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Abstract: Accurate estimation of fine particulate matter with diameter ≤2.5 µm (PM2.5) at a high
spatiotemporal resolution is crucial for the evaluation of its health effects. Previous studies face
multiple challenges including limited ground measurements and availability of spatiotemporal
covariates. Although the multiangle implementation of atmospheric correction (MAIAC) retrieves
satellite aerosol optical depth (AOD) at a high spatiotemporal resolution, massive non-random
missingness considerably limits its application in PM2.5 estimation. Here, a deep learning approach,
i.e., bootstrap aggregating (bagging) of autoencoder-based residual deep networks, was developed
to make robust imputation of MAIAC AOD and further estimate PM2.5 at a high spatial (1 km)
and temporal (daily) resolution. The base model consisted of autoencoder-based residual networks
where residual connections were introduced to improve learning performance. Bagging of residual
networks was used to generate ensemble predictions for better accuracy and uncertainty estimates.
As a case study, the proposed approach was applied to impute daily satellite AOD and subsequently
estimate daily PM2.5 in the Jing-Jin-Ji metropolitan region of China in 2015. The presented approach
achieved competitive performance in AOD imputation (mean test R2: 0.96; mean test RMSE: 0.06)
and PM2.5 estimation (test R2: 0.90; test RMSE: 22.3 µg/m3). In the additional independent tests using
ground AERONET AOD and PM2.5 measurements at the monitoring station of the U.S. Embassy
in Beijing, this approach achieved high R2 (0.82–0.97). Compared with the state-of-the-art machine
learning method, XGBoost, the proposed approach generated more reasonable spatial variation for
predicted PM2.5 surfaces. Publically available covariates used included meteorology, MERRA2 PBLH
and AOD, coordinates, and elevation. Other covariates such as cloud fractions or land-use were
not used due to unavailability. The results of validation and independent testing demonstrate the
usefulness of the proposed approach in exposure assessment of PM2.5 using satellite AOD having
massive missing values.

Keywords: PM2.5; satellite AOD; deep learning; autoencoder; residual network; exposure estimation;
high spatiotemporal resolution

1. Introduction

Fine particulate matter with a diameter < 2.5 µm (PM2.5) has been associated with adverse
health effects, ranging from acute, short-term to chronic health outcomes [1–3], including increased
respiratory symptoms [4–6], worsened asthma [7,8], increased cardiovascular diseases [9,10], decreased
lung function [11], and increased premature death from heart or lung diseases [12,13]. With rapidly
increasing fleet of vehicles and more stringent emission regulations for industry than previously [14],
concentrations of PM2.5 have been increasingly more affected by local traffic emissions than coal or
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industry emissions (e.g., an increase of 24% for vehicle emission but a decrease of 28.5% between 2014
and 2018 for industry and coal burning in Beijing of China [15,16], Figure S1). Thus, traffic emissions
recently have contributed more to PM2.5 concentrations, probably resulting in high exposure since
many persons live near traffic routes [17–19]. Accurate estimation of the spatiotemporal distribution of
PM2.5 [20–22] at a high resolution can help improve health outcome studies of PM2.5 [8,23], particularly
at a local spatial scale. However, PM2.5 ground monitoring stations are usually limitedly distributed
worldwide, e.g., there were 102 PM2.5 monitoring stations in 2015 for the large Jing-Jin-Ji metropolitan
area of China (64,022 km2). These limited measurements create a challenge in spatiotemporal PM2.5

estimation at a high resolution using traditional modeling methods such as nearest neighbor [24,25],
land-use regression [26,27], generalized additive model (GAM) and kriging [28].

Satellite-derived aerosol optical depth (AOD) has been used to predict PM2.5 concentrations.
AOD is a metric of the extinction of the solar beam by dust and haze and is widely used as a proxy for
the number of particles within a vertical column and as a predictor of primary interest (assumed to
account for the majority of the variance explained) for PM2.5 [29]. Chemical transport models (CTMs),
e.g., GEOS-Chem [30] and CMAQ [31], have also been used to simulate PM2.5. The simulation of PM2.5

is constrained by the incompleteness or unreliability of the input variables (e.g., emission inventory
and meteorological parameters) and complex environmental processes. Consequently, CTMs may
not predict well spatiotemporal PM2.5 concentrations [32,33]. Since approximately the early 20th
century, the moderate resolution imaging spectroradiometer (MODIS) onboard the polar orbiting Terra
(launched in 1999) and Aqua (launched in 2002) satellites have been producing satellite AOD with
global coverage. As two early widely-used mainstream methods to retrieve satellite AOD from MODIS,
the dark target (DT) and deep blue (DB) algorithms [34,35] were developed by National Aeronautics
and Space Administration (NASA). The DT algorithms have taken advantage of bright aerosols against
a dark surface (hence named “dark target”) to separate the aerosol and surface signals, and just worked
over the dark vegetated targets over land and ocean, but not over bright land surface. Later, where the
surface is bright and the DT doesn’t work, the DB algorithm [36,37] has been developed to use the
surface reflectance in the blue bands (hence named “deep blue”) to capture the surface signals and
spectral reflectance ratios over bright land surfaces. Until now, both complementary algorithms just
have coarse spatial resolution (3–10 km) products.

Empirical statistical methods of correlation analysis [38–43] were initially used to model the
AOD-PM2.5 linear relationship with limited accuracy or resolution. Then, with satellite AOD as
a predictor of primary interest, advanced approaches were applied to predict PM2.5. For example,
Sorek-Hamer et al., 2013 used non-parametric additive models to construct non-linear relationships
between PM2.5 and covariates [44], Lee et al., 2011 and Xie et al., 2015 introduced fixed and random effects
in the mixed-effects models, allowing for daily variations of the AOD-PM2.5 relationship [45,46], Li et al.,
2017 used nonparametric generalized regression neural networks through normalized radial basis
functions to predict PM2.5 concentrations [47], Zhan et al., 2017 modeled spatial non-stationarity in the
AOD-PM2.5 association using geographically-weighted gradient boosting machines [48], and Guo et al.,
2017 integrated spatial and temporal information in geographically and temporarily weighted regression
to capture PM2.5 spatiotemporal variations in local effects [49]. However, moderate to coarse spatial
resolution AOD products were unable to produce high spatial resolution PM2.5 estimates.

Recently, the multiangle implementation of atmospheric correction (MAIAC) has been used as
an advanced algorithm to retrieve AOD according to the time series of MODIS measurements at a high
spatial (1 km) and temporal (daily) resolution, with better atmospheric correction over both dark and
moderately bright surfaces, compared with that of the DT and DB algorithms [50–52]. Based on the
MAIAC AOD, Xu et al. [53] developed two-stage models (mixed-effect model and geographically
weighted regression (GWR)) to estimate PM2.5 at a high resolution with cross-validation (CV) R2

of 0.67. However, for either AOD retrieved by DT/DB or by MAIAC, a primary limitation is the
massive non-random missingness caused by clouds, snow and conditions of high surface reflectance
(e.g., an average missing percentage of > 60% in 2013-2014 in the Yangtze River Delta of China [54]).
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Such missing data create a challenge for using AOD in PM2.5 prediction since missing AOD may result
in significant bias in the estimation of PM2.5 [55]. Two studies used the AODs in neighboring cells [56]
or CTM outputs [57] as alternatives to missing AOD values. These relatively simple methods may not
perform well when a large amount (e.g., >50%) of the AOD data is missing. Other studies imputed
missing AOD values using CTM output, meteorology, and elevation, etc., through different models
including a two-step model (linear mixed model and kriging) [58], non-linear additive models [54]
or neural networks [59]. However, these studies only had poor to moderate (mean R2: 0.18–0.44)
validation results when compared to AOD measurements from the aerosol robotic monitoring networks
(AERONET).

The quality of covariates (e.g., completeness and measurement accuracy) will substantially
influence model performance. In addition, missing covariates at certain locations or time points may
make certain methods inapplicable. For example, cloud fraction data have been used by previous
studies [60,61], but they were not available in earlier years, which might result in a substantial reduction
in the performance in the GAM-based imputation method [54].

Machine learning methods, such as neural networks [59], random forest [57] and bootstrap
aggregating (bagging) of mixed-effect models [62], are increasingly applied in air pollutant exposure
assessment. However, a regular feed-forward neural network may have issues related to saturation
and degradation of accuracy with increased hidden layers, as shown in many other applications [63,64].
Decision tree-based machine learning methods, such as random forest and XGBoost [65], are good in
categorical variable classification but not ideal for continuous variables as they may produce abrupt
changes in spatial variation in prediction due to the discretization of continuous covariates in these
methods. Further, except for ensemble methods, such as random forest, most of the other methods are
based on the single-model method where a single value is predicted by a trained model [62]. Sampling
bias in training may result in unstable predictions with a large variance [66].

Although deep learning has achieved great successes in many domains [67], its applications
involving the regression of a continuous variable, such as the imputation of missing MAIAC AOD
and estimation of PM2.5, are limited due to low efficiency in learning for neural networks. Many
applications involving image classification and segmentation effectively use the convolutional neural
network (CNN) [68]. However, CNN cannot work well with samples that contain massive non-random
missing data of continuous variables [67] and involve complex environmental processes, and thus
CNN was not considered in this paper.

This paper aims to present a novel deep learning approach for robust spatiotemporal imputation
of MAIAC AOD and subsequent spatiotemporal modeling of PM2.5 at a high (1-km) resolution.
Here, an autoencoder-based residual deep network (also referred to as residual network throughout
this paper) can be used to extract latent representation, implement residual connections, and share
parameters in the multivariable output, which can considerably boost efficiency and accuracy of
learning. Bagging of residual networks can further improve model performance by generating stable
ensemble predictions with uncertainty estimates. Experiments are conducted to demonstrate the
performance of the proposed approach, compared with other machine learning methods, and the
implication for AOD imputation and PM2.5 modeling is discussed.

2. Materials

2.1. Study Region

The study region (Figure S2) covers most of the Jing-Jin-Ji metropolitan region of China, located
between the latitudes of 38◦05′N and 41◦04′N and the longitudes of 115◦14′E and 118◦54′E, with
an area of 64,022 km2 and a total population of 94.32 million. As the national capital region of China,
the Jing-Jin-Ji is the biggest urbanized megalopolis region in northern China and consists of Beijing and
Tianjin, two dominant cities and 13 smaller cities in the Hebei Province. As one of the most polluted
areas in China, this region had the mean PM2.5 of 80 µg/m3 (vs. 52 µg/m3 for mainland China) in 2015.
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It has multiple emission sources, and adverse meteorology and terrain—particle matters come from
industrial emissions, coal combustion, and motor vehicle exhaust; in winter, heavy coal emission in
heating, low wind speed, and high atmospheric stability aggravate concentrating of particle matters;
the Mount Taihang-Yanshan surrounding this region may inhibit dispersion of air pollutants from it.

2.2. Measurement Data

2.2.1. Satellite-Derived AOD

From the data sharing website of the United States Geological Survey (https://lpdaac.usgs.gov/

news/release-of-modis-version-6-maiac-data-products), this study collected daily images (three tiles
covering the study region) of MAIAC AOD at 550 nm in 2015 with quality assurance flag data from
both Aqua and Terra MODIS, with crossover at approximately 1:30 PM and 10:30 AM local time,
respectively. Quality assurance flags provide the retrieval quality of cloud mask, land/water/snow
mask and adjacency mask for clouds/snow.

Preprocessing was conducted on the original MAIAC AOD images, including bilinear resampling
for projection transformation and filtering of outliers and invalid values according to the valid AOD
range (0 to 4) and quality assurance flags. A non-linear GAM was used to fuse Aqua and Terra daily
images when one AOD was missing and the other AOD was not missing—non-missing satellite AOD
(Aqua or Terra) was used to regress missing AOD (Terra or Aqua), and then both values were averaged
into one to increase the size and spatial coverage of training samples (see Supplementary Section S1
for details). Finally, three tiles were mosaicked together into an integrated image covering the study
region. As the integral of the aerosol extinction coefficient at all the altitudes within a vertical profile of
the atmosphere, satellite AOD is also called column AOD. As one component in the integral of satellite
AOD, the ground aerosol extinction coefficient contributes more to high ground-level aerosol loading,
and thus is more related to PM2.5, compared with satellite (column) AOD. Therefore, a conversion
from satellite AOD to ground aerosol extinction coefficient was conducted using planetary boundary
layer height (PBLH) and relative humidity (RH) data from the reanalysis data (see Supplementary
Section S2.2 for details) using the following formula [69]:

kAOD,Dry =
τα

HA(1−RH/100)−g , (1)

where τα is column AOD, RH is relative humidity, HA is the scale height of aerosol, simulated by
PBLH [70], kAOD,Dry represents the “dry” aerosol extinction coefficient at surface level that was used in
estimation of PM2.5, and g is an empirical fit coefficient. Here, (1 − RH/100)−g is the ratio of the wet
aerosol extinction coefficient obtained as the ambient RH to the “dry” one obtained under a relatively
dry circumstance under which the PM concentrations are measured in the air sample [4].

2.2.2. AERONET AOD

The AERONET sun photometers collect AOD data at ground level, which are frequently used
as the “ground truth” AOD to validate satellite-based AOD. The 2015 2-level AERONET data
(version 3) with quality assurance were gathered from two sites (called Beijing and Beijing-CAMS,
https://aeronet.gsfc.nasa.gov) located in the Jing-Jin-Ji study region (see Supplementary Figure S2 for
their locations). The AERONET AOD data were interpolated to the reference wavelength of 0.55 µm
using spectral linear interpolation in the log-log space between the two closest wavelengths within
60 minutes of satellite overpass [71].

2.2.3. Ground Truth PM2.5 Measurements

The ground-level hourly PM2.5 measurement data (unit: µg/m3) were from 102 monitoring
stations of the Ministry of Ecology and Environment of China in the Jing-Jin-Ji study region in
2015 (http://www.pm25.in) (see Supplementary Figure S2 for their spatial locations and 2015 mean).

https://lpdaac.usgs.gov/news/release-of-modis-version-6-maiac-data-products
https://lpdaac.usgs.gov/news/release-of-modis-version-6-maiac-data-products
https://aeronet.gsfc.nasa.gov
http://www.pm25.in
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Daily PM2.5 concentration was obtained by averaging hourly measurements using a 75% criterion
(measurements covering ≥ 18 h/day were used to calculate the daily mean). Using the outer fences [72],
0.1% of the samples were removed as outliers.

2.3. Data of the Covariates

MAIAC AOD imputation included the following covariates: coordinates (latitude and longitude)
and their derivatives of square and products, elevation, temporal index (Julian day), 1-km gridded
surface daily meteorology (air temperature, air pressure, relative humidity, and wind speed) fusing
ground measurements and reanalysis data [73,74], daily PBLH, and regional-level daily AOD from the
Modern-Era Retrospective analysis for Research and Applications Version 2 (MERRA2) [75]. PM2.5

modeling included the following covariates: coordinates (latitude and longitude) and their derivatives
of square and products, elevation, daily MAIAC AOD (after imputation), temporal index (Julian day),
and the same gridded surface meteorology, PBLH and MERRA2 AOD. For details (i.e., sources, quality
and match with the measurement data) about these covariates, please see Supplementary Section S2.

2.4. MAIAC AOD for Estimation of Daily PM2.5

There is a potential temporal mismatch between MAIAC AOD from the Terra and Aqua sensors
and daily PM2.5 since satellite overpass time is approximately between 10:30 am and 1:30 pm, and there
is NO hourly satellite AOD available to obtain daily averages. But by using the hourly measured AOD
of two AERONET sites in the study region, the comparison between the 550 nm AOD mean during
the 60-minute window of the overpass time (approximately 9:30 am to 2:30 pm) and the daily 550 nm
AOD mean shows a very high significant correlation (0.99, p-value < 0.01) between both with a high R2

(0.98). The summary of hourly AOD shows the hourly trend of AOD within a day that suggests the
averages between 9:30 am to 2:30 pm approximately approached a daily average of AOD in the study
region (average AOD: 0.469 vs. 0.473). The test results showed that the average AOD between 9:30 am
to 2:30 pm can be representative of daily AOD with a small difference for the study region.

The daily PM2.5 was also compared with the PM2.5 mean between 9:30 am and 2:30 pm. The result
showed that the correlation between both PM2.5 means was 0.95 (p-value < 0.01) with a high R2 (0.9),
indicating a statistically significant association. Our test also shows the adjusted satellite AOD presented
a significant correlation (0.53) with daily PM2.5 (p-value < 0.01). In statistical terms, the satellite AOD
mean between 9:30 am and 2:30 pm, although temporally misaligning with the daily mean, can be
used as a valid and reliable predictive variable for estimation of daily PM2.5 mean. Similar methods
have been used in many existing studies [46,54,59,69,76–78].

3. Methods

For both imputation of MAIAC AOD and spatiotemporal estimation of PM2.5, the base models of
the autoencoder-based residual deep network (Figure 1a) were aggregated in the modeling framework
of bagging (Figure 1b). Section 3.1 describes the autoencoder base models, Section 3.2 provides
the description of the bagging framework, and Sections 3.3 and 3.4 introduce training and model
evaluation respectively.
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3.1. Autoencoder-based Residual Network

In the base residual network, the autoencoder was introduced to construct the internal network
topology (Figures 1a and 2). Autoencoder is a special type of neural network with a symmetrical
structure from the encoding to decoding layers and the same input and output variables in
an unsupervised or supervised manner [79,80]. It is designed to learn efficient data compression or
latent representation coding [81,82] by the middle latent layer (Figure 2), which can improve learning
efficiency [83]. Supplementary Section S3.1 presents the autoencoder’s basic formulas.

Residual connections have been effectively leveraged to improve learning efficiency in CNN [63,84],
and multilayer perceptron [85,86]. Here, residual connections were introduced into the base models of
autoencoder. A residual connection needs its starting and ending layers to have the same number
of nodes. The autoencoder provides a natural structure for residual connections to be implemented.
Residual connections provide the shortcuts from the encoding layer to the decoding layer, and these
shortcuts boost the efficient backpropagation of errors from the deep decoding layers to the shallow
encoding layers in a parallel way in the learning of the parameters [84,87]. Thus, the introduction of
residual connections can effectively solve the potential issues of saturation of gradients and degradation
of accuracy in the traditional neural network, as demonstrated in the fusion of the meteorological
parameters [85,86]. For technical details, please see Supplementary Section S3.2.

Thus, the base model, autoencoder-based residual deep network consists of the input layer,
the internal core of autoencoder, the output layer and residual connections (Figure 2). Residual
connections are implemented using the full shortcuts from each encoding layer to its corresponding
decoding layer in the autoencoder core, and they can efficiently reduce the issue of gradient vanishing
in the neural network of deep layers and improve its performance. The numbers of nodes in the
encoding layers in the autoencoder core present a declining trend so as to extract effective latent
representations for the input data. The base residual neural network was introduced and successfully
applied previously [76,87].

The base models (including an optimal number of layers and the number of nodes for each layer)
of residual deep autoencoder for imputation of satellite AOD and spatiotemporal estimation of PM2.5

are presented in Figures 2a and 2b respectively. In a typical autoencoder-based residual deep network
in Figure 2a,b, the network consists of the input layer, the autoencoder core, and the output layer; the
autoencoder core has three parts, i.e., multiple encoding layers, a latent representation layer, and the
decoding layers corresponding to the encoding ones; each layer has a number of nodes that represent
random variables in this layer; by the weighted summation (the parameters to be learned: weights and
bias), each node is linked partially or fully to the nodes of the previous layer and those of the next layer
if any. The activation function or/and batch normalization may be added after each layer or before
the output layer to improve learning efficiency. As indicated by the dashed lines in Figure 2, residual
connections were implemented as the shortcuts between the encoding layers and the corresponding
decoding layers.

For regression of a continuous variable, such as MAIAC AOD or PM2.5, the autoencoder has been
adapted to match the output of the target variables. Based on sensitivity analysis, two different loss
functions were defined for the MAIAC AOD imputation and PM2.5 estimation:

(1) For the pixel-level MAIAC AOD imputation, there is a large sample size that makes available
massive samples for training the outputs of multiple variables (input covariates and the target variable
of AOD). Such a multivariable output ensures a better sharing of the parameters between the input
covariates and the target variable [88,89] than that of the sole output to reduce over-fitting (Figure 2a).
The loss function is defined as follows:

L(θW,b) =
1
N

[
`y(y, f (y)

θw,b
(x)) + `X(x, f (x)θw,b

(x))
]
+ Ω(θw,b) (2)

where L(θW,b) is the total loss, x is the matrix of covariates, N is the sample size, y is the target variable

(MAIAC AOD) to be estimated, f (y)
θw,b

(x) denotes the model’s estimates (output) for y based on the
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parameters, θW,b, `y(y, f (y)
θw,b

(x)) denotes the loss of the target variable, y, `x(x, f x
θw,b

(x)) is the loss of

the model’s input x, and Ω(θw,b) denotes the regularizer for θw,b, In Equation (2), the extra item,
`x(x, f x

θw,b
(x)) works similar to a regularizer for the estimation of y.

(2) For the PM2.5 spatiotemporal estimation, there is a much smaller sample size than that of the
MAIAC AOD, which may result in the trained model with the multivariable output developing a high
bias in training. Thus, for PM2.5, only a target variable is output with a regularizer (Figure 2b):

L(θW,b) =
1
N

[
`y(y, f (y)

θw,b
(x))

]
+ Ω(θw,b), (3)

where fθw,b(x) represents the estimate of y, and Ω(θw,b) denotes the regularizer of elastic net [90].
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For regression of a continuous variable (y and x), the mean square error (MSE) is used for the loss
functions. The activation function of rectified linear unit (ReLU) was used in most of hidden layers to
maintain efficient backpropagation of the error during training (see Supplementary Section S3.3 for
details). For the output layer of a regression of continuous variables, the linear activation function
is used. Sensitivity analysis showed that this configuration of the ReLU-linear activation functions
effectively prevented the gradients from premature saturation with reliable estimations.

3.2. Bagging of Residual Networks

As a model averaging meta-algorithm, bootstrap aggregating (bagging) is designed to improve the
stability and performance of single/base machine learning algorithms [91]. It can reduce the variance and
over-fitting in the predictions, and extensively applied in regression and classification. The well-known
algorithm of random forest is a typical bagging method. In this paper, autoencoder-based residual
neural network was used as the base model in bagging.

By the variation in the samples and the features of each bootstrap and the difference in initialization
of weights and bias for each training, the trained models can be less related, which can reduce the
variance in the predictions by the ensemble models [67]. Assume n models with the errors εi (I = 1,

2 . . . , n) drawn from a zero mean multivariate normal distribution, εi ∼ MVN

0,


ν . . . c
. . . . . . . . .
c . . . ν




with the variance E
(
ε2

i

)
= ν, and covariance E(εiε j) = c. Then, the ensemble prediction determined by

averaging is 1
n
∑

i εi. The expected square error of the ensemble prediction is:

E
[(1

n

∑
i
εi

)2]
=

1
n2 E

[∑
i

(
ε2

i +
∑

j,i
εiε j

)]
=
ν
n
+

(n− 1)c
n

(4)

where c represents the covariance between the errors of the models. c = 0 indicates no correlation
between each model’s errors, and the expected squared error of the ensemble averages is 1/n of the
error variances, i.e., 1

nν. Furthermore, c = ν indicates a perfect correlation between the model’s errors,
and the expected squared error of the ensemble averages is still ν, indicating no change.

In the bagging framework (Figure 1b), bootstrapping was conducted for the population samples
and the features (covariates) to obtain a set of training samples to train the base model. Stratification
by the combined factors of a monthly index and a sample’s county index was conducted for each
bootstrap to ensure the even distributions of the samples across time and space. For each bootstrap [92],
approximately 63.2% of the samples were selected to train a base model, with one-half of the remaining
36.8% samples used as validation samples and the other used for independent tests. For bootstrapping
of the features, this method may indicate that only approximately 63.2% of the features would be used
to train the models. Such a small number of covariates may result in bias during training. Thus, several
important covariates (e.g., latitude, longitude, elevation, temporal index, PBLH, and/or MAIAC AOD)
were kept as fixed covariates, and bootstrapping was conducted for the remaining features. Therefore,
by bootstrapping the selective covariates, a base model had better generalization than did a complete
bootstrapping of the features.

With the bagging of residual networks, the ensemble predictions were obtained to generate the
sample mean, standard deviation and standard error. As a metric of uncertainty, the standard deviation
can be used with the mean to construct a prediction distribution. Subsequently, the 95% confidence
interval of a mean of the bagging predictions can be retrieved through the standard error [93] of each
pixel of the grid.
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3.3. Model Training

For the imputation of MAIAC AOD, the daily pixel-level dataset has a large sample size, ranging
from approximately 100,000 to 600,000 pixels (each pixel regarded as a sample). Given a large sample
size and the complex interaction between meteorological factors and MAIAC AOD, a daily-level base
model was trained with the samples from three continuous days, using the middle day as the target
day. In other words, a 3-day window moved continuously over the days from 31 December 2014
to 1 January 2016 so that 365 daily-level models of 2015 were trained to simulate 365 full days of
data. The result statistics were also based on all 365 days of estimated results from these daily-level
models. If all MAIAC AOD samples for 2015 were combined to train a global model, this would result
in a sample size that was too large, and training would be difficult. Daily-level modeling can avoid
an intractable sample size and overly demanding computing resources and allows for a temporally
varying association between MAIAC AOD and meteorology [54,94]. For the output type, sensitivity
analysis showed better performance when the network of covariates shared an output (Figure 2a) than
when the non-sharing version was used. The test showed little contribution of regular regularizers of
L1 and L2 [95] that are used to reduce over-fitting in machine learning. They did not work well here
and thus were not used.

For spatiotemporal estimation of PM2.5, given a small sample size (33,119), a single (not daily-level)
base model was trained for 2015. For such a sample size, the output of multiple variables might result in
bias during training. Sensitivity analysis showed a better generalization, with the PM2.5 concentration
as the sole output (Figure 2b). For a small training sample size, too many output parameters suppress
the target variable’s estimation, thus introducing bias during training. The regularizer of the elastic net
was used in the model to prevent over-fitting during training [90].

For training, the gradient descent was generally used as the optimizer to find the (sub-) optimal
solution for the models. A grid search was leveraged to find an optimal solution for the hyperparameters
(see Supplementary Section S4 for details).

For MAIAC AOD imputation, due to the limitation of computing resources, only 10 residual
networks were trained for each day by bootstrapping to obtain the ensemble averages, and no standard
deviations were generated due to a small number of models. For PM2.5, 200 models were trained.
Therefore, the ensemble means and their standard deviations were derived through the bagging of
residual networks.

3.4. Validation and Independent Test

The coefficient of determination (R2), root mean square error (RMSE) and scatter plots with
point densities were reported in the training, validation, and testing of the MAIAC AOD and PM2.5.
To fairly evaluate the proposed approach, GAM, regular feed-forward neural network, and XGBoost
were also trained as base models using the same dataset, and the results were compared with
those of the proposed method. As a scalable end-to-end tree boosting learning system, XGBoost
(https://xgboost.readthedocs.io) (see Supplementary Section S5 for details) is widely used to achieve
state-of-the-art results in many domains [65], and Just et al. (2018) [96] used it to correct the measurement
errors of MAIAC AOD. Here, as a state-of-the-art method, XGBoost was tested for spatiotemporal
estimation of PM2.5 and compared with the proposed approach.

For evaluation of the proposed method, the training, validation and independent test R2, RMSE
and scatter plots (with sample point density) of the predicted values or residual vs. measured values
were reported for the individual base models and ensemble predictions. In addition, for the MAIAC
AOD, 365 daily-level ensemble models were trained, and the boxplots of R2 and RMSE were reported
with the statistics (mean and range). Four typical seasonal days (i.e., 20 April 2015 for spring, 20 August
2015 for summer, 20 October 2015 for autumn and 20 December 2015 for winter) from 2015 were
selected to present the results. Each of the four days selected represented a typical pattern of PM2.5

concentration within that day’s season (e.g., low in summer and high in winter). For spatiotemporal
estimation of PM2.5, the ensemble test results were summarized and reported for the whole dataset.

https://xgboost.readthedocs.io
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In addition to the independent tests in training, additional independent tests were conducted
separately for the imputation of MAIAC AOD and the estimation of PM2.5 for rigorous evaluation of
the trained models’ generalization. For the MAIAC AOD, the measurement data and their interpolated
AOD at 550 nm (see Section 2.2.2 for spectral interpolation) were extracted from two AERONET stations
(Supplementary Figure S2 for their locations) as the third-party ground truth values to evaluate the
imputed satellite AOD. For PM2.5, 2015 measured PM2.5 data from the monitoring station of the U.S.
Embassy (see Supplementary Figure S2 for its location) in Beijing were used as the third-party ground
truth values to evaluate the daily grid surfaces of the ensemble-predicted PM2.5 for the Jing-Jin-Ji
study region.

For practical applications, the normal value ranges were defined for the covariates, AOD and
PM2.5 to filter possible extreme values (see Supplementary Section S6 for details).

3.5. Workflow for Imputation of MAIAC AOD and Estimtion of PM2.5

Bagging of residual base models (Figure 2 for the base model; Figure 1 for bagging framework)
was developed as the core approach for the imputation of satellite AOD and estimation of PM2.5 at high
spatiotemporal resolution. Figure 3 presents a workflow graph with the box in yellow indicating the
core bagging method. The following seven paragraphs briefly describe specific steps of this workflow.

(1) Collection of satellite AOD data (i.e., MAIAC AOD for this study). This involved matching of the
image tiles in time and space with the study region, and data downloading.

(2) Pre-processing of satellite data. This involved re-projection of the satellite images to the target
coordinate system, filtering of invalid and noisy AOD, possible mosaic, cropping and masking of
image tiles for the study region, and fusion of images from different sources (i.e., Aqua and Terra
sensors, see Supplementary Section S1 for details).

(3) Collection and pre-processing of the covariates. The covariates included meteorological
factors, MERRA2 data (e.g., PBLH and coarse-resolution AOD), coordinates, and elevation
etc. Pre-processing involved the removal of noisy data, re-projection and re-sampling of the
data from different sources, and the fusion of meteorological data. The method of the residual
deep network was used for the interpolation of meteorological data. For details, please refer to
Supplementary Section S2 and [85,86].

(4) Imputation of missing satellite AOD. The core method proposed was used for imputation.
This step involved training, validation, and testing of the daily-level imputation models (Figure 2a),
and bagging (Figure 3) of multiple outputs. A grid search was conducted to retrieve optimal
hyper-parameters for imputation.

(5) The fusion of available and imputed satellite AOD. This involved the mosaic of both AOD,
validation of the results, and check of the output to ensure the justification (e.g., a reasonable
transition between available and imputed AOD).

(6) Estimation of spatiotemporal PM2.5. The covariates dataset from (3) and the satellite AOD with
the complete spatiotemporal coverage from (5) were used as the input of explanatory variables.
Optimization of the base models (Figure 2b) and bagging was conducted by grid search in training,
validation, and testing. Ensemble averaging over the outputs from multiple models was made to
get the final mean and standard deviation of PM2.5.

(7) Grid output of ensemble predictions and standard deviation (as an uncertainty indicator) of
PM2.5 at high spatiotemporal resolution.
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4. Results

4.1. Data Summary

In total, 33,119 valid daily PM2.5 measurements were obtained from 102 monitoring stations
in 2015. The average concentration was 80.20 µg/m3, higher in the south than that in the north
(89.07 µg/m3 vs. 65.40 µg/m3, respectively) (Supplementary Figure S2) and more than twice in winter
(January, February, and December) than that in summer (June to August) (121.91 µg/m3 vs. 57.16 µg/m3,
respectively). Statistics of the covariates (the mean, standard deviation, and Pearson’s correlations
with PM2.5 and MAIAC AOD) for the whole year and by season are shown in Supplementary Table S1.
The mean MAIAC AOD was 0.38, higher in the south than that in the north (Figure 4a). The seasonal
trend of summer vs. winter (0.55 vs. 0.43, Supplementary Table S1) AOD was opposite to the seasonal
trend of PM2.5 (57.16 vs. 121.91µg/m3, Supplementary Figure S2). After the PBLH-RH conversion of
column MAIAC AOD to ground aerosol extinction coefficient, the correlation between AOD and PM2.5

improved from 0.39 to 0.53.
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On average, approximately 55% of AOD data were missing for 1-km resolution AOD pixels over
365 days in 2015 (see Figure 4b for spatial distribution), with a higher missing rate in summer than in
winter (69% vs. 50%, respectively) (see Supplementary Figure S3b and d for spatial distribution of
their availability).

4.2. Daily-Level Imputation of MAIAC AOD

The grid search results showed the following optimal options in model performance: a mini-batch
size of 512, ReLU as activation functions for hidden layers, and linear unit for the output layer.

Overall, the residual deep network achieved higher mean training and test R2 values (0.96 for both)
and mean lower RMSE values (0.057) than those of the regular feed-forward neural network (mean R2:
0.92; mean RMSE: 0.063) and non-linear GAM (R2: 0.86; RMSE: 0.089) (Table 1). Here, training R2 or
RMSE was for about 2/3 of the samples used to train the model, while test R2 or RMSE was for about 1/3
of the samples not used in training. The test metrics (R2 and RMSE) reflected the practical performance
and generalization for a trained model better than the training metrics. The small difference in R2

and RMSE between the training samples and the test ones indicates no or small over-fitting for the
trained model.

The residual deep network improved R2 by 4% compared to the feed-forward neural network
and by 10% compared to the GAM. The boxplots for the 365 daily R2 and RMSE values are shown for
three models in Figure 5, in which the residual deep network outperforms the other two models.
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Figure 5. Boxplot of R2 (a) and RMSE (b) for three models, i.e., residual deep network, feed-forward
neural network and GAM (generalized additive model) in imputations of daily-level MAIAC AOD
(yellow: high performance; orange: moderate performance; blue: low performance).

The AOD imputation results over four typical seasonal days are shown in Table 1 and Figures 6
and 7. Autoencoder-based residual deep networks consistently had higher test R2 (≥0.87) and lower
RMSE values than those of the feed-forward neural work, with the largest improvement in winter (test
R2: an increase of 8–14%; test RMSE: a decrease of 0.02–0.031). In addition, the loss in the learning curves
of the residual networks for the four typical seasonal days showed fast convergence with lower loss
than those of the regular feed-forward neural networks (Supplementary Figure S4). Supplementary
Figures S5 and S6 show the scatter plots of the observed vs. predicted MAIAC AOD, and their
corresponding residual plots respectively in the test with sample point density, demonstrating that
most of the test samples (in yellow to red) of MAIAC AOD were accurately estimated by the models.

Missing MAIAC AOD was imputed for each day in 2015 using the trained residual deep networks.
The images of the original AOD with missing values and imputed AOD are presented for the four
typical seasonal days mentioned above (Figures 6 and 7 and Supplementary Figure S7).
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For each of two typical seasonal dates (a spring day: 20 April 2015 for Figure 6; an autumn
day: 20 October 2015 for Figure 7), additional pixels having available observed MAIAC AOD in the
southern (for 20 April 2015) or northern (for 20 October 2015) sub-region were removed as missing
values. In total, approximately 50% of available MAIAC AOD was used as observed values to validate
the MAIAC AOD imputed by the re-trained models. In other words, the remaining 50% of samples
of the available pixels were used to re-train the models. The performances (test R2: 0.95–0.96) of the
re-trained models (reported in Supplementary Table S2) were similar to those (test R2: 0.96–0.97) of the
models trained using all the samples and the predicted AOD for the additional missing values show
reasonable transition between available and imputed MAIAC AOD based on their original observed
values to a certain degree. The models trained using different samples due to AOD availability had
the differences in the imputed values at some locations, as shown in b vs. d in Figures 6 and 7.
Such differences were substantial for the models trained using a small size of available AOD samples
(e.g., for 20 October 2015), compared with those trained using a big size of samples (e.g., for 20 April
2015). Thus, for a high missing proportion of AOD samples, the limited samples may be insufficient
for a valid evaluation, particularly for the spatial pattern of the massively imputed AOD. Here,
the correlation between the imputed AOD and co-located PM2.5 measurements was used indirectly to
evaluate the imputed AOD. The resultant correlation (0.61) shows that the imputed AOD moderately
captured spatial variability of aerosol mass for 20 April 2015.
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Figures 6a and 7a present the original MAIAC AOD of two days (representative with minimum
missing values (spring) and substantial missing values (autumn)), with a low (a) and a high (c) missing
proportion. The imputed results showed reasonable patterns of spatial variation between the available
and imputed AOD for the four typical seasonal days, illustrating reliable imputation results.
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Table 1. Comparison of GAM, feed-forward neural network and residual deep network for daily-level MAIAC AOD imputation.

Date Model Training R2 Training RMSE Test R2 Test RMSE

Averages for all days (Rangea)
Residual Deep Network 0.96 (0.85 to 0.99) 0.058 (0.015 to 0.12) 0.96 (0.85 to 0.99) 0.057 (0.011 to 0.15)

Feed-forward Neural Network 0.90 (−0.2 to 0.91) 0.065 (0.022 to 0.21) 0.92 (0.27 to 0.98) 0.063 (0.018 to 0.22)
GAM 0.86 (0.55 to 0.97) 0.089 (0.026 to 0.21) 0.86 (0.54 to 0.97) 0.089 (0.021 to 0.26)

04/20/2015
Residual Deep Network 0.97 0.072 0.97 0.073

Feed-forward Neural Network 0.95 0.078 0.95 0.078
GAM 0.90 0.089 0.90 0.088

07/20/2015
Residual Deep Network 0.97 0.13 0.96 0.12

Feed-forward Neural Network 0.92 0.15 0.93 0.14
GAM 0.91 0.15 0.91 0.15

10/20/2015
Residual Deep Network 0.96 0.14 0.96 0.14

Feed-forward Neural Network 0.92 0.13 0.92 0.13
GAM 0.88 0.17 0.88 0.17

12/01/2015
Residual Deep Network 0.93 0.061 0.87 0.064

Feed-forward Neural Network 0.74 0.086 0.79 0.084
GAM 0.74 0.094 0.73 0.095

Note: Rangea: The interval between the minimum value and the maximum one among the performance metrics.
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4.3. Spatiotemporal Estimation of PM2.5

The residual deep network for PM2.5 prediction (Figure 2b) achieved a higher mean test R2 (0.86)
and lower mean RMSE (26.40µg/m3) than did the feed-forward neural network and GAM (R2: 0.48–0.78;
RMSE: 34.21–50.84 µg/m3) (Table 2). The loss learning curve (Supplementary Figure S8) shows better
convergence with a lower loss for the residual deep network than for the regular feed-forward neural
network. Compared with XGBoost, the individual base residual network achieved similar training
performance with a slightly lower test R2 (approximately 3%). However, bagging of the residual
networks achieved similar test R2 (0.90) and RMSE (22.4 µg/m3) for the ensemble predictions as those
from XGBoost. The ensemble predictions of the residual networks improved more over the base
network (4%) than those of XGBoost and GAM (1%). Scatter plots (Figure 8) of the predicted (a)
and residual (b) PM2.5 vs. observed PM2.5 with sample point density showed an accurate match
(test R2: 0.90) between the ensemble predictions and the observed PM2.5.

Table 2. Comparison of GAM, feed-forward neural network and residual deep network for PM2.5

spatiotemporal estimation.

Model Type Training R2 Training
RMSE Test R2 Test RMSE Bagging

Test R2
Bagging

Test RMSE

Residual Deep Network Mean/Totala 0.89 23.08 0.86 26.32 0.90 22.40
Rangeb 0.86–0.92 21.76–26.71 0.82–0.89 23.17–29.95 - -

XGBoost
Mean/Total 0.88 24.07 0.89 23.06 0.90 22.41

Range 0.86–0.89 22.14–27.25 0.85–0.90 21.73–26.68 - -

Feed-forward Neural
Network

Mean/Total 0.82 31.61 0.78 34.21 0.84 25.48
Range 0.77–0.85 26.34–35.56 0.73–0.82 29.83–38.35 - -

GAM
Mean/Total 0.48 50.66 0.48 50.84 0.49 49.82

Range 0.47–0.49 48.97–52.98 0.46–0.50 48.97–52.98 - -

Note: Mean/Totala: mean of 200 models for training and testing; total of ensemble predictions for each test sample
by bagging of the models; Rangeb: indication of minimum and maximum of the metrics of 200 models, no value
available for bagging test.
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of 2015.

The predicted PM2.5 grid surfaces with standard deviations of the four typical seasonal days
are presented in Figure 9 (spring and autumn) and Supplementary Figure S9 (summer and winter).
The seasonal and spatial distributions of PM2.5 on these days are similar to the yearly average results
as discussed earlier. Standard deviations from ensemble PM2.5 predictions are shown in Figure 9b,d
and Supplementary Figure S9b,d. Supplementary Figure S10 shows 95% confidence interval results,
which can be used in health outcome analysis as a measure of uncertainty in PM2.5 predictions.
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Ensemble-predicted PM2.5 grid surfaces obtained by XGBoost are presented in Supplementary
Figure S11. Despite similar spatial distributions on a large scale, PM2.5 predictions from XGBoost
showed problematic results (i.e., abrupt and unrealistic variations) at certain locations on a local scale.

4.4. Additional Independent Test

In addition to the independent test results reported in Tables 1 and 2, additional independent tests
based on the ground truth AOD from two AERONET sites and the ground truth PM2.5 measurements
from a monitoring station at the U.S. Embassy in Beijing showed consistent agreement between the
ensemble predictions and observed values for both MAIAC AOD (total correlation: 0.93 with R2

of 0.82 and RMSE of 0.212) and PM2.5 predictions (total correlation: 0.99 with R2 of 0.97 and RMSE
of 12.23 µg/m3) (Table 3). Scatter plots between predicted and observed values are presented in
Supplementary Figure S12, illustrating reliable model performance.
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In addition, the original available MAIAC AOD against AERONET AOD shows a slightly higher
correlation and R2, and slightly lower RMSE than the complete AOD (including available and imputed
values) (Table 3). The difference in the performance is very small, and the validation shows the
reliability of the proposed approach.

Table 3. Validation of residual deep network with AERONENT AOD (MAIAC AOD) and U.S. Embassy
monitoring station (PM2.5).

Type Site #Samples Correlation R2 RMSE

MAIAC AOD

Beijing (Available and imputed AOD) 231 0.92 0.80 0.202
Beijing (Available AOD) 167 0.94 0.83 0.184

Beijing-CAMS (Available and imputed AOD) 274 0.93 0.82 0.220
Beijing-CAMS (Available AOD) 190 0.95 0.84 0.191

All 505 0.93 0.82 0.212

PM2.5 U.S. Embassy station 365 0.99 0.97 13.23 µg/m3

5. Discussion

5.1. Strengths of Bagging of Residual Networks

This paper presents a novel approach, i.e., bagging of residual networks for robust imputation
of MAIAC AOD and estimation of PM2.5 at a high spatiotemporal resolution. In this approach,
autoencoder was used as the base to implement residual connections to boost backpropagation of
errors in learning and hence reduce gradient saturation and accuracy degradation and improve model
performance. Potential model over-fitting was reduced by the parameter sharing in the multivariable
output (for MAIAC AOD) or the use of an elastic net (for PM2.5). Ensemble learning through bagging of
autoencoder-based residual networks further improved model performance. The presented approach
could reliably address massive non-random missingness of satellite AOD and hence predict PM2.5 at
high spatiotemporal resolution and with a complete spatiotemporal scale. For the challenges of massive
missing satellite AOD, limited data of PM2.5 and publicly available covariates, and local variation
of concentration probably caused by more traffic emissions than previously, compared with other
existing methods, this proposed approach achieved PM2.5 prediction with complete spatial coverage,
a high spatiotemporal resolution, and cutting-edge performance. Particularly, in winter, complex
meteorological conditions (more clouds and snow) caused the difficulty in training the GAM and
feed-forward neural network for AOD imputation than in other seasons. The residual deep network
achieved much better performance than the other two models in winter, illustrating its robustness
under challenging conditions. The accurate spatiotemporal estimation of PM2.5 has an important
implication for the reduction of the bias in exposure assessment and in turn the epidemiological studies
of health effects.

As a globally optimal method, support machine vector has been increasingly used for PM2.5

estimation [97–99]. However, the scalability of this method is constrained in studies with a large sample
size (e.g., high spatiotemporal resolution AOD over a long period and a large region). In addition,
choosing the appropriate hyperparameters and kernel functions requires time-consuming feature
engineering operations and expert knowledge [100]. Comparatively, the bagging of residual deep
network approach is easier to implement, requiring fewer manual operations, and achieving reliable
model performance with publicly available limited covariates.

Furthermore, bagging improved test R2 by 4–6% over the individual base models for residual
networks and regular feed-forward neural networks; the improvement was minimal (1%) for GAM
and XGBoost (Table 2). Since XGBoost is an ensemble learner based on multiple decision trees, further
bagging of multiple XGBoost has limited contribution to model performance. GAM uses a back-fitting
algorithm to fit parameters, which results in small variation in model parameters and hence small
differences between trained models and subsequently little improvement in bagging predictions.
Comparatively, as a non-ensemble learner, the residual deep network has different initializations of the
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parameters and local optimal solutions attained by gradient descent, which makes the trained models
from bootstrapping less related, thus more improvement from bagging than GAM and XGBoost.

With small changes (e.g., input and output) and tuning by regular grid search, the modeling
framework (Figures 1 and 2), and the hyperparameters used (Supplementary Section S5) may
be applied to obtain an optimal solution for spatiotemporal estimation of similar air or other
environmental pollutant variables including satellite AOD and PM2.5. The solution may not be globally
optimal but is often better than traditional methods and applicable to many practical settings [67].
The open-source package of Python (https://pypi.org/project/baggingrnet) for the proposed approach
was published, which provides available functions and specific examples to illustrate the applications
of the proposed approach.

For the imputation of satellite AOD and estimation of PM2.5, the network structure (Figure 2) and
loss functions (Equations (2) and (3)) proposed in this study can be used to train a locally optimal
model that is often useful sufficiently for practical applications [67]. With this as a benchmark model,
and depending upon the time and resources available, grid search may be conducted limitedly
or extensively to find optimal values for hyperparameters to have a better performance. For the
implementation of the proposed approach, initialization and specific values of several important
hyperparameters are given and primary optimizations are briefly described in Supplementary Section
S5—the workflow (Figure 3) with specific steps is given.

5.2. Spatiotemporal Variability of Predicted PM2.5

As one of the world’s most polluted areas, the Jing-Jin-Ji study region has a high annual PM2.5

concentration, far exceeding the World Health Organization PM2.5 annual standard of 10 µg/m3 [101].
The major sources of PM2.5 include coal combustion in industrial and residential areas and emissions
from automobile exhaust [21]. Due to dense industrial plants and population, the middle-southern
urban areas have higher PM2.5 concentrations than do the northern rural and remote areas. Additionally,
due to the increase in coal consumption for heating, winter has much higher PM2.5 concentrations than
those of other seasons. Autumn has higher PM2.5 concentrations than those of spring and summer
likely due to the influence of meteorology (lower wind speed). Daily grid surfaces of predicted PM2.5

(Figure 7 and Supplementary Figure S9) are reasonable in seasonal and spatial patterns. To examine
how spatiotemporal autocorrelation was captured by the proposed approach, daily Moran’s I [102]
was calculated for the residuals. The results showed p-value > 0.05 for 150 days, indicating complete
spatially random predictions; for the other 215 days, Moran’s I was small (mean: 0.09), indicating
that dominant spatial autocorrelation was captured by the trained models through the input of proxy
variables (e.g., coordinates, Julian day and spatiotemporally varying AOD).

Furthermore, the ensemble predictions of PM2.5 by bagging of residual networks presented better
spatial natural variation than did XGBoost. The use of decision trees as the core component in XGBoost
resulted in the discretization of continuous covariates that, in turn, caused the abrupt spatial variation
of predicted PM2.5 at some locations (Supplementary Figure S11). Comparatively, the residual deep
network maintained the full range of continuous covariates (no discretization) in the trained models,
which could avoid potential inaccuracy resulting from discretization in decision trees.

5.3. Uncertainty in Predicted PM2.5

The spatiotemporal variability of PM2.5 concentration is affected by multiple factors
(e.g., meteorology, emission sources, and land-use) and their interactions. Uncertainty in sampling
and input variables directly leads to uncertainty in predicted PM2.5 concentrations. Intuitively, high
uncertainty in the input data can result in high standard deviation, thus uncertainty in the predictions,
indicating a wide confidence interval. Such uncertainty, if well-characterized, can be used to simulate
exposure prediction errors. One strength of bagging is to generate the standard deviation of a predicted
mean as a measure of uncertainty, which can further be used in health outcome analysis [103–105].

https://pypi.org/project/baggingrnet
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Hyperparameters (e.g., mini-batch size, activation function (sigmoid, tanh, ReLU and linear) and
output type (multivariable or sole-variable)) showed important influences on the standard deviation
of predicted PM2.5. Hyperparameters had a significant effect on the reduction of standard deviation.
A search for optimal solutions of hyperparameters is necessary to improve model performance and
computing efficiency and decrease potential bias. Additionally, for this study, 200 models were trained
due to limitations of computing resources (the computing configuration of an Intel (R) Xeon(R) with 8
CPUs (E5530, 2.4G) and 32 G memory), but with higher capability computing systems, more models
can be trained that can possibly further reduce standard error in prediction.

The correlations analysis between the standard deviation of the predicted PM2.5 and the
influential factors (Supplementary Table S3) showed more contributions of MAIAC AOD, longitude,
and meteorology (air temperature, air pressure, and elevation) to the standard deviation than those of
other factors (PBLH, MERRA2 AOD, and latitude). Compared with the other covariates, MAIAC AOD
is most associated with the standard deviation of ensemble-predicted PM2.5, which was determined
by its complex spatiotemporal variation subject to multiple factors including meteorology, emission
source, and surface reflectance.

5.4. Limitation and Prospects

The first limitation of this study is the uneven spatial distribution of PM2.5 training data, which are
highly concentrated in dense traffic and urban areas and are underrepresented in remote areas. Here,
stratification by county and month was conducted in bootstrapping to ensure an even distribution of
the samples across space and time. Because epidemiological studies primarily focus on populated areas
rather than rural and remote areas, such bias in exposure estimation is limited when evaluating the
health effects of PM2.5. The second limitation is the proposed method’s applicability for the imputation
of MAIAC AOD having a high missing proportion (e.g., >80%). For high missing AOD, the samples of
actually high or low AOD may be completely unavailable and thus, the trained models may be biased
and tend to be under- or overestimate the actual AOD. In the proposed imputation method, a 3-day
window was used to obtain a large sample rather than a day sample, and the added samples temporally
lagged before or after the target day can to a certain extent compensate the shortcoming of the samples
for a target day having a high proportion of missing AOD. In total, the proposed imputation method
achieved reasonable imputed values as shown in statistical performance metrics although having
limited over- or underestimations at some pixels. In addition to the validation based on the limited
samples, the correlation between the imputed AOD and the PM2.5 measurement data may be used to
evaluate the spatial variability of the imputed AOD. The third limitation is the lack of two relevant
variables, i.e., cloud fraction for AOD, and land-use for PM2.5, in the models due to unavailability.
Both variables may further improve the models. However, this has a limited influence upon the results
as shown in the test and validation. The fourth limitation is the temporal misalignment between
satellite AOD and daily PM2.5 mean since satellite AOD is available only during the overpass time
(approximately between 9:30 am and 2:30 pm) of each day. However, the data samples showed that
such misalignment just resulted in a small difference between both AOD means. In statistical terms,
satellite AOD was still a valid and reliable predictor for estimation of daily PM2.5 given a statistically
significant correlation between both.

The proposed approach was used in the spatiotemporal estimation of meteorological parameters
in a considerably extensive region, i.e., mainland China with reliable performance [85,86]. In the
future, the proposed approach will be used to predict PM2.5 concentration at a high spatial (1 km)
and temporal (daily) resolution for an extensive spatial (mainland China) and temporal (2000–2016)
domain. This will provide useful data for epidemiological studies of PM2.5 in China, particularly for
the period of 2000–2012 when no national PM2.5 monitoring data were available. Furthermore, with
PM2.5 constituent measurements available, this approach can be used to explore their spatiotemporal
trends in mainland China.
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6. Conclusions

This paper presents an approach of deep learning, i.e., bagging of autoencoder-based residual
networks for robust imputation of massive missing satellite AOD and estimation of PM2.5 concentrations
at a high spatiotemporal resolution. In the proposed approach, the autoencoder was used to extract
the latent representation and implement the residual connections to boost training and improve
generalization. For a large training sample size with the MAIAC AOD imputation, the output of
multiple variables enabled the sharing of parameters to reduce overfitting. In the case study of the
Jing-Jin-Ji metropolitan region, this approach achieved higher test R2 (0.96 for MAIAC AOD; 0.90 for
PM2.5) and lower RMSE (0.06 for MAIAC AOD; 22.3 µg/m3 for PM2.5), compared with those of the
regular feed-forward neural network and GAM. Compared with the state-of-the-art machine learning
method, XGBoost, this approach generated better spatial variation for grid surfaces of predicted PM2.5.
Furthermore, the bagging of residual networks generated the mean and standard deviation for the
distribution of a pixel-predicted PM2.5. With full spatial coverage by the imputation of missing MAIAC
AOD, the high-accuracy estimation of PM2.5 at a high spatiotemporal resolution can considerably
reduce the bias in exposure estimation for research on the acute, short-term, and chronic health effects
of PM2.5.
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