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Abstract: Sentinel-2 data is of great utility for a wide range of remote sensing applications
due to its free access and fine spatial-temporal coverage. However, restricted by the hardware,
only four bands of Sentinel-2 images are provided at 10 m resolution, while others are recorded
at reduced resolution (i.e., 20 m or 60 m). In this paper, we propose a parallel residual network for
Sentinel-2 sharpening termed SPRNet, to obtain the complete data at 10 m resolution. The proposed
network aims to learn the mapping between the low-resolution (LR) bands and ideal high-resolution
(HR) bands by three steps, including parallel spatial residual learning, spatial feature fusing and
spectral feature mapping. First, rather than using the single branch network, the parallel residual
learning structure is proposed to extract the spatial features from different resolution bands separately.
Second, the spatial feature fusing is aimed to fully fuse the extracted features from each branch and
produce the residual image with spatial information. Third, to keep spectral fidelity, the spectral
feature mapping is utilized to directly propagate the spectral characteristics of LR bands to target
HR bands. Without using extra training data, the proposed network is trained with the lower scale
data synthesized from the observed Sentinel-2 data and applied to the original ones. The data at
10 m spatial resolution can be finally obtained by feeding the original 10 m, 20 m and 60 m bands
to the trained SPRNet. Extensive experiments conducted on two datasets indicate that the proposed
SPRNet obtains good results in the spatial fidelity and the spectral preservation. Compared
with the competing approaches, the SPRNet increases the SRE by at least 1.538 dB on 20 m bands
and 3.188 dB on 60 m bands while reduces the SAM by at least 0.282 on 20 m bands and 0.162
on 60 m bands.

Keywords: image sharpening; residual learning; parallel structure; convolution neural network;
Sentinel-2

1. Introduction

Sentinel-2 is a wide swath and optical fine resolution satellite imaging mission released
by the European Space Agency (ESA) [1]. Owing to frequent revisit rate, global access and free
availability, Sentinel-2 products have been widely used to monitor dynamically changing geophysical
variables such as vegetation, soil, water cover and coasts [2–5]. However, due to the storage
and transmission bandwidth restrictions, thirteen spectral bands in Sentinel-2 image are acquired
with three different spatial resolutions including: four 10 m bands, six 20 m bands and three 60 m
bands. With the same spatial coverage, the low-resolution (LR) bands have the potential to be enhanced
by image sharpening, which is an economically effective technique that can merge the LR bands
with the high-resolution (HR) bands to produce a complete HR image (ideally without loss of spectral
information) [6]. With desirable spatial and spectral resolution, the sharpening image can yield better
interpretation capabilities in the remote sensing applications [7–9].
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Plenty of image sharpening methods have been proposed to enhance the spatial resolution
of various sensors, such as Moderate Resolution Imaging Spectroradiometer (MODIS) [10], Advanced
Spaceborne Theemal Emission and Reflection Radiometer (ASTER) [11], WorldView-2 [12] and more
recently for Visible Infrared Imaging Radiometer Suite (VIIRS) [13] and Sentinel-2. These methods
can be generally classified into three categories: classic pansharpening-based, model-based,
and learning-based methods. Pansharpening is a crucial image enhancement technique which
focuses on injecting spatial information extracted from the HR panchromatic (PAN) to LR image.
The methods fall into this type including intensity-hue-saturation transform (IHS) [14], Gram-Schmidt
(GS) transform, adaptive GS [15] and à trous wavelet transform (ATWT) [16], etc. Sentinel-2
sharpening can be taken as an extension of pansharpening, and various pansharpening methods
are directly applied to enhance 20 m bands by selecting or synthesising a band from 10 bands
as PAN [17–20]. And the Sentinel-2 pansharpening results have been used for water bodies’
mapping [21] and land-cover classification [22]. However, there are two differences between
pansharpening and Sentinel-2 sharpening: (i) four HR bands, rather than a PAN, can be used
to sharpen the bands at reduced resolution (i.e., 20 m and 60 m); (ii) the spectral range of HR bands
can not overlap the LR ones. Therefore, the applicability of pansharpening-based methods is limited
in Sentinel-2 sharpening.

The model-based methods concentrate on constructing the observation models
that can describe the explicit process of the image, such as blurring, down-sampling and noise [23].
As an ill-posed problem, these methods simulate the process with prior constraints and the modeling
can be conceptually seen as an optimization problem. The representative methods used for sharpening
include Bayesian model [24,25] and sparse representation [26]. To address the problem of Sentinel-2
sharpening, several methods are presented by taking this task as a convex optimization problem.
For instance, a method called SupReME is proposed [27] to solve a convex deconvolution problem
in a low dimensional subspace, which is regularized using the roughness penalty. To extend
the SupReME, a cyclic descent based optimization is put forward to find the low dimensional subspace
in [28] and a patch-based regularisation is adopted to model the self-similarity of the images in [29].
Reference [30] exploits the object geometric information across the multi-spectral bands and the local
consistency to sharpen the images. In [31], a reduce-rank method in a cyclic descent-based way is
proposed, which automatically tunes the free parameters by using Bayesian optimization. However,
the performance of these methods depends heavily on prior assumptions, which are hard to determine
in most cases.

The learning-based methods aim at learning a mapping to describe the relationship between
LR and HR images. In recent years, motivated by the rapid development of artificial intelligence
(AI), deep learning (DL) methods [32,33] have been extensively used to image sharpening. Among
the DL-based methods, the convolution neural network (CNN) has been found to be remarkably
effective. For example, the super-resolution CNN (SRCNN) [34] is proposed for single image
super-resolution (SR) and makes an important breakthrough. After that, the CNN is utilized to process
the pansharpening [35] and fuse the multispectral and hyperspectral images [36,37]. Moreover, various
variants of CNN are designed to solve the pansharpening problem, such as very deep CNN [38],
residual network (ResNet) [39] and multiscale network [40]. As for Sentinel-2 sharpening, three CNN
models [41] differing the inputs are designed to enhance the spatial resolution of the short wave
infra-red (SWIR) band. Subsequently, the residual learning and high-pass preprocessing are applied
to improve the results [42]. Using the training data with global coverage, a deep residual neural
network termed DSen2Net is trained in [23], while [43] focuses on the single image case sharpening
via a ResNet. Regardless of the superiority of the CNN-based sharpening methods, their performance
still can be improved: (i) Sentinel-2 images have two kinds of LR bands, but most of the existing
methods focus on sharpening 20 m bands and ignore the 60 m bands; (ii) the characteristics of LR bands
and auxiliary HR bands are obviously different. However, the above-mentioned CNN-based methods
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adopt a single branch to extract feature from these bands together, which may sacrifice some
efficient information.

To address the aforementioned problems, a parallel residual network for Sentinel-2 sharpening
termed SPRNet is proposed in this paper. The proposed method can be divided into three steps. First,
to exploit sufficient spatial information and learn the mapping between the LR and corresponding
HR bands, we propose a parallel structure based on residual learning, where several branches
with the same network compositions are utilized to extract feature from different resolution bands
independently. Second, we develop the spatial feature fusing unit to concatenate and fuse the spatial
features extracted from each branch and then these feature maps are restored to spatial residual
image, which has the same channels as the sharpened bands. Third, a skip-connection is constructed
to add the spectral information to the spatial residual image. Based on the above-mentioned steps,
we can obtain the Sentinel-2 image with all bands at 10 m resolution, using the 10 m, 20 m and 60 m
bands. Compared with the existing methods, the contributions of this paper can be summarized
as twofold:

1. We propose a Sentinel-2 sharpening method to raise the spatial resolution of both 20 m and 60 m
bands with the help of 10 m bands, which can produce the HR image with all bands
at 10 m resolution.

2. We develop a parallel network structure for extracting feature from different resolution bands
by separate branches. This idea enables to improve the spatial resolution of LR bands while
keeping spectral fidelity simultaneously.

The remainder of the paper is organized as follows. Section 2 introduces the proposed SPRNet
framework for Sentinel-2 sharpening in detail. In Section 3, the experimental validation and analysis
on the degraded and real Sentinel-2 data are presented. Discussions on the experiments are shown
in Section 4. Finally, we provide some concluding remarks in Section 5.

2. Proposed Method

2.1. Network Architecture

In this paper, we propose a parallel residual network to learn the sharpening for the Sentinel-2
images. Before we present our method, we introduce the bands of Sentinel-2 in brief. The bands
of Sentinel-2 images are divided into 3 sets by different resolutions, including 10 m, 20 m and 60 m sets.
Each set as well as its corresponding band index and spectral characteristics are displayed in Table 1.
It’s noteworthy that B10 is excluded from our spatial enhancement due to its poor radiometric
quality and across-track striping artifacts [23]. Given these sets, the goal of our sharpening method
is to estimate the HR version at 10 m resolution of 20 m and 60 m bands. Since the spatial ratio
between 20 m and 10 m is different from the ratio between 60 m and 10 m, we adopt two separate
networks (i.e., SPRNet2× for 20 m bands and SPRNet6× for 60 m bands, respectively) to implement
Sentinel-2 sharpening.

Table 1. The corresponding bands for Sentinel-2 datasets.

Resolution 10 m 20 m 60 m

Band index B2 B3 B4 B8 B5 B6 B7 B8a B11 B12 B1 B9 B10
Center Wavelength (nm) 490 560 665 842 705 740 783 865 1610 2190 443 945 1375

The structures of the SPRNet2× and SPRNet6× are shown in Figure 1 and each consists of three
parts: the parallel residual learning, the spatial feature fusing and the spectral feature mapping. First,
the spatial features of HR and LR bands are extracted from the separated branches, which are composed
of the initial spatial feature extraction (ISFE) and a series of residual blocks (ResBlocks). Second,
the spatial feature fusing is constructed by the feature concatenation and several fully connected
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(FC) layers to merge and propagate the spatial information. Third, the spectral features of LR are
directly stacked to the fused spatial features using a skip-connection layer in order to transmit
the spectral information. The target HR image can be finally predicted from the trained models
using LR and auxiliary HR bands.
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Figure 1. (a) SPRNet2×, (b) SPRNet6×. The proposed networks for Sentinel-2 sharpening. The two
networks differ the inputs and outputs. SPRNet2× enhances the 20 m bands fusing the 10 m and 20 m
bands. SPRNet6× enhances the 60 m bands fusing the 10 m, 20 m and 60 m bands.

2.2. Parallel Spatial Residual Learning

To learn the mapping for the independent spatial information extraction, we construct a parallel
structure, where the inputs with different spatial resolution can be fed into the different branches
separately. Since the 60 m bands can not contribute to the sharpening for 20 m bands, the SPRNet2×
consists of two branches while the SPRNet6× consists of three branches. In each branch, we adopt
the residual structure including ISFE unit and a series of ResBlocks to ensure that sufficient information
from the inputs can be excavated.

Within the SPRNet2× and SPRNet6×, we can obtain numerous spectral feature maps which
can contribute to the model performance. However, increasing the feature maps would lead
to the unstable training procedure and destroy the sharpening results in return. To address this problem,
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we propose the ISFE unit with the structure in Figure 2a, which places a constant scaling layer
after the convolution and activation function layers, to multiply the input features with a constant.
With the input x, they can be defined as:

x1 = µϕ (w ∗ x + b) (1)

where x1 denotes the output of ISFE, {w, b} means the weight matrix and basis of the convolution,
ϕ is rectified linear unit (ReLU) as ϕ (x) = max (x, 0), µ is the constant scaling with factor 0.05,
and ∗ denotes the convolution operation.

To explore deeper spatial feature and learn the spatial mapping between LR and HR bands,
the output of ISFE is fed to a series of ResBlocks with the structure in Figure 2b. Each Resblock
consists of the convolution, activation function, and residual scaling layers [44]. To propagate the input
information and alleviate the gradient vanishment problem, a skip-connection is added. So, the mth
ResBlock can be computed as: 

ym1 = ϕ (wm1 ∗ xm + bm1)

ym2 = λ (wm2 ∗ ym1 + bm2)

xm+1 = xm + ym2

(2)

where ym1 and ym2 denote the intermediate results, {wm, bm} is the weight matrix and basis
of the convolution in Resblock, xm+1 denotes the output of the ResBlock, and λ is a residual scaling
with factor 0.1.
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(a) ISFE (b) ResBlock

Figure 2. Expanded view of the ISFE and ResBlock. (a) ISFE; (b) ResBlock.

2.3. Spatial Feature Fusing

In order to combine the information of different resolution bands, we propose the spatial feature
fusing component. After the parallel residual learning component, the extracted feature maps learning
from separate branches are concatenated so they can be simultaneously fed into the next layer.
To fully fuse the information of these maps, two FC layers are adopted here and each of them
is followed by a ReLU activation. Subsequently, a convolution layer is aimed to transform
the feature maps into the spatial residual image with the channels as same as the sharpened bands.
With the concatenated maps z, these layers can be formulated as follows:

z f1 = ϕ
(

w f1 ∗ z + b f1

)
z f2 = ϕ

(
w f2 ∗ z f1 + b f2

)
z2 = w f3 ∗ z f2 + b f3

(3)

where z f denotes the output of the FC layer, {w f , b f }means the weight matrix and basis of the FC
and convolution layers of this component, and z2 is the output. What’s more, after each convolutional
operation, we adopt the zero padding to get the same size with the inputs.
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2.4. Spectral Feature Mapping

The parallel spatial residual learning component and spatial feature fusing component mainly
contribute toward learning the spatial mapping between the LR bands and targeted HR bands.
Considering the target HR and input LR share the same spectral content, we construct the spectral
feature mapping by adopting a skip-connection into the network to keep spectral consistency.
This operation adds the up-scaled LR bands to the spatial residual image obtained from last step
to propagate the spectral information directly. As such, the approximated HR can be produced
by combining the spatial features and spectral characteristics.

2.5. Training and Applying

Following the above steps, the designed network can learn an end-to-end mapping between
the LR and corresponding HR bands. However, due to the lack of HR reference, the mapping can not
be learned from the data at original scale directly. It’s a generic solution that training and testing
the sharpening methods follow Wald’s protocol [45] that takes the degraded data as inputs and
the original data as the corresponding reference. This operation requires the base assumption
that the mapping relationship between the LR and HR is scale-invariant (i.e., 40 m→20 m for
inferring 20 m→10 m and 360 m→60 m for inferring 60 m→10 m). In this way, the image sharpening
can be implemented using the degraded trained model. For convenience, the 10 m, 20 m and 60 m
bands of Sentinel-2 data are denoted as X10, X20 and X60, respectively. And their degraded version
which is convoluted with the predetermined point spread function (PSF) [23,27] and downsampled
by utilizing bilinear interpolation, can be denoted as XD

10, XD
20 and XD

60, respectively. As mentioned
before, it’s sufficient to train two networks SPRNet2× and SPRNet6×. With the synthetic data pairs,
these models can be trained as follows.

For SPRNet2×, XD
10, XD

20 are created by downsampling the X10 and X20 by a factor 2, and used
to train the 40 m→20 m network. Since the size of XD

10 and XD
20 is different, we can up-sample

the XD
20 to the spatial size of XD

10. Then, we concatenate the XD
10 and up-sclaed XD

20 as the input
of SPRNet×2. The mapping F2×(·) can be learned by minimizing the loss between the HR reference X20

and the sharpening result F2×([XD
10, XD

20], Θ1), where Θ1 is the model parameters, and the loss function
can be formulated as follows:

£ (Θ1) =
∣∣∣F2×([XD

10, XD
20], Θ1)− X20

∣∣∣ (4)

where |·| denotes the L1-norm, which computes the mean absolute error between the generated and
the reference data.

Compared with SPRNet2×, the input and output of SPRNet6× are different. We downsample all
bands by a factor 6. Then, we adopt the XD

10, XD
20 and XD

60 as input and the original X60 as HR reference
to train the 360 m→60 m network. Like SPRNet2×, this model is estimated by minimized the following
loss function:

£ (Θ2) =
∣∣∣F6×([XD

10, XD
20, XD

60], Θ2)− X60

∣∣∣ (5)

where Θ2 is the parameters of SPRNet6×, and F6×(·) denotes the mapping between XD
60 and X60.

On the basis of the above steps, the proposed method can learn the mapping between LR and HR
bands. When we implement the image sharpening in the applying stage, we input the original bands
X10, X20 and X60 to the trained SPRNet2× and SPRNet6× models to produce the estimated HR bands
Y20 and Y60:

Y20 = F2×([X10, X20], Θ1)

Y60 = F6×([X10, X20, X60], Θ2)
(6)

The predicted Y20 and Y60 are the corresponding sharpening results at 10 m resolution of the 20 m
and 60 m bands, respectively. Thus, the image with all bands at 10 resolution is obtained.
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3. Experiments

3.1. Data

Our experimental data come from the Sentinel-2 Level-1C products, which have been converted
from radiance into geo-coded top of atmosphere (TOA) reflectance with a sub-pixel multi-spectral
registration [46]. The training data used in this paper cover a scene of Guangdong Province
in China with a spatial extent of 72 km by 72 km and was collected on 31 December 2017. Figure 3
depicts the 10 m, 20 m and 60 m bands of this data. We adopt two datasets for testing. The first one
covers a scene of Guangdong Province in China (site 1) and was obtained on 21 March 2018. The second
one covers a scene of New South Wales in Australia (site 2) and was acquired on 4 December 2018.
For each scene, we select an area with a spatial extent of 36 km by 36 km. The bands of the site 1
dataset are displayed in Figure 4a–c and those of the site 2 dataset are displayed in Figure 4d–f.

(a) (b) (c)

Figure 3. The training dataset used in the experiments. (a) The 10 m bands (7200× 7200 pixels, B4,
B3, B2 as RGB). (b) The 20 m bands (3600× 3600 pixels, B12, B8a, B5 as RGB). (c) The 60 m bands
(1200× 1200 pixels, B9, B9, B1 as RGB).

(a) (b) (c)

(d) (e) (f)

Figure 4. Two testing datasets used in the experiments. (a) and (d) are 10 m bands (3600× 3600 pixels,
B4, B3, B2 as RGB) for site 1 and site 2, respectively. (b) and (e) are 20 m bands (1800× 1800 pixels, B12,
B8a, B5 as RGB) for site 1 and site 2, respectively. (c) and (f) are 60 m bands (600× 600 pixels, B9, B9, B1
as RGB) for site 1 and site 2, respectively.
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3.2. Experimental Details

In our experiments, some important parameters of the proposed method are configured as
follows. To train the SPRNet2×, the training data are degraded by a factor 2 and sliced to the patch
of 60 × 60 pixels. Similarly, to train the SPRNet6×, the training data are degraded by a factor 6 and
sliced to the patch of 20× 20 pixels. For each network, 3600 sample pairs can be used for training
and 10% of them are used for validation. The number of ResBlocks M is set as 6 in each branch and
we use 128 filters of the size 3× 3 for convolution layers expect the last convolution in our evaluations.
The choice of the parameter is inspired by [23]. Since the last convolution is aimed at reducing
the feature dimension to the number of the sharpened bands, the number of filters is set as 6 and 2
in SPRNet2 × and SPRNet6×, respectively. These networks are implemented in the Keras framework
with NVIDIA Tesla K80 GPU. We use the Nadam [47,48] with β1 = 0.9, β1 = 0.999 and ε = 10−8

as optimizer to train the networks. The learning rate is initialized as 10−4, which can be reduced
by a factor of 2 whenever the validation loss does not decrease for 5 epochs, and the reducing procedure
is terminated whenever the learning rate is less than 10−5. The mini-batch size and the epoch number
of training are set as 128 an 200, respectively.

3.3. Baselines and Quantitative Evaluation Metrics

To assess the effectiveness of our proposed method, we take SupReME [27], ResNet [43] and
DSen2Net [23] as benchmark methods. Besides, the bicubic interpolation (Bicubic) is used to illustrate
the performance of the naive upsampling without considering spectral correlations. The parameters
of SupReME and DSen2Net are set as suggested in the original publications, while the number
of ResBlocks in ResNet is set as 6.

We adopt six evaluation metrics for quantitative evaluation including: root mean squared error
(RMSE), signal-to-reconstruction error (SRE), correlation coefficient (CC), universal image quality
index (UIQI), erreur relative globale adimensionnelle de synthèse (ERGAS) and spectral angle mapper
(SAM) [45,49]. The RMSE and SRE evaluate the quantitative similarity between the target images and
the reference images based on mean square error (MSE). The CC indicates the correlation and the UIQI
is a mathematically defined universal image quality index, which can be applied to various image
processing applications. The ERGAS reflects fidelity of the target images based on the weighted sum
of MSE in each band, and the SAM describes the spectral fidelity of the sharpening results. In these
evaluation metrics, when the sharpening results are closer to the reference one, the values of RMSE,
ERGAS, and SAM are smaller, on the contrary, the values of SRE, CC, and UIQI are larger.

3.4. Experimental Results

3.4.1. Evaluation at Lower Scale

Since the 10 m version of LR bands are not available in the testing datasets, we follow the Wald’s
protocol and give the quantitative evaluation at lower scale, i.e., the SPRNet2× is evaluated on the task
to sharpen 40 m to 20 m; in the same way, the SPRNet6× is evaluated on the task to sharpen 360 m
to 60 m. The lower scale data are generated by synthetically degrading the original data by the upscale
ratio (i.e., 2 for SPRNet2× and 6 for SPRNet6×). In the following, we separately discuss the effectiveness
of the SPRNet2× and SPRNet6×.

SPRNet2×—20 m bands. As for 20 m bands sharpening, the network SPRNet2× is trained
by the simulated data degraded from the observed data by a factor 2 to learn the mapping between
40 m and 20 m. Several state-of-the-art methods are compared with the proposed method. Tables 2
and 3 list the quantitative assessment results of these methods for two testing datasets. Among them,
we calculate RMSE, SRE, CC, UIQI on each band, and then compute the mean values over the bands.
The ideal value of each index is provided for the convenience of inter-comparison. The best results are
highlighted in bold.
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Table 2. Quantitative assessment of the SPRNet2× at lower scale (input 40 m, output 20 m) on site 1.
Bold indicates the best performance.

Ideal Band Bicubic SupReME ResNet DSen2Net SPRNet

RMSE 0

B5 172.571 121.093 59.363 50.719 44.007
B6 227.449 156.636 81.834 66.152 56.708
B7 262.031 160.877 83.242 70.331 60.983

B8a 289.247 175.351 89.080 72.175 62.439
B11 238.489 182.597 95.896 76.858 60.541
B12 236.283 189.993 108.664 98.661 74.780

Mean 237.678 164.424 86.347 72.483 59.910

SRE (dB) ∞

B5 18.443 21.454 27.716 29.051 30.213
B6 18.899 22.034 27.632 29.501 30.776
B7 18.634 22.852 28.425 29.980 31.199

B8a 18.187 22.550 28.343 30.177 31.451
B11 17.899 19.943 25.623 27.541 29.475
B12 15.483 17.152 22.118 22.847 25.212

Mean 17.924 20.998 26.643 28.183 29.721

CC 1

B5 0.916 0.959 0.990 0.993 0.995
B6 0.888 0.947 0.986 0.991 0.993
B7 0.889 0.959 0.989 0.992 0.994

B8a 0.894 0.962 0.990 0.994 0.995
B11 0.930 0.958 0.989 0.993 0.996
B12 0.933 0.956 0.986 0.989 0.993

Mean 0.908 0.957 0.988 0.992 0.994

UIQI 1

B5 0.695 0.874 0.961 0.971 0.978
B6 0.669 0.881 0.961 0.974 0.980
B7 0.673 0.900 0.970 0.978 0.983

B8a 0.678 0.903 0.971 0.981 0.985
B11 0.724 0.870 0.956 0.970 0.980
B12 0.720 0.855 0.952 0.960 0.974

Mean 0.693 0.881 0.962 0.972 0.980

ERGAS 0 2.262 1.636 0.879 0.756 0.606

SAM 0 2.845 2.347 2.006 1.666 1.384

According to the reported results, a few observations are noteworthy. (1) All the methods are
significantly better than the Bicubic method, especially the CNN-based methods, which outperform
the Bicubic by a large margin. For instance, our SPRNet reduces the RMSE by a factor of above
2 and reaches more than 10 dB higher SRE. This illustrates the effectiveness of the sharpening
procedure. (2) The proposed SPRNet method obtains the best evaluation results in all indexes. For site
1, the mean RMSE of the SPRNet is 59.910, with a decrease of 104.514, 26.437 and 12.573 when compared
to SupReME, ResNet and DSen2Net. Accordingly, the mean SRE value of the SPRNet is 29.721 dB,
which is 8.723 dB, 3.078 dB and 1.538 dB higher than that of the aforesaid methods, respectively.
Also, the mean CC and UIQI of the SPRNet are 0.994 and 0.980 with gains of 0.002 and 0.008 over
that of the best comparison method DSen2Net. For site 2, the mean RMSE of the SPRNet is 55.155, 35.27
and 21.991 smaller than that of SupReME, ResNet and DSen2Net, respectively. And the mean SRE is
8.123 dB, 6.072 dB and 4.098 dB higher than that of the corresponding methods, respectively. Compared
with the DSen2Net, the mean CC and UIQI of the SPRNet increase by 0.004 and 0.03. The above
results demonstrate the great spatial similarity of the proposed SPRNet. Moreover, we also observe
the proposed method obtains the best ERGAS and SAM. The ERGAS of the SPRNet for two sites are
0.273 and 0.237 lower than that of the ResNet, while 0.15 and 0.149 lower than that of the DSen2Net.
The SAM of the SPRNet for site 1 is 1.384 while that of the compared methods are larger than 1.6
and the SAM of the SPRNet for site 2 is 0.586 while that of the competitors are higher than 0.9.
These analyses indicate the effectiveness of our SPRNet in both spatial and spectral domains.
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Table 3. Quantitative assessment of the SPRNet2× at lower scale (input 40 m, output 20 m) on site 2.
Bold indicates the best performance.

Ideal Band Bicubic SupReME ResNet DSen2Net SPRNet

RMSE 0

B5 93.332 58.979 44.042 35.161 25.443
B6 100.533 65.210 53.416 43.207 26.161
B7 114.797 70.440 62.458 49.627 28.337

B8a 128.315 77.231 72.154 48.098 30.561
B11 176.907 135.533 102.824 90.342 53.017
B12 165.544 138.220 91.405 80.193 51.161

Mean 129.905 90.935 71.050 57.771 35.780

SRE (dB) ∞

B5 25.366 29.386 31.694 33.761 36.636
B6 26.286 29.999 31.630 33.584 37.922
B7 26.190 30.376 31.403 33.417 38.295

B8a 26.151 30.564 31.116 34.635 38.612
B11 25.477 27.309 30.034 31.145 35.849
B12 23.752 24.680 28.745 29.918 33.740

Mean 25.537 28.719 30.770 32.744 36.842

CC 1

B5 0.964 0.986 0.992 0.995 0.997
B6 0.964 0.985 0.990 0.994 0.998
B7 0.968 0.988 0.991 0.994 0.998

B8a 0.968 0.989 0.991 0.996 0.998
B11 0.974 0.984 0.992 0.993 0.998
B12 0.976 0.983 0.993 0.994 0.998

Mean 0.969 0.986 0.991 0.994 0.998

UIQI 1

B5 0.750 0.915 0.936 0.956 0.975
B6 0.748 0.911 0.924 0.947 0.975
B7 0.752 0.920 0.922 0.947 0.977

B8a 0.752 0.919 0.924 0.955 0.977
B11 0.763 0.880 0.900 0.921 0.966
B12 0.768 0.866 0.901 0.924 0.960

Mean 0.755 0.902 0.918 0.942 0.972

ERGAS 0 0.893 0.637 0.486 0.398 0.249

SAM 0 1.173 1.071 1.239 0.945 0.586

Furthermore, we depict visual comparisons with different methods on two testing datasets in Figures 5
and 6. The figures provide the RGB (B12, B8a and B5 as RGB) and each bands results. In order to observe
the difference between sharpening results and ground truth clearly, the absolute differences between them
are presented. In these figures, if the sharpening results are either blur edges or exaggerate the contrast,
the residual errors are high, on the contrary, when the results are similar to the ground truth, the residual
errors trend to zero. It can be seen that the results of SPRNet are closer to the reference while the compared
methods exhibit errors along high contrast edges at almost bands. In Figure 5, the images of the Bicubic
and SupReME are more bright, meaning these methods get deteriorate results for the spatial reconstruction.
In contrast, the CNN-based methods have more smooth regions with dark color and the edges of structures
are less, and the best results can be found in the SPRNet. As for Figure 6, the boundaries of the land
plots are still obvious in the Bicubic and SupReME. Among the CNN-based methods, SPRNet performs
satisfactorily, especially for B5, B6, B7 and B8a.

SPRNet6×—60 m bands. To sharpen the 60 m bands, we train another network SPRNet6×
using downgraded data with resolution 60 m, 120 m and 360 m to learn the mapping from 360 m
to 60 m. The quantitative results of site 1 and site 2 are shown in Tables 4 and 5, respectively.
Once again, the advantage of the proposed SPRNet over the competing methods is obvious. For site
1, the mean RMSE of SPRNet is 114.866, 28.029, 19.502 and 10.885 smaller than that of Bicubic,
SupReME, ResNet and DSen2Net, respectively. And the mean SRE of SPRNet is 15.312 dB, 6.794 dB,
4.931 dB and 3.188 dB higher than the corresponding methods. Compared with the DSen2Net,
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the mean CC and UIQI of the SPRNet increase by 0.005 and 0.025, while the ERGAS and SAM decrease
by 0.134 and 0.162. For site 2, when compared to Bicubic, SupReME, ResNet and DSen2Net, the mean
RMSE of SPRNet is 13.835, with a decrease of 54.84, 17.464, 15.172 and 7.458 while the mean SRE
of SPRNet increases by 13.817 dB, 7.314 dB, 6.059 dB, 3.754 dB. The mean CC and UIQI of the SPRNet
are 0.994 and 0.972, with gains of 0.008 and 0.031 over that of the DSen2Net. In addition, the ERGAS
and SAM of the SPRNet are 0.114 and 0.162 smaller than that of the DSen2Net. These results reveal
the effectiveness of the SPRNet in sharpening 60m bands, which further show feasibility and suitability
of the proposed method.

Figure 5. Absolute differences between ground truth and sharpening results on site 1 at lower scale
(input 40 m output 20 m).

We also perform a qualitative comparison to ground truth. The RGB (B9, B9 and B1 as RGB)
results and absolute residuals of two sites are plotted in Figures 7 and 8. The visual impression of 60 m
bands confirms that the SPRNet clearly dominates the competition with much less structured residuals.
We can observe that the competing methods have more residuals for both sites, in contrast, the results
of our method have more smooth regions and the color is prone to dark. This indicates our method
obtains the best overall performance.
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Figure 6. Absolute differences between ground truth and sharpening results on site 2 at lower scale
(input 40 m output 20 m).

The performance of different bands. To verify the generic ability of the sharpening methods
on different spectral wavelengths, the performance curves of different bands for different indices are
shown in Figure 9. Almost all methods show the similar trend and the performance of the CNN-based
methods are substantially better. Among the 20 m bands (i.e., B5, B6, B7, B8a, B11 and B12), we find
that all the methods exhibit a marked drop in accuracy of B11 and B12. The numeric comparisons
can be found in Tables 2 and 3. For instance, compared to the average level, the SRE values of SPRNet
drop 0.246 dB (site 1) and 0.993 dB (site 2) on B11, while drop 4.509 dB (site 1) and 3.102 dB (site
2) on B12. The reason is that these two bands lie in the SWIR spectrum (>1600 nm), which beyond
the spectral range (400∼900 nm) of 10 m resolution bands, and thus the details of B11 and B12 can not
be infer exactly by borrowing the 10 m information. As for the 60 m bands (i.e., B1 and B9), the accuracy
of the Bicubic is obviously lower than other methods. This is due to the fact that the Bicubic can not
use any information from the auxiliary HR bands, which aggravates the difficulties of recovering
the details. Furthermore, the performance of B9 is slightly worse than that of B1. Since the center
wavelength of B1 is 443 nm which is covered by 400∼900 nm, but B9 (center wavelength at 945 nm) is
out of this range, the useful information borrowed from 10 m bands is limited. These observations
indicate that the bands closer to the auxiliary HR bands can have more precise sharpening results.
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Table 4. Quantitative assessment of the SPRNet6× at lower scale (input 360 m, output 60 m) on site 1.
Bold indicates the best performance.

Ideal Band Bicubic SupReME ResNet DSen2Net SPRNet

RMSE 0
B1 139.703 53.456 51.702 38.833 23.473
B9 137.938 50.511 35.213 30.847 24.437

Mean 138.821 51.984 43.457 34.840 23.955

SRE (dB) ∞
B1 20.855 29.319 29.674 32.086 36.446
B9 15.728 24.300 27.672 28.746 30.762

Mean 18.292 26.810 28.673 30.416 33.604

CC 1
B1 0.802 0.973 0.975 0.988 0.995
B9 0.681 0.962 0.982 0.988 0.991

Mean 0.742 0.968 0.979 0.988 0.993

UIQI 1
B1 0.234 0.870 0.866 0.940 0.978
B9 0.175 0.929 0.964 0.971 0.981

Mean 0.205 0.900 0.915 0.955 0.980

ERGAS 0 2.167 0.807 0.622 0.515 0.381

SAM 0 3.039 1.228 0.937 0.704 0.542

Table 5. Quantitative assessment of the SPRNet6× at lower scale (input 360 m, output 60 m) on site 2.
Bold indicates the best performance.

Ideal Band Bicubic SupReME ResNet DSen2Net SPRNet

RMSE 0
B1 64.444 34.835 35.902 24.026 14.919
B9 72.906 27.764 22.113 18.561 12.750

Mean 68.675 31.299 29.007 21.293 13.835

SRE (dB) ∞
B1 26.281 30.884 31.758 34.707 38.938
B9 20.569 28.971 30.608 32.268 35.546

Mean 23.425 29.928 31.183 33.488 37.242

CC 1
B1 0.850 0.960 0.956 0.981 0.992
B9 0.853 0.980 0.987 0.991 0.996

Mean 0.852 0.970 0.971 0.986 0.994

UIQI 1
B1 0.348 0.895 0.852 0.919 0.965
B9 0.344 0.936 0.948 0.963 0.980

Mean 0.346 0.916 0.900 0.941 0.972

ERGAS 0 1.203 0.503 0.442 0.341 0.227

SAM 0 1.521 0.728 0.659 0.504 0.342
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Figure 7. Absolute differences between ground truth and sharpening results on site 1 at lower scale
(input 360 m output 60 m).
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Figure 9. Pre-band error metrics for site 1 and site 2: (a–d) are RMSE, SRE, CC and UIQI of site 1.
(e–h) are RMSE, SRE, CC and UIQI of site 2.

3.4.2. Evaluation at the Original Scale

To verify the generalization of our method to true scale Sentinel-2 data, we directly feed
the original LR and 10 m bands into the trained networks (i.e., band sets [20 m, 10 m] fed into SPRNet2×
and band sets [60 m, 20 m, 60 m] fed into SPRNet6×) to produce 10 m resolution version of the LR
bands.As there is no ground truth being present, the higher resolution spectral bands are considered
as the reference data to assess the sharpening method. In our experiments, four spectral bands
with 10 m resolution are served as the reference data for visual evaluation. The up-scaled results
of a sub-area obtained by the Bicubic and SPRNet are shown in Figures 10 and 11.
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Figure 9. Pre-band error metrics for site 1 and site 2: (a–d) are RMSE, SRE, CC and UIQI of site 1.
(e–h) are RMSE, SRE, CC and UIQI of site 2.

3.4.2. Evaluation at the Original Scale

To verify the generalization of our method to true scale Sentinel-2 data, we directly feed
the original LR and 10 m bands into the trained networks (i.e., band sets [20 m, 10 m] fed into SPRNet2×
and band sets [60 m, 20 m, 60 m] fed into SPRNet6×) to produce 10 m resolution version of the LR
bands.As there is no ground truth being present, the higher resolution spectral bands are considered
as the reference data to assess the sharpening method. In our experiments, four spectral bands
with 10 m resolution are served as the reference data for visual evaluation. The up-scaled results
of a sub-area obtained by the Bicubic and SPRNet are shown in Figures 10 and 11.
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Figure 10. Visual results on real Sentinel-2 data on site 1. 10 m: true RGB (B2, B3, B4) and false RGB
(B8, B4, B3). 20 m (B12, B8a and B5 as RGB): original image, up-scaled result to 10 m with bicubic,
and sharpening result to 10 m with SPRNet. 60m (B9, B9 and B1 as RGB): original image, up-scaled
result to 10m with Bicubic, and sharpening result to 10 m with SPRNet.

From these figures, we can clearly observe that the sharpening results of the SPRNet receive a good
visual quality. Although the bicubic interpolation has properties of smoothing the original images,
it is unable to recover the spatial details, while the sharpening results of the SPRNet are sharper and
bring out additional details in all cases. Moreover, we can find that the sharpening results of LR bands
improve the spatial resolution without noticeable artifacts. To be specific, as can be observed from
the marked region (red rectangle), the SPRNet produces much sharper edges and the details of ground
object are more abundant. In Figure 10, compared with the 10 m bands, the original 20 m bands can not
show the outlines of the building clearly and the original 60 m bands are difficult to depict the subject.
Nevertheless, our method commendably enhances the spatial resolution of 20 m and 60 m bands
and recovers the details of the building in these bands. In Figure 11, the contours are clear and vivid
in the sharpening results of the SPRNet whereas they are blurred or distorted in the original LR data.
What’s more, the sharpening results of LR bands match the 10 m resolution bands. These observations
further imply our SPRNet can effectively sharpen the Sentinel-2 images and obtain a complete data at
10 m resolution.
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Figure 11. Visual results on real Sentinel-2 data on site 2. 10 m: true RGB (B2, B3, B4) and false RGB
(B8, B4, B3). 20 m (B12, B8a and B5 as RGB): original image, up-scaled result to 10 m with bicubic,
and sharpening result to 10 m with SPRNet. 60 m (B9, B9 and B1 as RGB): original image, up-scaled
result to 10 m with Bicubic, and sharpening result to 10 m with SPRNet.

4. Discussions

4.1. Effect of Combining Various-Resolution Bands

To investigate the impacts of fusing various-resolution bands, we test different combinations
of 10 m, 20 m, and 60 m band sets as the input to the SPRNet2× and SPRNet6×. The experiment results
of two testing data are displayed in Table 6. As for the SPRNet2×, we take the model trained by the 20 m
set as the baseline (SPRNet2×-1). We then add the 10 m set to the SPRNet2×-1, resulting in SPRNet2×-2.
From the SPRNet2×-1 to SPRNet2×-2, the SRE values increase by 7.782 dB for site 1 and 7.947 dB
for site 2, which demonstrates the effectiveness of utilizing the information from the 10 m bands
to enhance the 20 m bands. We further add the 60 m set to the SPRNet2×-2, resulting in SPRNet2×-3.
Compared with the SPRNet2×-2, the SRE values of the SPRNet2×-3 decrease by 0.911 dB and 0.768 dB
for site 1 and site 2, respectively. This is because that the lower resolution bands can not contribute
to higher resolution bands sharpening. As for the SPRNet6×, the baseline (SPRNet6×-1) is only trained
by the 60 m set. Due to the large amplification factor, the SPRNet6×-1 can not learn the LR and HR
mapping accurately. The SPRNet6×-2 is obtained by adding the 10 m set to the SPRNet6×-1. The SRE
values of the SPRNet6×-2 are 13.844 dB and 10.935 dB higher than that of the SPRNet6×-1 for site 1 and
stie 2, respectively. Moreover, the SPRNet6×-3 combining the 10 m, 20 m and 60 m sets outperform
other models, which implies that both 10 m and 20 m bands provide useful information to reproduce
the details of 60 m bands. Based on the above analysis, we draw the conclusion that auxiliary
bands with finer resolution can efficiently improve the sharpening results. Therefore, it is reasonable
to sharpen Sentinel-2 image using two separate networks with different inputs.
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Table 6. The comparison results of the SPRNet with different combination of 10 m, 20 m and 60 m band sets.

SPRNet2× SPRNet6×

Model SPRNet2×-1 SPRNet2×-2 SPRNet2×-3 SPRNet6×-1 SPRNet6×-2 SPRNet6×-3

10 m 7 X X 7 X X
20 m X X X 7 7 X
60 m 7 7 X X X X

RMSE 144.934 / 85.833 59.910 / 35.780 67.260 / 40.917 131.115 / 62.107 27.021 / 17.578 23.955 / 13.835
SRE 21.939 / 28.895 29.721 / 36.842 28.810 / 36.074 18.772 / 24.220 32.616 / 35.155 33.604 / 37.242
CC 0.965 / 0.986 0.994 / 0.998 0.993 / 0.997 0.772 / 0.875 0.991 / 0.990 0.993 / 0.994

UIQI 0.889 / 0.878 0.980 / 0.972 0.976 / 0.964 0.299 / 0.444 0.973 / 0.958 0.980 / 0.972
ERGAS 1.356 / 0.594 0.606 / 0.249 0.698 / 0.291 2.038 / 1.082 0.425 / 0.289 0.381 / 0.227

SAM 2.022 / 0.987 1.384 / 0.586 1.539 / 0.685 2.812 / 1.342 0.609 / 0.419 0.542 / 0.342

The values before “/” are the results of site 1, while the values after “/” are the results of site 2.

4.2. Effect of Constant Scaling In ISFE

To investigate the effects of the constant scaling in ISFE unit, we display the training curves
of our proposed method with and without constant scaling, and the speed of the training procedure is
displayed in Figure 12, from which two observations can be drawn. First, we find that the networks
with constant scaling converge faster. As for the SPRNet2×, the network with constant scaling
converges rapidly to the fine performance during 80 epochs, while the network without constant
scaling takes about 100 epochs to reach the maximum performance. As for the SPRNet6×, the learning
loss of the network with constant scaling tends to stable before 60 epochs, but the margin fluctuation
of another curve becomes smaller until 70 epochs. Second, the final accuracy is higher for the networks
with constant scaling. Compared with the networks without constant scaling, the SRE values
of the networks with constant scaling are increase by more than 5 dB at the first epoch. Even if
the training epochs reach to 200, the SRE values of the networks without constant scaling are still
lower than that of the proposed networks. Therefore, the addition of constant scaling is a simple but
powerful strategy in our SPRNet.
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Figure 12. Training curves for SPRNet with and without constant scaling in ISFE. (a) The loss of
SPRNet2×; (b) The SRE of SPRNet 2×; (c) The loss of SPRNet6×; (d) The SRE of SPRNet 6×.
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5. Conclusions

In this paper, we propose a parallel residual network (i.e., SPRNet) for Sentinel-2 image sharpening
to obtain complete data at the highest sensor resolution. The proposed method is designed to sharpen
both 20 m and 60 m bands. Compared with existing deep learning-based methods, the main advantage
of our SPRNet is that the sufficient spatial information of different resolution bands are extracted
by separate branches in a parallel structure. In addition, the spatial information fusing and spectral
characteristics propagating can be presented by the designed spatial feature fusing component and
spectral feature mapping component. As such, the proposed method obtains the good sharpening
results in the spatial fidelity and the spectral preservation. By learning the LR and corresponding HR
mapping at lower scale, the trained SPRNet can produce the image at 10 m resolution with the original
Sentinel-2 data. Extensive experiments on the degraded and original data prove the proposed method
is competitive with the state-of-the-art approaches. In quantitative evaluations on the degraded
data, for 20 m bands, the SRE of the SPRNet is 1.538 dB (site 1) and 4.098 dB (site 2) higher than
the best competing approach; for 60 m bands, the SPRNet increases the SRE by 3.188 dB (site 1) and
3.754 dB (site 2) compared to the best competing approach. The proposed method also shows visually
convincing results on original data. In the future, we will discuss the effects of the network parameters
and try to adaptively decide the parameters. How to apply the sharpening results to other application
areas (e.g., target detection and classification) is also a future research topic.
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