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Abstract: Accurate monitoring of plant phenology is vital to effective understanding and prediction
of the response of vegetation ecosystems to climate change. Satellite remote sensing is extensively
employed to monitor vegetation phenology. However, fall phenology, such as peak foliage coloration,
is less well understood compared with spring phenological events, and is mainly determined using
the vegetation index (VI) time-series. Each VI only emphasizes a single vegetation property. Thus,
selecting suitable VIs and taking advantage of multiple spectral signatures to detect phenological
events is challenging. In this study, a novel grouping-based time-series approach for satellite remote
sensing was proposed, and a wide range of spectral wavelengths was considered to monitor the
complex fall foliage coloration process with simultaneous changes in multiple vegetation properties.
The spatial and temporal scale effects of satellite data were reduced to form a reliable remote
sensing time-series, which was then divided into groups, namely pre-transition, transition and
post-transition groups, to represent vegetation dynamics. The transition period of leaf coloration
was correspondingly determined to divisions with the smallest intra-group and largest inter-group
distances. Preliminary results using a time-series of Moderate Resolution Imaging Spectroradiometer
(MODIS) data from 2002 to 2013 at the Harvard Forest (spatial scale: ~3500 m; temporal scale: ~8 days)
demonstrated that the method can accurately determine the coloration period (correlation coefficient:
0.88; mean absolute difference: 3.38 days), and that the peak coloration periods displayed a shifting
trend to earlier dates. The grouping-based approach shows considerable potential in phenological
monitoring using satellite time-series.

Keywords: phenology monitoring; fall foliage coloration; grouping-based time-series analysis; spatial
and temporal scale; optical remote sensing

1. Introduction

Vegetation phenological events, which play a crucial role in determining spatial and temporal
patterns of net primary production, are highly sensitive to climate change [1]. The seasonal and
long-time-scale dynamics in vegetation foliage parameterizes models used to understand the dynamic
processes of earth ecosystems [2] and reflect the interactions between the terrestrial biosphere and
the climate system [3]. Although a large number of growing season phenological events have been
extensively explored [4], fall phenology remains poorly understood [5]; such knowledge is important
to gain insights into the climate system and ecosystem management, because it can help in choosing
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suitable species to be planted according to the climate conditions [6]. Peak foliage coloration, which is
one of the fall phenological events, is sensitive to environmental conditions, such as temperatures,
water, and protein [7]. Therefore, accurate monitoring of peak foliage coloration is important to
understand the underlying mechanisms and establish explicit phenological models with regard to
climate change phenomena.

Satellite remote sensing provides unprecedented opportunities to monitor vegetation dynamics,
including peak foliage coloration at large scales, because of the various spatial and temporal coverages
of satellite observations [8]. Over the past decade, various methods based on satellite remote sensing
data have been widely used to monitor vegetation phenology [9]. Satellite time-series of vegetation
indices (VIs), such as the normalized difference vegetation index (NDVI), leaf area index (LAI), and
enhanced vegetation index (EVI), which provide indicators of vegetation phenological stages, are
widely used to identify phenological dates [10,11]. Moderate-resolution sensors, such as the Moderate
Resolution Imaging Spectroradiometer (MODIS), the Medium Resolution Imaging Spectrometer
(MERIS), the Advanced Very High-Resolution Radiometer (AVHRR), and the Visible Infrared Imager
Radiometer Suite (VIIRS), allow calculation of near-daily frequency VIs to monitoring regional to
global vegetation phenology [9].

The VI time-series is used to estimate phenological events using various approaches, including
autoregressive moving average methods [12], the change rate of curvature methods [11], wavelet and
Fourier transform methods [10], and threshold-based methods [13]. However, the various approaches
result in dramatically different identified phenological transition dates, which may eventually lead
to conflicting conclusions in the analysis of interactions between vegetation and climate change [14].
The different VIs emphasize varied vegetation properties and are sensitive to the soil, vegetation, and
atmospheric conditions, making it challenging to select the appropriate VI to estimate phenological
transition dates [15]. Leaf phenological processes can be better characterized by satellite remote sensing
using multiple spectral wavelengths [16]. Tracking the change in multiple spectral signatures by
combining different vegetation properties may outperform the tracking of a single VI time-series
trajectory and can accurately estimate the transition dates of complex leaf coloration [16].

To better monitor the complex foliage coloration processes, Diao [16] developed a pheno-network
model to detect peak coloration transition dates using collections of spectral signatures. In this model,
MODIS time-series data were presented as nodes and edges to construct the network graph, and
peak coloration dates were determined by the network metrics. However, the network-based model
was complex and involved selections of a threshold, which is crucial to the network construction,
indicating that the model performance is sensitive to the threshold selection. In addition, phenological
models should be validated against field measurements. The scale effects (spatial and temporal
scales) should be addressed to match the remote sensing images and field measurements [17] because
in-situ observations are typically conducted locally [18,19] and many broad-leaf and deciduous forest
species differ spatially inside small forest stands [7]. Generally, the mean values at the center of an
empirical spatial or temporal window are used to match the in-situ measurements and avoid irregular
satellite data.

To avoid threshold selection and take advantage of multiple spectral signatures, we proposed an
innovative grouping-based method for peak foliage coloration estimations using MODIS data and
field measurements from 2002 to 2013 at Harvard Forest. We considered the fall foliage transition dates
as variables and divided the time-series data into three groups according to the assumed transition
dates, namely pre-transition, transition, and post-transition groups. The most appropriate transition
dates correspond to the minimum intra-group and largest inter-group distances. To reduce the scale
effects, the optimal spatial and temporal scales for processing satellite data were determined based
on semi-variance function [20]. The grouping-based approach with scale effects considered here may
provide a new perspective in monitoring the foliage transition dates for fall peak coloration. Thus,
the performance of the grouping-based model was also evaluated in this study.
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2. Data and Methods

2.1. Data Sources and Preprocessing

Abundant field measurements of fall foliage peak coloration at Harvard Forest (42.54◦ N, 72.18◦ W,
central Massachusetts, approximately 1500 m × 1500 m) are freely available. The region is located
in the northeastern United States. Deciduous plants have been phenologically monitored in this
region since 1991 at a frequency of 3–7 days (http://harvardforest.fas.harvard.edu/data-archives).
The percentage of leaf coloration and percentage of leaf fall for each individual tree are observed
during the field campaigns.

The MODIS data were used to estimate the peak coloration dates at Harvard Forest because
MODIS provides an excellent opportunity to study regional-to-global scale land surface phenology
with a high frequency [21]. The 2002–2013 MODIS data at Harvard Forest were downloaded from the
Land Processes Distributed Active Archive Center (LP DAAC, https://lpdaac.usgs.gov/), including the
Nadir Bidirectional reflectance distribution function (BRDF) Adjusted Reflectance data (NBAR, version
6), the MODIS BRDF/Albedo Quality data (BAQ, version 6), the MODIS Land Surface Temperature
data (LST, version 6), and the MODIS Land Cover Type data (LCT, version 5.1). The role of each
MODIS dataset in this study is summarized in Table 1.

Table 1. Information and roles of Moderate Resolution Imaging Spectroradiometer (MODIS) datasets.

Data Spatial Resolution Temporal Resolution Roles

NBAR 500 m daily, 16-day composite estimate the peak coloration dates
BAQ 500 m daily, 16-day composite locate the pixels covered by snow
LST 1000 m daily, 16-day composite locate the winter periods
LCT 500 m yearly, 16-day composite determine the land cover types

The mean values of the species-based field observations were used to match the satellite images.
To represent the continuous phenological stage, the field measurements were linearly interpolated for
the missing dates. The mean peak coloration period at Harvard Forest based on the field measurements
was obtained from Diao [16]. The seven spectral bands (from visible to shortwave infrared) of the NBAR
time-series data were used as the main data source to determine the fall peak coloration transition
dates. The BAQ data, LST data (resampled to 500 m using nearest-neighbor interpolation), and LCT
data were used to eliminate the invalid pixels such as pixels covered by snow or clouds. The mean
peak coloration periods at Harvard Forest obtained from field measurements were compared with the
results estimated using satellite remote sensing to evaluate the performance of our proposed method.
More details regarding the preprocessing of the field measurements and MODIS data can be found in
Diao [16]. The preprocessing steps of MODIS data are summarized in Figure 1.
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2.2. Determination of Optimal Spatial and Temporal Scales

A spatial window is required to match the MODIS data and field measurements and avoid spatial
uncertainty [18]. To reduce the influence of irregular points in a time-series, a temporal window is
needed [16]. The scale choice of remote sensing data is one of the fundamental factors that should
be considered to provide the most suitable level of information for remote sensing applications [19].
The optimal sampling scale is highly related to the spatial and temporal characteristics of ground
targets. Low or high scales will lead to insufficient information or information redundancy, which will
influence the analysis and interpretations of satellite remote sensing [8,18].

The most commonly used methods to determine the optimal sampling scale are based on
geostatistical methods [22]. Semi-variance is one of the comprehensive indicators to describe
dependence and heterogeneity quantitatively and determine an optimal sampling scale which is
defined as [20]:  γ(h) = c0 + c1

{
1.5(h/a) − 0.5(h/a)3

}
, 0 < h ≤ a

γ(h) = c0 + c1, h > a
(1)

where h is the scale for isotropic variation; c0 is the nugget; c1 is the sill; and a is the range, which
represents the variation scale of geographical elements. Geographic variables with a scale larger
than a will no longer correlate, and a can be regarded as the optimal scale. After the empirical
semi-variance is calculated from satellite images, the γ(h) can then be fitted, and a is further determined.
The semi-variance function was used to determine the optimal spatial and temporal scales for satellite
images in this study.

To determine the spatial scale at Harvard Forest, the high-resolution atmospherically corrected
surface reflectance data from Landsat-7/Enhanced Thematic Mapper Plus (ETM+, 30 m) of 2002–2013
were used which can efficiently represent the surface conditions and were obtained through the Google
Earth Engine [23] with co-referencing or spatial accuracy tests performed. The high-frequency (daily)
MODIS NBAR data with the influence of atmospheric interference and noise reduction were used to
calculate the optimal temporal scale at Harvard Forest. The optimal spatial scale was firstly determined,
and the NBAR data were then processed according to the optimal spatial scale to obtain the optimal
temporal scale (see Figure 1). Specifically, the mean value within the optimal spatial scale was used to
represent the value of the central pixel value.

2.3. Grouping-Based Time-Series Model

The satellite time-series data used to monitor vegetation phenological events are mostly
curve-based (Figure 2a), which means the satellite time-series is presented as curves, and the features of
the curves demonstrate the vegetation phenological stages [24]. These time-series are mainly VI-based,
which may produce different phenological transition dates due to the lack of vegetation properties
such as canopy pigment content, cell structure, and water content. Diao [16] recently represented
time-series data as a series of nodes to take advantage of multiple spectral wavelengths (Figure 2b).
Each node contains information of seven MODIS bands from visible to shortwave infrared, which can
characterize several vegetation properties.
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Taking advantage of the spectral signature nodes, the grouping-based model for peak coloration
detection divided the satellite time-series into several groups according to the assumed phenological
stages. For time-series data, we assumed that there were N nodes and k transition dates annually for
the vegetation phenology (1 ≤ k < N). Thus, the N nodes were then divided into k + 1 groups, and
each group contained ni nodes. The total node number of the k + 1 groups is N:

k+1∑
i=1

ni = N (2)

The nodes within a group are more similar in terms of reflectance and spectral shape than those in
different groups and are characterized by similarity. The similarity between the spectral signatures
of nodes is defined as similarity distance (SD, d). Euclidean and cosine distances are frequently and
commonly used metrics to measure “similarity distance”. However, the first one suffers from high
sensitivity to magnitudes, whereas the second is less sensitive to magnitudes. The SD of a node pair is
measured using cosine distance.

d(A, B) = cos−1
( A·B
||A||||B||

)
(3)

where A and B are vectors representing spectral signature nodes, and d(A, B) is the SD between A
and B.

The total group distance (TGD, GT
d) of the time-series is defined based on SD:

GT
d = Gintra

d + Ginter
d (4)

where Gintra
d and Ginter

d are the intra-group and inter-group SDs, respectively. The former is calculated
as follows:

Gintra
d =

k+1∑
i=1

Gintra
d (i) =

k+1∑
i=1

ni−1∑
m=1

d
(
Pi

m, Pi
m+1

)
(5)

where Gintra
d (i) is the intra-group SD of group i; Pi

m and Pi
m+1 are two continuous nodes in group i

to maintain the temporal order. The SD is calculated ni − 1 times for Gintra
d (i). Thus, SD is calculated

k+1∑
i=1

(ni − 1) =
k+1∑
i=1

ni − k = N − k − 1 times for all intra-group SDs. The inter-group SD is calculated

as follows:

Ginter
d =

k∑
i=1

Ginter
d (i, i + 1) =

k∑
i=1

−d
(
Pi

e, Pi+1
s

)
(6)

where Ginter
d (i, i + 1) is the inter-group SD of groups i and i + 1; Pi

e is the end point in group i, and Pi+1
s

is the start point in group i + 1. The negative sign indicates that the inter-group SD should be large to
minimize the TGD. In every Ginter

d (i, i + 1), the SD is calculated once. The SD is then calculated k times.
The total calculation times of SD for a time-series are counted as follows:

T =
k∑

i=1

(ni − 1) + (k) =
k+1∑
i=1

ni − k + (k− 1) = N− 1 (7)

where T represents the total calculation times of SD, and N is the total number of nodes of a time-series.
T is independent of the number of divided groups (k + 1). This interpretation indicates that the TGD is
only influenced by the similarity of intra- and inter-group nodes, and insensitive to the number of
groups. This interpretation may have advantages of not involving a pre-defined number of transition
stages, whereas previous studies have needed an empirical number of transition dates [2,16].
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2.4. Determination of Peak Coloration Periods

The best fall peak coloration transition dates correspond to the minimum TGD of a time-series.
According to in-situ measurements of fall phenology at Harvard Forest, the mean peak coloration
period is within the day of year (DOY) 270 to 310; the mean start date of peak coloration is before DOY
290 and the mean end is later than DOY 290 [16]. The fall field observations were typically conducted
from DOY 240 to 330 at Harvard Forest. Thus, only the MODIS data during DOY 240 to 330 were used
to form the time-series.

In practice, the MODIS time-series were divided into three groups by the start and end dates of
peak coloration. The start date was set from DOY 240 to 329, and the end date was set from DOY 241 to
330 to explore all cases. After calculations of all cases of the start and end dates, the TGD were summed
according to the DOY and the summed TGD (STGD) was ordered. The order of STGD (STGDO) was
then transformed into distance-level (STGDOD) by multiplying the ratio of mean STGD and STGDO.
The final TGD (FTGD) was the sum of the STGD and STGDOD. The steps of determination of peak
coloration periods are summarized in Figure 3.
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time-series approach.

The peak coloration periods were determined with some empirical constraints based on the FTGD:
(1) according to field observations, the start and end peak coloration dates were assumed before and
after DOY 290 within the range of DOY 270 to 310, respectively; and (2) the peak coloration period
normally lasts for 2–3 weeks. Thus, the day (D1) corresponding to the smallest FTGD during DOY 270
to 310 was firstly determined as either the start or end peak coloration date. Then, another day (D2)
satisfying the two constraints and corresponding to the smallest remaining FTGD was considered as
the end or start peak coloration date.

3. Results

3.1. Optimal Spatial Scale using ETM+

The optimal spatial scale at Harvard Forest was analyzed based on the semi-variance functions
using ETM+ data (30 m) from 2002 to 2013. The optimal spatial scale for each ETM+ image is shown in
Figure 4. The vegetation at Harvard Forest is dense, as can be seen in the false-color composite of the
ETM+ image (Figure 4a). Figure 4b illustrates an example of a semi-variance function with a spherical
model, and the range determines the optimal spatial scale. Figure 4c shows that the range distance of
semi-variogram function is different for each image whilst similar for the five ETM+ bands, indicating
that the semi-variance is not sensitive to bands. Although the range distance varies on different
imaging days, the frequently occurring range distance is approximately 3500 m. This phenomenon
may be attributed to the land surface that remains homogenous after atmospheric correction.
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The mean range distance at Harvard Forest is approximately 3580 m from 2002 to 2013, which is
about seven pixels of MODIS NBAR data (500 m). To avoid the potential influence of irregular spectral
points and to reduce the uncertainty of geolocation, the mean value of MODIS NBAR data with a
7 × 7 window was adopted to represent the land surface. Without a window, the pixels influenced
by absorbent aerosol, cloud shadow, and adjacent pixels may affect the performance of time-series
models [16,18].

3.2. Optimal Temporal Scale using MODIS

Irregular points in the time-series data affect the analysis and model performance [16]. Although the
16-day composite MODIS NBAR data were corrected for atmospheric influence, the pixels are
occasionally unavoidably contaminated by absorbent aerosol, cloud shadow, or adjacent pixels [10,25].
To reduce the impacts of irregular nodes, the remote sensing time-series is usually averaged using
moving windows and multiple window sizes are tested to yield the best results [16]. However,
this strategy requires intense experiments and is occasionally time-consuming. Based on the
semi-variance function, it is possible to determine the optimal window size for a time-series. Figure 5
shows the mean and standard deviation (Std) values of the temporal range distance of MODIS NBAR
data at Harvard Forest. The temporal range distance slightly varies for different MODIS bands.
The variations of B3 and B4 are large, possibly due to the fact that the short wavelength is most likely
to be affected by atmospheric conditions [26].

The minimum of mean temporal range distance of MODIS NBAR data at Harvard Forest was
approximately eight days. Since the window size is generally an odd number to determine the window
center easily, the temporal window size was selected as seven days in this study, which is the same as
the best window size for the network-based model in estimations of peak coloration transition dates at
Harvard Forest [16].
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3.3. Grouping-based Estimations of Peak Coloration Periods

After the optimal spatial and temporal scales are determined at Harvard Forest, the preprocessed
MODIS NBAR data were first spatially averaged using a 7 × 7 window, and then temporally averaged
with a 7-days moving window to form a reliable satellite time-series. Using the MODIS time-series
data and grouping-based model, the fall peak coloration periods at Harvard Forest during 2002–2013
were estimated and listed in Table 2. The field-based peak coloration periods [16] are also included.

The mean peak coloration transition dates estimated by the grouping-based model are well
consistent with the field observations at Harvard Forest, particularly for years from 2003 to 2005 and
2009 to 2012. The relationship between the grouping distance and the transition periods are displayed
in Figure 6a, and comparison among the grouping-, curve-fitting- (threshold-, curve derivative-, and
curvature change rate-based) and network-based models are shown in Figure 6b.

The start and end dates of peak coloration transition correspond to the small grouping-based
distances. Although many local minimum grouping distances are observed, the date cannot be
determined as the transition dates because the start and end dates should meet the empirical constraints
(Section 2.4). Overall, the transition dates have small grouping-based distances and consistent with
empirical knowledge.

Table 2. The mean field-based and MODIS-estimated transition dates for fall peak coloration at Harvard
Forest from 2002 to 2013. The mean field-based results are adopted from Diao [16].

Year Field MODIS Year Field MODIS Year Field MODIS

02 [289, 307] [283, 299] 06 [278, 294] [283, 302] 10 [282, 298] [285, 299]
03 [284, 300] [285, 303] 07 [288, 299] [279, 294] 11 [284, 304] [283, 305]
04 [285, 300] [283, 296] 08 [283, 298] [279, 299] 12 [280, 295] [280, 296]
05 [288, 305] [287, 305] 09 [280, 298] [282, 297] 13 [280, 294] [285, 302]

Amongst the proposed grouping-based model and the four other phenological methods (threshold-,
curve derivative-, curvature change rate-, and network-based models), the grouping-based model
obtained the highest accuracy in calculations of the fall peak coloration dates compared with in-situ
observations, with a correlation coefficient (R) of 0.88 and a mean absolute difference (MAD) of
3.38 days. The MAD between grouping-retrieved and field-observed peak coloration dates was
smaller than the interval of field measurements (7 days). The grouping-based model considerably
outperformed the conventional NDVI-based curve-fitting models and was comparable to the complex
network-based model. The main advantages of the grouping-based model over the network-based
model are that the former does not involve threshold selection and is much simpler. The comparisons
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of these models demonstrated that the grouping-based model has the potential to model fall peak
coloration stages effectively.

Remote Sens. 2020, 12, 274 9 of 12 

 

The comparisons of these models demonstrated that the grouping-based model has the potential to 
model fall peak coloration stages effectively. 

 
Figure 6. (a) Estimated start and end dates (circles) for peak coloration using the grouping-based time-
series analysis from 2002 to 2013 at Harvard Forest; (b) comparisons of the grouping-, three 
conventional curve-fitting-, and complex network-based models in estimating coloration transition 
dates from 2002 to 2013 at Harvard Forest. The results of curve-fitting- and network-based methods 
are obtained from Diao [16]. 

To visualize the spatial distributions of grouping-retrieved fall peak coloration dates from 2002–
2013 at Harvard Forest, the fall peak coloration transition dates of a 1° × 1° region centered at Harvard 
Forest were estimated. Because the foliage phenological events are affected by temperature associated 
with latitude [24], the region was divided into ten small sections based on latitude with increments 
of 0.1° to analyze the latitude influence. The start and end dates of fall peak coloration periods from 
2002–2013 are shown in Figure 7. Note that the biases between the field and the grouping-estimated 
dates were corrected for the 1° × 1° region. 

 
Figure 7. The 1° × 1° region centered at Harvard Forest was divided into ten small sections based on 
latitude with increments of 0.1°. The start and end dates of peak coloration were represented during 
the 12 years of the study period. 

In the 1° × 1° region, the transition dates are not obviously influenced by latitude (from the 
bottom to the top) possibly because the change in temperature in the small region is slight. However, 
the dates considerably vary for different years. Specifically, the start and end dates of peak coloration 

Figure 6. (a) Estimated start and end dates (circles) for peak coloration using the grouping-based
time-series analysis from 2002 to 2013 at Harvard Forest; (b) comparisons of the grouping-, three
conventional curve-fitting-, and complex network-based models in estimating coloration transition
dates from 2002 to 2013 at Harvard Forest. The results of curve-fitting- and network-based methods are
obtained from Diao [16].

To visualize the spatial distributions of grouping-retrieved fall peak coloration dates from
2002–2013 at Harvard Forest, the fall peak coloration transition dates of a 1◦ × 1◦ region centered at
Harvard Forest were estimated. Because the foliage phenological events are affected by temperature
associated with latitude [24], the region was divided into ten small sections based on latitude with
increments of 0.1◦ to analyze the latitude influence. The start and end dates of fall peak coloration
periods from 2002–2013 are shown in Figure 7. Note that the biases between the field and the
grouping-estimated dates were corrected for the 1◦ × 1◦ region.

Remote Sens. 2020, 12, 274 9 of 12 

 

The comparisons of these models demonstrated that the grouping-based model has the potential to 
model fall peak coloration stages effectively. 

 
Figure 6. (a) Estimated start and end dates (circles) for peak coloration using the grouping-based time-
series analysis from 2002 to 2013 at Harvard Forest; (b) comparisons of the grouping-, three 
conventional curve-fitting-, and complex network-based models in estimating coloration transition 
dates from 2002 to 2013 at Harvard Forest. The results of curve-fitting- and network-based methods 
are obtained from Diao [16]. 

To visualize the spatial distributions of grouping-retrieved fall peak coloration dates from 2002–
2013 at Harvard Forest, the fall peak coloration transition dates of a 1° × 1° region centered at Harvard 
Forest were estimated. Because the foliage phenological events are affected by temperature associated 
with latitude [24], the region was divided into ten small sections based on latitude with increments 
of 0.1° to analyze the latitude influence. The start and end dates of fall peak coloration periods from 
2002–2013 are shown in Figure 7. Note that the biases between the field and the grouping-estimated 
dates were corrected for the 1° × 1° region. 

 
Figure 7. The 1° × 1° region centered at Harvard Forest was divided into ten small sections based on 
latitude with increments of 0.1°. The start and end dates of peak coloration were represented during 
the 12 years of the study period. 

In the 1° × 1° region, the transition dates are not obviously influenced by latitude (from the 
bottom to the top) possibly because the change in temperature in the small region is slight. However, 
the dates considerably vary for different years. Specifically, the start and end dates of peak coloration 

Figure 7. The 1◦ × 1◦ region centered at Harvard Forest was divided into ten small sections based on
latitude with increments of 0.1◦. The start and end dates of peak coloration were represented during
the 12 years of the study period.
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In the 1◦ × 1◦ region, the transition dates are not obviously influenced by latitude (from the bottom
to the top) possibly because the change in temperature in the small region is slight. However, the dates
considerably vary for different years. Specifically, the start and end dates of peak coloration from 2002
to 2007 normally changed with increasing or decreasing trends. However, the start and end dates from
2007 to 2013 display a clear decreasing trend, indicating that the peak coloration periods were shifted
to earlier dates.

4. Discussion

Satellite remote sensing has been widely used to monitor vegetation phenological events [16,21,24].
The grouping concept is introduced to remote sensing time-series in modeling the complex peak
coloration processes. The overall performance of the grouping-based model, and its opportunities and
limitations, are discussed below.

The grouping concept has been successfully used to deal with complex data flows [27–29]. In this
study, the concurrent changes in spectral signatures along the phenological trajectory are reflected
by the node similarity. Validated against field measurements at Harvard Forest, the retrieved peak
coloration transition dates are well consistent with them. This indicates that the grouping-based
similarity can differentiate the various vegetation phenological states, which cannot be adequately
captured by curve fitting-based phenological approaches using a single VI [16]. The grouping concept
provides a new perspective for the monitoring of vegetation phenological events.

Compared with the conventional VI-based phenological models, the grouping-based model
can take advantage of multiple spectral signatures represented by the nodes. Each VI emphasizes
a particular vegetation property, while the complex phenological process involves the concurrent
changes of several vegetation properties, such as canopy pigment content, cell structure, and water
content. These properties can be characterized by visible bands, near-infrared bands, and shortwave
infrared bands, respectively [16]. MODIS bands from visible to shortwave infrared bands formed
the nodes in the grouping-based model, indicating that the model can capture multiple vegetation
properties. Compared with the novel network-based model, which also adopts the node concept, the
grouping-based model is free from threshold selection, and thereby more flexible. The network-based
model needs an appropriate threshold to construct a reasonable network graph [16]. Calculating the
grouping similarity distance automatically without threshold selections can simplify the phenological
model and make the model more robust.

To avoid the influence of irregular data in a time-series, the window sizes to process satellite
data are based on empirical knowledge or tests of different sizes in previous studies [16]. In Diao [16],
the spatial window size was set empirically as 6 × 6, and a series of window sizes ranging from one
to seven days were tested to determine the best temporal window size. However, in this study, the
spatial and temporal window sizes were determined using the semi-variance function [20], which
can determine the optimal sampling size without empirical knowledge or extensive tests. Thus, the
analysis of the remote sensing time-series is more reliable and accurate.

However, the proposed grouping-based time-series model still has several limitations. Firstly,
the model was established based on the daily MODIS NBAR data, which might be affected by snow,
clouds, and atmospheric effects [16]. More datasets, such as the AVHRR, MERIS, and VIIRS should be
involved to create a more robust satellite remote sensing time-series [30]. Secondly, the methodical
data processing steps for the determination of peak coloration periods need to be further explored
and modified to avoid pre-defined assumptions. At present, the model needs to restrict the start and
end dates within specific ranges, which might hinder the model’s global implementation. Finally,
the grouping-based model is only validated using field observations at Harvard Forest, while validation
is crucial in phenological studies based on remote sensing [11,16,31]. More phenological observations
should be acquired to extensively evaluate the performance of the proposed model.
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5. Conclusions

We have developed a new grouping-based time-series model for fall peak coloration period
estimations, which has been successfully applied at Harvard Forest using MODIS data from 2002 to
2013. The model consists of three procedures: (1) preprocessing of MODIS data; (2) removal of spatial
and temporal scale effects based on semi-variance function; and (3) determination of peak coloration
transition dates using the grouping-based model.

The grouping-based model takes advantage of multiple MODIS spectral signatures and is free
from threshold selections, and it outperforms the curving-fitting- and network-based methods when
validated against field measurements at Harvard Forest. This study demonstrates that the grouping
concept is useful in analyzing remote sensing time-series for the monitoring of complex vegetation
phenological processes. We believe that the grouping concept has potential applicability to other
phenological events and regions.

Overall, the grouping-based model showed good performance to support the monitoring of the
fall plant phenology and could complement the current time-series models. In the near future, we will
conduct investigations on the determination steps of transition dates for peak coloration estimation to
free the model from empirical knowledge and apply the model to other regions to explore its feasibility.
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