. In Figure 4, the three components image, the virtual RGB image and label of Pavia
University are displayed.

Kennedy Space Center (KSC) dataset was obtained in 1996 by the Airborne Visible/Infrared
Imaging Spectrometer (AVIRIS) at the Kennedy Space Center (KSC). A total of 224 bands, covering the
wavelength range of 0.4–2.5 µm, the KSC dataset is available at a height of approximately 10 km with
a spatial resolution of 18 m/pixel. After removing the water absorption and low SNR (Signal Noise
Ratio) bands, there are 176 bands for analysis, including 13 objects coverage categories. The categories
of the dataset are relatively balanced and the number is several hundred, so we used 20 samples of
each type for training. Figure 5 shows the three-channel image by PCA, the virtual RGB image and the
label map of KSC.
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Figure 5. Kennedy Space Center dataset, (a) is the PCA’s first three channels; (b) shows the virtual
RGB image we proposed; (c) shows the groundtruth.

Our experiments were based on the fully convolutional network of the caffe framework to
extract spatial features [51], using Matlab to configure LIBSVM (A Library for Support Vector
Machines) by Chih-Chung Chang and Chih-Jen Lin [52] and LIBLINEAR (A Library for Large Linear
Classification) [53] for feature fusion and classification calculations. Under the same conditions,
we compare the proposed MDSFV method with the method only using the deepest features upsampling
it 32 times and without changing dimension (DSFV). Simultaneously, four CNN or FCN based methods
are chosen to compare, including DMS3FE [47] and FEFCN [49] based on FCN and two CNN [50] and
CNN PPF [54] based on CNN. All the above methods were run 10 times with randomly selected train
or test samples, and the average accuracies and the corresponding standard deviations are reported.
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We selected overall accuracy (OA), average accuracy (AA) and kappa coefficient (κ) to evaluate the
performance of these methods, and the accuracies of each class shown in the tables are calculated by
the proportion of correctly classified samples to total test samples.

3.2. Feature Jointing and Fusion Strategies

In this section, we will compare the effectiveness of our strategy in the feature joint and fusion,
including the depth of the spatial feature acquired from FCN, and report on how the deeper and
shallower combined and the efficiency of the fusion of spectral-spatial feature. We selected the Pavia
University dataset to compare the results of each strategy.

The Depth of the Spatial Feature
In this section, we show the results of the joint between the different feature layers extracted by

FCN. From the convolution process of FCN, we know that the downsampling multiples of pool2,
pool3, pool4 and fc7 layers relative to the original image are 4, 8, 16 and 32, respectively. Here we
compare the three levels’ feature sets, the features used by each are shown in Table 2. For example,
the joint of Two-Layer is to combine the fc7 layer feature with the pool4 layer feature, and is upsampled
16 times to obtain the spatial feature map corresponding to the original image. Shallow features will
make the classification more detailed, deep features will carry more semantic information; the question
of how to balance the relationship between them to obtain accurate and precise classification results is
a problem.

Figure 6 shows the classification results of three levels. We can see that the Four-Layer method has
some subtle misclassifications due to the joint of the characteristics of the shallow pool2. The relative
reduction of shallow information in the Three-Layer method improves these misclassifications. When
the shallow feature is further reduced, the Two-Layer method is adopted, since the feature image
is directly sampled by 16 times, it is inaccurate in the range of 16 pixels, thus causing some other
misclassifications. Table 3 demonstrates the accuracy of each class of the three levels’ joint, we can
further observe the advantages of the Three-Layer method. Combining the above results to balance
the relationship between the deep and shallow layers, we use the joint of the Three-Layer deep
spatial features.
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misclassification. Table 3 demonstrates the accuracy of each class of the three levels’ joint, we can342
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7 100 1230 0.9911 0.9992 0.9992
8 100 3582 0.9925 0.9947 0.9972
9 100 847 1 1 1

overall accuracy(OA) 0.9825 0.9925 0.989
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Table 3. Accuracy of different levels of feature joints on the Pavia University dataset.

Class Train Sample Test Sample Two-Layer Three-Layer Four-Layer

1 100 6531 0.9821 0.9884 0.9891
2 100 18549 0.9831 0.9943 0.9846
3 100 1999 0.957 0.9885 0.9985
4 100 2964 0.9642 0.9835 0.9703
5 100 1245 0.9984 1 1
6 100 4929 0.986 0.9923 0.9992
7 100 1230 0.9911 0.9992 0.9992
8 100 3582 0.9925 0.9947 0.9972
9 100 847 1 1 1

overall accuracy(OA) 0.9825 0.9925 0.989
average accuracy(AA) 0.9838 0.9934 0.9931

kappa(κ) 0.9768 0.9901 0.9853

The Combination of Deeper and Shallower Features
In the method section of this paper, we mentioned that for different layer feature maps,

the dimension-unified features are normalized and added. In this part, we compare the results of three
combination ways, which are: the different layer features are directly concatenated (Concat); applying
PCA to features of the same dimension and then adding them layer-by-layer (No Normalization); and
the PCA after features are normalized before combining (Normalization).

Table 4 demonstrated the accuracy and time-consumption of the three combination ways.
When the two layer features are merged in the concatenation, the final feature dimension is very large,
reaching 4896 dimensions, resulting in significant time-consumption in the process of upsampling
bilinear interpolation. The memory footprint is more than 32 GB. Thus, we decided not to choose
this combination mode when the classification result is equivalent. The main comparison is whether
the normalization has an effect on the accuracy when the training samples are identical. We can see
that the normalization addition is, relatively, a little inferior to the non-normalization direct addition
on time consumption. In terms of classification effect, the normalization addition is better than the
non-normalized. In Section 2.2 we also analyzed this method, because the method is implemented to
make the contribution of two layers’ information the same, so we chose the method of normalization
and addition. Figure 7 shows the results with and without normalization.

Table 4. Accuracy of the different combined methods on the Pavia University dataset.

Class Train Sample Test Sample Concat No NormalizationNormalization

1 100 6531 0.9781 0.9675 0.9633
2 100 18549 0.9812 0.9752 0.9834
3 100 1999 1 0.9985 0.9985
4 100 2964 0.9615 0.9899 0.9879
5 100 1245 0.9992 0.9992 1
6 100 4929 1 1 0.9996
7 100 1230 1 1 0.9992
8 100 3582 0.9956 0.9961 0.9894
9 100 847 0.9889 0.9988 1

overall accuracy(OA) 0.985 0.9828 0.985
average accuracy(AA) 0.9894 0.9917 0.9912

kappa(κ) 0.9801 0.9772 0.9801
time consume >>5 h 14.50 s 14.90 s
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Figure 7. Efficiency of normalization on the Pavia University dataset.

Fusion of Spectral and Spatial Feature
We know that spatial and spectral features are both important for accurate classification of

pixels. Spatial features provide information about the neighborhood around the pixel. Spectral
features provide unique, discerning and accurate spectral curves that are unique to the pixel. Spatial
information is conducive to the continuity of pixel classification. Spectral information is important to
the accuracy of specific pixel classification, so if you want to accurately classify, spatial and spectral
features are indispensable. This section will compare the classification results using only spectral
features, using only spatial features and fusion spatial and spectral features.

Figure 8 exhibits the results of using spectral or feature, respectively, and that of the fusion feature.
When using the spectral feature only, the continuity of the spatial distribution of ground features
is affected—pixels in the shadow class are classified very scattered. Nevertheless, when the spatial
feature is the only uniquely usable feature, even if the classification result is better in the area of the
piece, in the slenderly distributed area, especially the road, the result is not ideal (divided into sections).
This can be interpreted as the result of missing spectral information only by using spatial information.
When applying spatial information and spectral information at the same time, we can find that the
classification result is better, while avoiding the scattered distribution of pixel classes and slender
object mistakes. The phenomenon of segmentation is basically close to the groundtruth. Table 5 gives
the accuracies of each species in three ways. The high accuracy is shown in bold, and it can be seen
that the effectiveness of the spatial–spectral fusion is very obvious.
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(a) (b) (c) (d)

Figure 8. Result of spectral spatial feature fusion. (a) and (b) show the classification results of spectral
and spatial features respectively. (c) shows the result of spectral-spatial fusion feature and (d) displays
the groundtruth.

Table 5. Efficiency of Spatial Spectral Feature Fusion

class Train Sample Test Sample spectral spatial fusion

1 100 6531 0.7809 0.8738 0.9778
2 100 18549 0.821 0.9541 0.9781
3 100 1999 0.7809 0.99 0.998
4 100 2964 0.9497 0.9109 0.9919
5 100 1245 0.9992 0.9904 0.9992
6 100 4929 0.8643 1 0.9988
7 100 1230 0.935 1 0.9992
8 100 3582 0.8227 0.9701 0.983
9 100 847 0.9965 0.9481 0.9728

overall accuracy(OA) 0.8394 0.9493 0.9840
average accuracy(AA) 0.8833 0.9597 0.9887

kappa(κ) 0.7975 0.9334 0.9787

Fig. 8 exhibits the results of the three ways. It is shown that when use spectral feature only, the371

continuity between pixel classes is not good, and there is a phenomenon in which pixels are scattered.372

Nevertheless, when spatial feature is the uniquely usable, even if the classification result is better373

in the area of the piece, in the slenderly distributed area, especially the road, the result is not ideal374

(divided into sections). This can be interpreted as the result of missing spectral information only by375

using spatial information. When applying spatial information and spectral information at the same376

time, we can find that the classification result is better, while avoiding the scattered distribution of377

pixel classes and slender object mistakes. The phenomenon of segmentation is basically close to the378

truth map. Table 5 gives the accuracies of each species in three ways. The high accuracy is shown in379

bold, and it can be seen that the effectiveness of the spatial-spectral fusion is very obvious.380

3.3. Effectiveness of virtual RGB image381

In this part, we compare the performance of different three-channel images. Including PCA the382

hyperspectral data directly, the average of RGB corresponding bands and Gaussian combination of383

the bands. For PCA, we select the first three principal components as the RGB channel intensity. The384

other two methods select the bands have same wavelength range with the RGB, and combine them in385

Figure 8. Result of the spectral spatial feature fusion on the Pavia University dataset. (a,b) show the
classification results of spectral and spatial features, respectively. (c) shows the result of spectral–spatial
fusion feature and (d) displays the groundtruth.

Table 5. Efficiency of the spatial spectral feature fusion on the Pavia University dataset.

Class Train Sample Test Sample Spectral Spatial Fusion

1 100 6531 0.7809 0.8738 0.9778
2 100 18,549 0.821 0.9541 0.9781
3 100 1999 0.7809 0.99 0.998
4 100 2964 0.9497 0.9109 0.9919
5 100 1245 0.9992 0.9904 0.9992
6 100 4929 0.8643 1 0.9988
7 100 1230 0.935 1 0.9992
8 100 3582 0.8227 0.9701 0.983
9 100 847 0.9965 0.9481 0.9728

overall accuracy(OA) 0.8394 0.9493 0.9840
average accuracy(AA) 0.8833 0.9597 0.9887

kappa(κ) 0.7975 0.9334 0.9787

3.3. Effectiveness of Virtual RGB Image

In this part, we compare the performance of different three-channel images. PCA the hyperspectral
data directly, the average of RGB corresponding bands and Gaussian combination of the bands are
compared. For PCA, we select the first three principal components as the RGB channel intensity.
The other two methods select the bands have same wavelength range with the RGB, and combine
them in different methods. One is averaging the bands (average bands) and another is synthesizing
the bands by Gaussian weights (virtual RGB).

In Table 6 and Figure 9, we can see that the RGB corresponding bands can achieve a better
classification result than the PCA method, which is because the RGB bands are more similar to the
natural images training model. Since the Gaussian weights performance is better on this account,
we selected the virtual RGB images for feature extraction.
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Table 6. Accuracy of different three-channel images on the Pavia University dataset.

Class Train Sample Test Sample PCA Average Bands Virtual RGB

1 50 6581 0.9809 0.9672 0.9829
2 50 18599 0.9592 0.9526 0.9714
3 50 2049 0.998 0.9985 0.9985
4 50 3014 0.9879 0.9437 0.9889
5 50 1295 1 1 1
6 50 4979 0.999 0.9982 0.9992
7 50 1280 0.9992 0.9984 0.9992
8 50 3632 0.993 0.9913 0.9899
9 50 897 1 1 1

overall accuracy(OA) 0.9772 0.9688 0.9828
average accuracy(AA) 0.9908 0.9833 0.9922

kappa(κ) 0.97 0.959 0.9772
Version December 16, 2019 submitted to Journal Not Specified 15 of 24
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Figure 9. Result of different three-channel images. (a) shows the classification result of PCA three
channel image. (b) shows the results of average bands method. (c) shows the result of virtual RGB
image and (d) displays the groundtruth.

different methods. One is averaging the bands (average bands) and another is synthesizing the bands386

by Gaussian weights (virtual RGB).387

In Table 6 and Fig. 9, we can see that the RGB corresponding bands can achieve better classification388

result than PCA method, which is because the RGB bands are more similar to the natural images389

training model. Since the Gaussian weights performance better on this account, we select virtual RGB390

images for feature extraction.

Table 6. accuracy of different three-channel images

class Train sample Test Sample PCA average bands virtual RGB

1 50 6581 0.9809 0.9672 0.9829
2 50 18599 0.9592 0.9526 0.9714
3 50 2049 0.998 0.9985 0.9985
4 50 3014 0.9879 0.9437 0.9889
5 50 1295 1 1 1
6 50 4979 0.999 0.9982 0.9992
7 50 1280 0.9992 0.9984 0.9992
8 50 3632 0.993 0.9913 0.9899
9 50 897 1 1 1

overall accuracy(OA) 0.9772 0.9688 0.9828
average accuracy(AA) 0.9908 0.9833 0.9922

kappa(κ) 0.97 0.959 0.9772

391

3.4. Parameter Analysis392

In this part, we experiment with the sample size and the spatial spectral feature fusion dimension.393

For the sample size, we conducted experiments on the three datasets, and selected the sample numbers394

according to the actual situation of each dataset. For the spatial spectral feature fusion dimension, we395

experiment with three datasets and found for each dataset, the optimal spatial and spectral fusion396

feature dimensions are basically invariant, so the results of each dataset are integrated, thus the397

selections of spatial and spectral feature dimension are unified.398

Sample numbers399

Figure 9. Result of different three-channel images on the Pavia University dataset. (a) shows the
classification result of PCA three channel image. (b) shows the results of average bands method.
(c) shows the result of virtual RGB image and (d) displays the groundtruth.

3.4. Classification Performance

In this section, we will compare the proposed MDSFV method with spatial feature extraction
without multiscale features’ skip-layer fusion (DSFV) method as baseline and the other four state-of-art
methods. The result figures and detailed average accuracy and variance are shown in Figures 10–12
and Tables 7–9.

Figure 10 and Table 7 show the classification performance of the six methods on Indian Pines,
the experiment were repeated ten times. Figure 10 demonstrates the classification result of each pixel,
we can see that of the MDSFV method is closer to groundtruth, and the rest of the methods have more
or less mis-segmentations of some regional edges. Table 7 shows the average accuracy and standard
deviation per class. Distinctly, our methods are more optimal in terms of various class accuracies.
Since CNN PPF selects three different spectral curves in one class and pairs them with other classes,
the number of training samples in the ninth class should be 2, so we set the number of samples of our
ninth class 3. When comparing with Two CNN method, we did not train and migrate the model on
similar datasets. Therefore, the accuracy of this method is significantly lower than the other methods,
which also confirms that the training of deep learning networks using hyperspectral data needs a
data foundation. The impact of the reduced sample size on the accuracy is enormous. In general, our
method achieved an overall accuracy of 98.78%, and DSFV refers to the classification result without
skip-layer feature fusion. It can be seen that using multiscale features can improve the recognition
accuracy. The comparison to other methods shows it is superior to other deep learning methods.
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Table 7. Accuracies of different methods on the Indian Pines dataset (%).

Class Train Sample Test Sample Two CNN CNN PPF FEFCN DMSFE DSFV MDSFV

1 5 41 69.76 ± 24.54 92.93 ± 3.53 66.19 ± 9.74 92.2 ± 5.09 94.39 ± 6.9 96.83 ± 2.2
2 143 1285 54.34 ± 6.18 92.46 ± 1.12 91.67 ± 1.89 96.68 ± 1.47 75.26 ± 11.73 98.71 ± 0.58
3 83 747 71.47 ± 2.7 86.09 ± 3.61 90.46 ± 3.73 97.86 ± 1.16 89.83 ± 6.72 98.25 ± 1.2
4 24 213 70.14 ± 6.33 93.52 ± 2.65 98.51 ± 1.16 93.9 ± 5 96.9 ± 1.99 97.93 ± 1.93
5 48 435 78.32 ± 2.96 93.84 ± 1.32 90.52 ± 3.96 96.71 ± 1.84 94.9 ± 2.74 96.21 ± 2.54
6 73 657 86.58 ± 7.37 98.66 ± 0.99 97.56 ± 1.7 99.38 ± 0.56 99.53 ± 0.49 99.91 ± 0.14
7 3 25 54.4 ± 14.44 89.2 ± 6.94 86.04 ± 7.92 84 ± 10.58 83.2 ± 21.89 87.6 ± 8.85
8 48 430 99.88 ± 0.12 99.67 ± 0.26 99.9 ± 0.23 99.81 ± 0.23 100 ± 0 99.81 ± 0.31
9 2 18 51.11 ± 13.79 85.29 ± 4.74 90.37 ± 10.3 52.22 ± 23.2 70.56 ± 25.46 54.44 ± 17.88

10 97 875 80.05 ± 5.92 91.99 ± 2.24 75 ± 2.43 95.5 ± 1.18 87.74 ± 8.85 98.05 ± 0.96
11 246 2209 62.74 ± 7.63 94.25 ± 0.7 89.91 ± 1.28 98.74 ± 0.57 95.33 ± 5.44 99.38 ± 0.3
12 59 534 76.05 ± 7.44 92.53 ± 3.92 89.4 ± 3.12 97.06 ± 1.65 91.03 ± 10.2 97.75 ± 0.61
13 21 184 97.66 ± 2.7 98.53 ± 0.91 99.36 ± 0.67 99.29 ± 0.35 99.67 ± 0.36 99.51 ± 0.16
14 127 1138 78.88 ± 5.29 96.81 ± 0.82 99.68 ± 0.24 99.97 ± 0.08 99.1 ± 2.34 100 ± 0
15 39 347 30.17 ± 12.7 79.14 ± 8.01 95.59 ± 1.65 98.9 ± 1.11 99.25 ± 0.66 99.08 ± 1.13
16 9 84 67.62 ± 10.99 97.38 ± 2.37 97.34 ± 3.25 95.48 ± 4.45 88.45 ± 3.69 98.33 ± 2.62

overall accuracy(OA) 70.52 ± 3.13 93.38 ± 0.87 91.07 ± 0.91 97.84 ± 0.33 92.2 ± 2.61 98.78 ± 0.19
average accuracy(AA) 70.57 ± 2.98 92.33 ± 1 91.09 ± 1.06 93.61 ± 2.2 91.57 ± 3.04 95.11 ± 1.44

Kappa 0.6788 ± 0.0324 0.9252 ± 0.0098 0.898 ± 0.0104 0.9755 ± 0.0038 0.9122 ± 0.0289 0.9861 ± 0.0021

Table 8. Accuracies of different methods on the Pavia University dataset (%).

Class Train Sample Test Sample Two CNN CNN PPF FEFCN DMSFE DSFV MDSFV

1 50 6581 79.86 ± 4.28 95.52 ± 0.42 88.69 ± 1.1 95.94 ± 1.13 92.08 ± 3.72 97.17 ± 1.53
2 50 18599 89.24 ± 3.82 84.05 ± 2.72 94.8 ± 0.58 94.78 ± 3.12 92.1 ± 3.37 96 ± 1.66
3 50 2049 65.24 ± 5.87 90.35 ± 1.17 86.19 ± 2.15 99.42 ± 0.69 99.92 ± 0.22 98.23 ± 0.8
4 50 3014 95.47 ± 1.9 92.36 ± 1.2 78.67 ± 3.05 97.88 ± 0.68 96.49 ± 1.4 97.32 ± 0.9
5 50 1295 98.28 ± 1.78 99.93 ± 0.11 81.3 ± 1.84 99.97 ± 0.04 99.97 ± 0.07 99.93 ± 0.02
6 50 4979 56.42 ± 8.75 92.46 ± 2.44 81.9 ± 2.7 98.43 ± 0.44 98.9 ± 1.24 99.29 ± 0.5
7 50 1280 73.98 ± 4.15 94.41 ± 0.32 81.82 ± 2.14 99.77 ± 0.06 99.76 ± 0.53 99.51 ± 0.74
8 50 3632 40.15 ± 5.78 86.16 ± 1.8 68.28 ± 2.2 99.25 ± 0.09 97.81 ± 1.73 98.71 ± 0.76
9 50 897 99.68 ± 0.34 99.04 ± 0.49 86.93 ± 3.61 99.59 ± 0.68 98.81 ± 0.94 99.86 ± 0.26

overall accuracy(OA) 79.03 ± 1.87 89.02 ± 1.28 86.68 ± 0.33 96.63 ± 1.36 94.69 ± 1.59 97.31 ± 0.79
average accuracy(AA) 77.59 ± 1.59 92.7 ± 0.56 83.18 ± 0.76 98.34 ± 0.39 97.31 ± 0.61 98.44 ± 0.27

Kappa 0.7344 ± 0.0219 0.8608 ± 0.0152 0.8241 ± 0.0044 0.956 ± 0.0175 0.9312 ± 0.02 0.9647 ± 0.0102
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(a) Two CNN OA=68.40% (b) CNN PPF OA=97.03% (c) FEFCN OA=91.14%

(d) DMS3FE OA=97.69% (e) DSFV OA=92.15% (f) MDSFV OA=98.98%

Figure 12. Classification maps by compared methods on Indian Pines, the overall accuracy (OA) of the
methods are displayed.

Since CNN PPF selects three different spectral curves in one class and pairs them with other classes,447

the number of training samples in the ninth class should be 2, so we set the number of samples of our448

ninth class 3. When comparing with Two CNN method, we did not train and migrate the model on449

similar datasets. Therefore, the accuracy of this method is significantly lower than the other methods,450

which also confirms that the training of deep learning networks using hyperspectral data needs data451

foundation. The impact of reduced sample size on the accuracy is enormous. In general, our method452

achieved a overall accuracy of 98.78%, and DSFV refers to the classification result without cross-layer453

feature fusion. It can be seen that using multiscale features can improve the recognition accuracy. And454

the comparison of other methods shows it is superior to other deep learning methods.455

Table 8. Accuracies of different methods On Pavia University(%)

class Train Sample Test Sample Two CNN CNN PPF FEFCN DMSFE DSFV MDSFV

1 50 6581 79.86±4.28 95.52±0.42 88.69±1.1 95.94±1.13 92.08±3.72 97.17±1.53
2 50 18599 89.24±3.82 84.05±2.72 94.8±0.58 94.78±3.12 92.1±3.37 96±1.66
3 50 2049 65.24±5.87 90.35±1.17 86.19±2.15 99.42±0.69 99.92±0.22 98.23±0.8
4 50 3014 95.47±1.9 92.36±1.2 78.67±3.05 97.88±0.68 96.49±1.4 97.32±0.9
5 50 1295 98.28±1.78 99.93±0.11 81.3±1.84 99.97±0.04 99.97±0.07 99.93±0.02
6 50 4979 56.42±8.75 92.46±2.44 81.9±2.7 98.43±0.44 98.9±1.24 99.29±0.5
7 50 1280 73.98±4.15 94.41±0.32 81.82±2.14 99.77±0.06 99.76±0.53 99.51±0.74
8 50 3632 40.15±5.78 86.16±1.8 68.28±2.2 99.25±0.09 97.81±1.73 98.71±0.76
9 50 897 99.68±0.34 99.04±0.49 86.93±3.61 99.59±0.68 98.81±0.94 99.86±0.26

overall accuracy(OA) 79.03±1.87 89.02±1.28 86.68±0.33 96.63±1.36 94.69±1.59 97.31±0.79
average accuracy(AA) 77.59±1.59 92.7±0.56 83.18±0.76 98.34±0.39 97.31±0.61 98.44±0.27

Kappa 0.7344±0.0219 0.8608±0.0152 0.8241±0.0044 0.956±0.0175 0.9312±0.02 0.9647±0.0102

Fig. 13 and Table 8 show the classification result of various methods on the Pavia University456

dataset. From Fig. 13, it can be seen that except for the MDSFV method in this paper, the other methods457

have serious segmentation errors in the meadows. Attention here, the result of the deepest feature458

Figure 10. Classification maps by compared methods on Indian Pines, the overall accuracy (OA) of the
methods are displayed.
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(a) Two CNN OA=79.54% (b) CNN PPF OA=91.23% (c) FEFCN OA=86.67%

(d) DMS3FE OA=96.88% (e) DSFV OA=94.88% (f) MDSFV OA=97.60%

Figure 13. Classification maps by compared methods on Pavia University, OA of the methods are
listed.Figure 11. Classification maps by compared methods on Pavia University, OA of the methods are listed.
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Figure 11 and Table 8 show the classification result of various methods on the Pavia University
dataset. From Figure 11, it can be seen that except for the MDSFV method in this paper, the other
methods have serious segmentation errors in the meadows. It should be noted, the result of the deepest
feature upsampling (DSFV) is inferior to that of DMS3FE proposed in [47]. This may be due to the
upsampling multiple of the spatial feature is 32, which means that the feature is inaccurate within
the range of 32 pixels. But in general, our method performs well in terms of accuracy to the existing
deep learning methods. Table 8 shows the accuracies per class. In the class which has major samples,
MDSFV performances significantly better than the others. In terms of overall accuracy, it exceeds the
DMS3FE method by 0.7 percent.
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(a) Two CNN OA=83.66% (b) FEFCN OA=82.50% (c) DMS3FE OA=97.68%

(d) DSFV OA=98.26% (e) MDSFV OA=98.69% (f) Groundtruth

Figure 14. Classification maps by compared methods on Kennedy Space Center, OAs are listed.

upsampling (DSFV) is inferior to that of DMS3FE proposed in [47]. This may be due to the upsampling459

multiple of the spatial feature is 32, which means that feature is inaccurate within the range of 32 pixels.460

But in general, our method performs well in terms of accuracy to the existing deep learning methods.461

Table 8 shows the accuracies per class. In the class which has major samples, MDSFV performances462

significantly better than the others. In terms of overall accuracy, it exceeding the DMS3FE method by463

0.7 percent.464

Table 9. Accuracies of different methods On Kennedy Space Center(%)

class Train Sample Test Sample Two CNN FEFCN DMSFE DSFV MDSFV

1 20 741 79.34±2.53 84.66±4.31 96.84±1.99 95.29±6.97 96.79±2.47
2 20 223 76.41±3.46 77.51±11.59 98.65±2 96.82±5.85 99.1±0.8
3 20 236 79.19±2.53 42.12±11.26 99.45±0.19 99.92±0.17 99.36±0.28
4 20 232 68.79±4.39 60.74±9.55 97.37±2.95 97.54±6.95 98.36±0.54
5 20 141 83.33±5.09 61.11±15.06 93.26±8.76 99.86±0.43 97.45±5.81
6 20 209 64.21±7.14 45.76±20.15 100±0 99.95±0.14 100±0
7 20 85 98.12±1.68 68.34±25.23 100±0 93.29±15.7 100±0
8 20 411 65.52±3.9 97.16±2.13 92.82±5.54 98.83±2.82 95.67±2.23
9 20 500 95.44±1.36 83.12±2.27 97.88±4.97 100±0 99.74±0.32

10 20 384 77.01±10.43 97.5±1.93 98.7±2.9 100±0 99.87±0.39
11 20 399 81.9±3.64 100±0 98.05±2.43 99.9±0.12 96.19±3.22
12 20 483 78.16±3.37 98.46±0.8 97.47±3.75 96.4±0.69 99.5±0.7
13 20 907 100±0 99.99±0.03 99.58±0.84 98.37±4.9 99.88±0.19

overall accuracy(OA) 82.68±1.47 82.29±3.87 97.73±1.13 98.16±1.36 98.53±0.69
average accuracy(AA) 80.57±2.09 78.19±4.55 97.7±1.19 98.17±1.69 98.61±0.72

Kappa 0.8097±0.016 0.8039±0.0419 0.9748±0.0125 0.9795±0.015 0.9836±0.0077

Fig. 14 and Table 9 demonstrate the results of various comparison algorithms on the Kennedy465

Space Center. The CNN PPF introduced by [53] cannot convergence on this dataset eventhough we466

tried a lot of ways including change the training sample numbers. It maybe caused by the large467

correlation between the spectral curves of various types of objects in the dataset, resulting in poor468

separability, and the accurate classification cannot be performed after the pairing algorithm. In Fig. 14469

when the cross-layer multiscale spatial features are not introduced, there are many mis-segments of a470

region. After it introduced, the mis-classification vanished and the phenomenon of scattered mistakes471

Figure 12. Classification maps by compared methods on the Kennedy Space Center dataset, overall
accuracy (OA)s are listed.

Table 9. Accuracies of different methods on the Kennedy Space Center dataset (%).

Class Train Sample Test Sample Two CNN FEFCN DMSFE DSFV MDSFV

1 20 741 79.34 ± 2.53 84.66 ± 4.31 96.84 ± 1.99 95.29 ± 6.97 96.79 ± 2.47
2 20 223 76.41 ± 3.46 77.51 ± 11.59 98.65 ± 2 96.82 ± 5.85 99.1 ± 0.8
3 20 236 79.19 ± 2.53 42.12 ± 11.26 99.45 ± 0.19 99.92 ± 0.17 99.36 ± 0.28
4 20 232 68.79 ± 4.39 60.74 ± 9.55 97.37 ± 2.95 97.54 ± 6.95 98.36 ± 0.54
5 20 141 83.33 ± 5.09 61.11 ± 15.06 93.26 ± 8.76 99.86 ± 0.43 97.45 ± 5.81
6 20 209 64.21 ± 7.14 45.76 ± 20.15 100 ± 0 99.95 ± 0.14 100 ± 0
7 20 85 98.12 ± 1.68 68.34 ± 25.23 100 ± 0 93.29 ± 15.7 100 ± 0
8 20 411 65.52 ± 3.9 97.16 ± 2.13 92.82 ± 5.54 98.83 ± 2.82 95.67 ± 2.23
9 20 500 95.44 ± 1.36 83.12 ± 2.27 97.88 ± 4.97 100 ± 0 99.74 ± 0.32

10 20 384 77.01 ± 10.43 97.5 ± 1.93 98.7 ± 2.9 100 ± 0 99.87 ± 0.39
11 20 399 81.9 ± 3.64 100 ± 0 98.05 ± 2.43 99.9 ± 0.12 96.19 ± 3.22
12 20 483 78.16 ± 3.37 98.46 ± 0.8 97.47 ± 3.75 96.4 ± 0.69 99.5 ± 0.7
13 20 907 100 ± 0 99.99 ± 0.03 99.58 ± 0.84 98.37 ± 4.9 99.88 ± 0.19

overall accuracy(OA) 82.68 ± 1.47 82.29 ± 3.87 97.73 ± 1.13 98.16 ± 1.36 98.53 ± 0.69
average accuracy(AA) 80.57 ± 2.09 78.19 ± 4.55 97.7 ± 1.19 98.17 ± 1.69 98.61 ± 0.72

Kappa 0.8097 ± 0.016 0.8039± 0.0419 0.9748± 0.0125 0.9795 ± 0.015 0.9836± 0.0077

Figure 12 and Table 9 demonstrate the results of various comparison algorithms on the Kennedy
Space Center dataset. The CNN PPF introduced by [54] cannot obtain convergence on this dataset,
even though we tried a lot of ways, including changing the training sample numbers. It may be
caused by the large correlation between the spectral curves of various types of objects in the dataset,
resulting in poor separability, and the accurate classification cannot be performed after the pairing
algorithm. In Figure 12 when the skip-layer multiscale spatial features were not introduced, there
were many mis-segments of a region. After it was introduced, the mis-classification vanished and
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the phenomenon of scattered mistakes was reduced. The accuracies of classes are shown in Table 9,
the overall accuracy has a 0.8% raise when compared to other state-of-art methods. Based on the above
results, we can prove that the proposed skip-layer fusion of multiscale spatial features is very effective
for accurate classification. The proposed unification of dimensions by PCA and normalization before
the combination of features can effectively reduce the dimension of the combined features and improve
the separability of features. The virtual RGB image can better fit the imaging conditions of natural
images, and is more conducive to the training of the model to extract spatial features. Compared
with the simple and crude three principal components, it can effectively express the pixel–spatial
relationship in hyperspectral images.

4. Discussion

In this section, we carry out parameter analysis. We experimented with the sample size and the
spatial spectral feature fusion dimension. For the sample size, we conducted experiments on the three
datasets, and selected the sample numbers according to the actual situation of each dataset. For the
spatial spectral feature fusion dimension, we experimented with three datasets and found for each
dataset, the optimal spatial and spectral fusion feature dimensions are basically invariant, so the results
of each dataset are integrated, thus, the selections of spatial and spectral feature dimension are unified.

Sample numbers
The number of training samples will affect the accuracy of classification. The more training

samples, the higher the accuracy. However, because the sample size is limited and the time cost of
training the classifier is considered, the number of samples should be appropriate.

Since the Indian pines dataset is very uneven between each class, the minimum number of
samples is only 20, so we selected the training samples proportionally. The blue line in Figure 13
shows the accuracy varies with the proportion of samples on Indian Pines. We can see that the overall
accuracy shows an upward trend as the number of samples increases. However, when the sample
ratio reaches 10%, the overall accuracy reaches about 98%, and as the number of samples increases,
the accuracy increases no longer. We determine the final sample size by 10% of each sample.
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Figure 13. Accuracy with different numbers of training samples on the three datasets.

For the Pavia University dataset, there are nine types of samples, and the number of samples per
class is relatively large, so we select according to the number of samples. The red line in Figure 13 shows
the overall accuracy varies from the number of training samples each class on the Pavia University
dataset. It can be obtained that when the number of samples per class is 50, the classification accuracy
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reaches a level close to 98%, and the accuracy does not change significantly with the increase of the
number of samples, so the number of samples is finally determined to be 50 per class.

For the KSC dataset, the number of samples per class is small and relatively balanced, so we select
the number of samples per class, and the overall accuracy of classification varies with the number of
samples per class as shown in Figure 13 by the green line. It can be seen that the initial improvement
of the classification accuracy with the training samples is very obvious. When the number of samples
per class is 20, as the number of samples increases, the classification accuracy rate increases slowly,
so the final sample size is 20 per class.

Dimension of features
In the process of spectral–spatial feature fusion, the spectral features are obtained from the

original spectral PCA, and the spatial features are obtained by combining the first few dimensions of
the principal components after the spatial feature PCA. The dimensions of both can be changed, i.e.,
in Equation (7) sa, se is changeable. We performed the experiments on three datasets and combined the
results of them to obtain the final spatial and spectral feature dimension. The results on the datasets
are shown in Figure 14.

11

(a) Indian Pines (b) Pavia University

(c) Kennedy Space Center

Fig. 11. Accuracy vary with feature dimension, the spatial feature dimension varies from 24 every 6 to 42, the spectral feature dimension varies from 9 every
3 to 18, the surfaces are smoothed.

TABLE VII
ACCURACIES OF DIFFERENT METHODS ON INDIAN PINES(%)

class Train Sample Test Sample Two CNN CNN PPF FEFCN DMSFE DSFV MDSFV

1 5 41 69.76±24.54 92.93±3.53 66.19±9.74 92.2±5.09 94.39±6.9 96.83±2.2
2 143 1285 54.34±6.18 92.46±1.12 91.67±1.89 96.68±1.47 75.26±11.73 98.71±0.58
3 83 747 71.47±2.7 86.09±3.61 90.46±3.73 97.86±1.16 89.83±6.72 98.25±1.2
4 24 213 70.14±6.33 93.52±2.65 98.51±1.16 93.9±5 96.9±1.99 97.93±1.93
5 48 435 78.32±2.96 93.84±1.32 90.52±3.96 96.71±1.84 94.9±2.74 96.21±2.54
6 73 657 86.58±7.37 98.66±0.99 97.56±1.7 99.38±0.56 99.53±0.49 99.91±0.14
7 3 25 54.4±14.44 89.2±6.94 86.04±7.92 84±10.58 83.2±21.89 87.6±8.85
8 48 430 99.88±0.12 99.67±0.26 99.9±0.23 99.81±0.23 100±0 99.81±0.31
9 2 18 51.11±13.79 85.29±4.74 90.37±10.3 52.22±23.2 70.56±25.46 54.44±17.88

10 97 875 80.05±5.92 91.99±2.24 75±2.43 95.5±1.18 87.74±8.85 98.05±0.96
11 246 2209 62.74±7.63 94.25±0.7 89.91±1.28 98.74±0.57 95.33±5.44 99.38±0.3
12 59 534 76.05±7.44 92.53±3.92 89.4±3.12 97.06±1.65 91.03±10.2 97.75±0.61
13 21 184 97.66±2.7 98.53±0.91 99.36±0.67 99.29±0.35 99.67±0.36 99.51±0.16
14 127 1138 78.88±5.29 96.81±0.82 99.68±0.24 99.97±0.08 99.1±2.34 100±0
15 39 347 30.17±12.7 79.14±8.01 95.59±1.65 98.9±1.11 99.25±0.66 99.08±1.13
16 9 84 67.62±10.99 97.38±2.37 97.34±3.25 95.48±4.45 88.45±3.69 98.33±2.62

overall accuracy(OA) 70.52±3.13 93.38±0.87 91.07±0.91 97.84±0.33 92.2±2.61 98.78±0.19
average accuracy(AA) 70.57±2.98 92.33±1 91.09±1.06 93.61±2.2 91.57±3.04 95.11±1.44

Kappa 0.6788±0.0324 0.9252±0.0098 0.898±0.0104 0.9755±0.0038 0.9122±0.0289 0.9861±0.0021

Figure 14. Accuracy varies with feature dimension; the spatial feature dimension varies from 24 every
6 to 42; the spectral feature dimension varies from 9 every 3 to 18; the surfaces are smoothed.

We change the spatial feature dimension from 24 every 6 dimensions to 42 and the spectral feature
dimension from 9 every 3 dimensions to 18. In Figure 14 we can find that in the Kennedy Space Center
dataset and Pavia University dataset, when the dimension of the spatial feature equals to 36 and in
the mean time the spectral feature’s dimension is 15, the accuracy reaches a local maximum, and the
accuracy in the test area is almost scarcely greater than the local maximum. However, in the Indian
Pines dataset, the maximum accuracy does not appear in the same place. Fortunately, the accuracy
in the same place is not far from the maximum (98.83% to 98.87%), thus, we can set the dimension
on all datasets as 36 for spatial feature and 15 for spectral feature. We can find that for the three
datasets for experiments, when the spatial and spectral feature dimensions are within a reasonable



Remote Sens. 2020, 12, 280 22 of 25

range, the classification accuracy does not change significantly. This proves that the parameters are
allowed in this range and our spatial and spectral feature dimensions are robust to some extent.

In this section, we discussed the accuracy varies with the training sample numbers. Meanwhile,
relevant parameters of feature dimension is selected in the designed experiment.

5. Conclusions

We propose a hyperspectral classification method based on multiscale spatial feature fusion.
We introduce a new three-channel image combination method to obtain virtual RGB images. In these
images, the hyperspectral corresponding bands are synthesized by simulating the RGB imaging
mechanism of natural images. The image is used to extract multiscale and multi-level spatial features
in a network trained on natural images, which can better fit the model parameters trained on natural
images and obtain more effective spatial features. By combining the multiscale spatial features,
the semantic information of the deep features can be utilized simultaneously to ensure the accuracy
of the feature classification and the edge detail information of the shallow features can ensure the
regularity and continuity of the edge classification of the feature. The proposed skip-layer feature
combination method can avoid the problem that the feature dimension increases which is caused by
the traditional concatenation method, the long time-consumption in classification and the separability
decreases. Experiments showed that our method performs well compared to the previous deep
learning methods and achieves a higher classification accuracy rate. In a future work, we will further
study the time performance and complexity of the algorithm. In addition, the virtual RGB image
we introduced provides a new solution for all algorithms involving the synthesis of three-channel
images. This solution can avoid PCA’s simple and crude reduction of data, which can better adapt to
the characteristics of the deep learning networks on natural images. It can bridge the gap between
hyperspectral data and natural images.
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