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Abstract: Reference data collected to validate land-cover maps are generally considered free of
errors. In practice, however, they contain errors despite best efforts to minimize them. These errors
propagate during accuracy assessment and tweak the validation results. For photo-interpreted
reference data, the two most widely studied sources of error are systematic incorrect labeling and
vigilance drops. How estimation errors, i.e., errors intrinsic to the response design, affect the accuracy
of reference data is far less understood. In this paper, we analyzed the impact of estimation errors
for two types of classification systems (binary and multiclass) as well as for two common response
designs (point-based and partition-based) with a range of sub-sample sizes. Our quantitative results
indicate that labeling errors due to proportion estimations should not be neglected. They further
confirm that the accuracy of response designs depends on the class proportions within the sampling
units, with complex landscapes being more prone to errors. As a result, response designs where the
number of sub-samples is predefined and fixed are inefficient. To guarantee high accuracy standards
of validation data with minimum data collection effort, we propose a new method to adapt the
number of sub-samples for each sample during the validation process. In practice, sub-samples are
incrementally selected and labeled until the estimated class proportions reach the desired level of
confidence. As a result, less effort is spent on labeling univocal cases and the spared effort can be
allocated to more ambiguous cases. This increases the reliability of reference data and of subsequent
accuracy assessment. Across our study site, we demonstrated that such an approach could reduce
the labeling effort by 50% to 75%, with greater gains in homogeneous landscapes. We contend that
adopting this optimization approach will not only increase the efficiency of reference data collection,
but will also help deliver more reliable accuracy estimates to the user community.

Keywords: validation; reference data; remote sensing; resolution; Accuracy assessment; response
design; quality control; sub-sampling; overall accuracy

1. Introduction

Over recent decades, the number of openly available geographic data sets has tremendously
increased along with their use in policy making, environmental monitoring, hazard prevention and
scientific studies. It is of paramount importance that their quality is rigorously evaluated to inform
users about their limitations and to limit contradicting results. Good practices in accuracy assessment
include recommendations about (1) the sampling design that determine how many sampling units
should be collected along with their locations; (2) the response design that defines the protocol for
labeling each sampling unit; and (3) a rigorous estimation of accuracy using specific metrics [1–5].
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A statistically rigorous assessment is thus a combination of a probability sampling design, appropriate
accuracy estimators, and a response design chosen in accordance with features of the mapping and
classification process.

Uncertainties linked to the sampling design and variance of the estimators are usually well
quantified, but validation methods typically assume that reference data are error-free. In fact, the
process of determining the so-called “ground truth” is seldom discussed in the literature and is often
considered a straightforward—yet costly—task. Nonetheless, generating authoritative reference data
sets remains a major challenge in accuracy assessment and it merits greater consideration in accuracy
assessment [6]. Errors can indeed alter the process of generating reference data and even a small
amount of errors can propagate and significantly impact the accuracy assessment [7–9]. There is thus a
need for new methods that offer better control over the quality of reference data.

Practical constraints, such as poor accessibility to the sample locations on the ground, often affect
the implementation of an ideal accuracy assessment protocol. For instance, this prompted Stehman [4]
to propose criteria for quality and statistical rigor while taking, at the same time, practical utility
(accessibility and reduced costs) into account. Another alternative is to replace ground observations
with photo-interpreted very high-resolution images. Photo-interpretation by a group of experts with
regional knowledge is often seen as the gold standard for reference data collection when dealing with
large-area thematic products. However, photo-interpretation is not perfect—it typically reaches 80%
accuracy—and it varies considerably among operators with accuracy levels ranging from 11% up to
100% [10]. Thematic errors (e) affecting photo-interpreted samples can be divided in three categories:
vigilance, systematic, and estimation errors:

e = evigilance + esystematic + eestimation (1)

Vigilance errors, i.e., loss of performance after performing the same monotonous task over a
long period, has been highlighted for a wide range of visual interpretation tasks [11]. Attitude, either
optimistic or pessimistic, may determine how an operator will respond to training for vigilance [12].
Drops of vigilance, which are difficult to predict and manage for an individual interpreter, can be
reduced by relying on more than one operator [13] either with consensual labeling or automated
cross-validation.

Systematic errors (esystematic) occur when a photo-interpreter is incorrectly reading images.
Reading of images and maps belongs to cartographic and visual literacy [14], a skill that changes
over time and can be improved with the development of geospatial thinking. Image interpretation
is a process that combines perception and cognition, both of which tend to facilitate identification
(the cognitive task of identifying a pattern) and signification (the assignment of a meaning to a
particular pattern [15,16]). The types of insight derived from imagery are strongly influenced by the
interpreter’s expertise. Experts bring specialized knowledge, highly attuned perceptual skills and
flexible reasoning abilities that novices lack [17]. There is however not always a strong relationship
between the field work experience of operators and their photo-interpretation accuracy [18]. This
might be explained by the dissimilarities between, on one side, air- and spaceborne images and, on
the other side, panoramic images in at least three important aspects: (1) the portrayal of features from
a downwards—often unfamiliar—perspective; (2) the use of wavelengths outside the visual portion
of the spectrum; and (3) the depiction of the Earth’s surface at unfamiliar scales and resolutions [19].
The most capable interpreters have keen powers of observation, coupled with imagination and a
great deal of patience [19]. Another individual factor potentially influencing image interpretation
accuracy is search strategy. Compared to random search, training in systematic inspection caused
higher performance [20]. Maruff et al. [21] have suggested that behavioral goals constrain the selection
of visual information more than the physical characteristics of the information. This suggests that
photo-interpreters with a search strategy based on previous experiences would be more successful at
extracting relevant information than someone randomly searching for this information. Geographers
would therefore be more successful than non-geographers during a single categorization round of aerial
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photos [22]. Accordingly, crowdsourcing (i.e., when photo-interpreters are replaced by volunteers) is
particularly prone to errors as it is open to anyone, regardless of the level of expertise of the volunteers.
Systematic errors can thus largely be avoided by providing training to photo-interpreters, by selecting
operators with local knowledge and by relying on multiple contributors [13].

Estimation errors (eestimation) arise when the class proportions within sampling units are imprecise
even when all labels related to the sampling units are correct. These errors stem from three main factors:
the number of sub-samples to label per sampling unit, the landscape structure, and the classification
system. Imprecise estimates of the proportion of different classifiers for mixed or transitional classes
reportedly account for most disagreements among photo-interpreters [23]. It has also been shown that
the accuracy of the labeling as well as the accuracy of the image-based classification generally decrease
when the sub-pixel heterogeneity increases [24]. Contrary to the systematic and vigilance errors, there
is currently no mechanism to control estimation errors. Therefore, even when best practices in quality
control are implemented (i.e., esystematic = 0 and evigilance = 0), uncertainties in the photo-interpreted
labels remain due to estimation errors. If left unchecked, these estimation errors can bias reference
data and subsequent accuracy assessments for they are intrinsically linked to the complexity of the
sub-pixel landscape structure. Here, we propose that estimation errors need to be managed in the
response design.

The objective of this paper is to untangle the intricate interplay between classification systems,
response designs and landscape fragmentation with regards to the estimation errors. Specifically, we
(1) quantify the impact of imprecise estimation of land-cover proportions on the accuracy of reference
data; and (2) propose a response design that optimizes the labeling effort. We particularly focused
on two aspects of response designs for binary and multiclass majority classification systems: their
structure (point-based vs. partition-based designs) and the labeling effort (the number of sub-samples
to be labeled per sampling unit). Because the three components of the errors (Equation (1)) are strongly
intertwined in real case studies, we relied on synthetic ground truth data which gave full control over
the sampling strategy and allowed us to isolate estimation errors. Synthetic ground truth is indeed
necessary to ensure that the actual properties of the data were known and to exclude effects due to
other sources of ground reference data error [25–27]. Our main contributions can be summarized
as follows:

• We provide an in-depth review of the different types of response designs and their applications;
• We analyze the performance of response designs for different types of classification systems;
• We generalize case-specific results using indices of landscape composition;
• We optimize the sampling effort with adaptive response designs that leverage the confidence

intervals of the estimated proportions.

2. Background

2.1. Types of Classification System

There is no single ideal classification system and it is unlikely that one could be developed [28].
Many classification systems have therefore been developed depending on the purpose of the map
and the scale of the analysis. Congalton et al. [29] suggest that all classes of a classification system
should be clearly determined at the start of mapping projects, which is not always the case [30]. Those
classification systems can be divided into three categories: semantic, aggregative and continuous.

A semantic classification system provides a formal description of the classes, including properties
and relationships with their sub-parts. They are usually preferred for describing spatial entities at
large scales like e.g., trees or buildings. Spatial entities unambiguously described by a semantic
classification system can in turn be used as diagnostic criteria also referred to as classifiers in the
context of classification systems [31] to build aggregative classification systems. In some cases, semantic
classification systems can be used to describe spatial regions instead of spatial entities [32]. In this case,
the semantic refers to a specific meaning that encompasses a large set of properties and relationships,
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e.g., a city (land use type) or a savanna (ecosystem type). To avoid ambiguity, all classes should be
precisely described by an ontology that includes a representation, a formal naming, and a definition of
their properties and relations [33].

When the spatial resolution of the image becomes coarser than the size of the spatial entities,
pixels can either represent a continuous field with the proportions of all (or a subset of) the semantic
classifiers [34], or can be described by an aggregative categorical classification system. For the latter,
the proportion of spatial entities is computed, and decision rules are applied to define the classes at the
coarser resolution [35]. These decision rules are usually based on a majority rule or on fixed threshold
values for class proportions.

Majority classification systems are the most prevalent type of aggregative classification systems
in land-cover mapping. For instance, all the first global land-cover maps used the International
Geosphere-Biosphere Programme (IGBP) classification system [30]. It is often implicitly assumed that
labels correspond to the class of the prevalent spatial entity within each mapping unit. The boundary
between purely semantic and majority classification systems is therefore fuzzy. The drawbacks are (1)
that majority is undefined when multiple classes are equally dominant; and (2) that no information
about the actual class proportions within the mapping units is conveyed to users. For example, a
majority label in a 10-class classification system could be assigned to a class covering between 10% (all
classes present in the same proportion) and 100% (“pure” class) of the area of the mapping unit.

Threshold-based classification systems are also a widely used type of aggregative classification
systems. They rely on a set of rules to partition the feature space of the classifiers’ proportions. Those
rules introduce sharp boundaries to the continuous field of the classifiers’ proportions to obtain
a limited number of categorical classes. The number of those classes usually exceeds the number
of classifiers in the mapping area. Threshold-based classification systems should be defined with
consistent classification systems such as the Land-Cover Classification System LCCS [31]. The LCCS
guarantees no overlap between classes and a full description of the possible combinations of classifiers
and is considered by Grekousis et al. [30] as the only universally applicable classification system. LCCS
is used for coarse to medium-resolution global land-cover maps [36,37], but also for high-resolution
object-based classification [32]. They provide a larger thematic precision (more classes from the same
set of classifiers) than majority-based classification systems, but they require definition of (often
arbitrary) thresholds and conditional statements to draw the boundaries between the classes. This
may lead to difficult naming conventions when the feature space of classifiers is large, and the rules
become complex.

Binary classification systems are a particular case of aggregative classification systems that
indicates whether a given classifier is present or absent inside a given pixel. Several examples include
global crop/non-crop [38], water/non-water [39] or forest/non-forest [40] maps. The labeling is then
defined by a proportion threshold. Most of the time, this threshold is set to 50%, which is then nearly
equivalent to a majority classification system for two classes, but can be unambiguously defined at the
proportion of 50% (unlike the majority). There are however examples where the threshold is not 50%,
e.g., 10% for a forest/non-forest map in arid regions [41].

2.2. Structures of Response Designs

The values of the accuracy parameters are strongly affected by the protocols implemented for
the response design. This includes the choice of spatial units and how within-unit homogeneity is
addressed when assigning class labels [42]. Generally, the sampling unit is the elementary unit that is
labeled according to the classification system of the map. In this study, the sampling unit is a pixel
and there is an agreement when the map classification and the response design converge to the same
label. The studied response design is therefore crisp, as opposed to alternative response designs where
the proportions of spatial entities are used to validate categorical variables, e.g., fuzzy validation.
Best practices in accuracy assessment suggest that photo-interpretation should rely on images of finer
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resolution than the map being validated. With finer resolution data, the sampling unit could appear as
heterogeneous. Three protocols can then be used to assign a reference value to those sampling units:

Direct assignment: a single label is directly assigned to the sampling unit; this is the most common
response design (see for instance Perger et al. [43]);
Point-based sub-sampling: the sampling unit is sub-sampled by a set of points that are individually
labeled by the interpreter before automated aggregation with decision rules (see for instance
Bastin et al. [41], Bey et al. [44]);
Partition-based sub-sampling: the sampling unit is partitioned into sub-parts that are labeled
individually by the interpreter before automated aggregation with decision rules (see for instance
Bayas et al. [45], Waldner et al. [46]).

Direct assignment is the fastest method because a single class is assigned for each sampling unit
by looking at it as a whole. However, it is strongly dependent on the operators’ skills and on their level
of concentration, it is poorly inter-operable because there is no information about classifiers proportion
that would help to apply other labeling rules, and the confidence of the labeling must be provided
by the operator. In this study, we focused on the two designs that involve sub-samples, namely
point-based and partition-based designs (Figure 1) because our primary assumption was that a large
part of the labeling errors could be quantified from the selected response design, i.e., independently
from the operators.

SPW SPW

0 10 20 305 Meters

Point-based Partition-based

ImperviousGrassBare soil
Figure 1. Two types of response designs compared in this study: point-based and partition-based
designs. Grassland are in green, impervious surfaces are in red and ploughed bare soil are in yellow.
Both methods would agree on most of the grassland, as well as the direct assignment of the majority
class without looking at sub-samples, but it is worth noting that the proportions of impervious soil and
grassland are not the same.

2.2.1. Point-Based Response Designs

In point-based response designs, photo-interpreters label a set of points within every sampling
unit. The final class is then assigned based on the proportions of the number of points for each
observed category. By definition, points are dimensionless but, in practice, the photo-interpretation is
limited by the spatial resolution of the reference image. Nevertheless, even if the vicinity of points
provides contextual information as a part of the photo-interpretation process, the label is defined at
the precise location of the point.

Randomly selecting a set of points inside each sampling unit inherits the same properties as for
the sampling designs of a map as a whole. Systematic sampling is therefore often the most efficient [47].
However, if strong periodicity in the spatial pattern of the landscape is suspected, systematic sampling
should be avoided unless sufficient information is available to avoid the phasing between spatial
pattern and sampling interval [48].
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2.2.2. Partition-Based Response Designs

Contrary to their point-based counterparts, partition-based response designs provide exhaustive
coverage of the sampling unit (Figure 1). The counterpart is that it implies a discretization of the
landscape, which could result in inaccurate labels. In practice, photo-interpreters are tasked with
estimating the proportion of each class within each sub-sample, based on their entire content. The final
label is automatically attributed from the estimated class proportions following a set of rules that are
specific to the classification system. These rules are applied in a two-step process: the first step is
performed by a photo-interpreter who assigns a label to each sub-part, and the second step consists of
aggregating the labels of the sub-parts to attribute a final label, which can be automated. While square
sub-parts are the most widespread type of partition [45], irregular polygons can also be used [46].
In the latter case, accurate delineation of the polygons plays a major role in the reliability of the
response design.

In the case of binary classification, there are two approaches to define the sampling unit labels.
The first approach, hereafter referred to as Threshold-Then-Majority (TTM), applies the labeling
rule for each sub-sample level, then determines the majority label among sub-samples of the whole
sampling unit. The second protocol, hereafter referred to as Majority-Then-Threshold (MTT), starts by
determining the majority class inside the sub-samples, then applies the labeling rule with threshold at
the level of the sampling unit. These methods are identical when the binary threshold is equal to 50%
but differ otherwise. These two frameworks could be applied to LCCS-like multiclass classification
systems as well. In the case of majority classification system, they both simplify into a two-stages
application of the majority rule. TTM is expected to work best in fragmented landscapes and MTT for
large homogeneous patches.

3. Data

3.1. Generating Sampling Units and Sub-Samples from a Reference Land-Cover Map

The main contribution of this study is a theoretical framework to maximize the accuracy of
photo-interpreted reference sampling units while minimizing the photo-interpretation effort. Testing
the performance of response designs for different types of classification systems and optimizing the
sampling effort requires a wall-to-wall ground truth data set. Because wall-to-wall ground truth
data are unavailable in practice, we used a fine resolution map from which we derived synthetic
maps at different spatial resolution, thereby retaining full control over the labeling process and on the
sampling protocols.

Without loss of generality, we considered a 2-m land-cover map as ground truth (Figure 2).
The original map covered the Walloon Region (approximately 16,500 km2), Belgium, and includes
ten land-cover classes with an estimated overall accuracy of 93% [49]. The two marginal grassland
classes were merged with the agricultural grassland because of their scarcity. Using a 2-m resolution
map provides unambiguous labeling of classifiers because the size of the pixels is inferior to the size
of standard objects in this landscape. In case of mixed pixels located at the boundary of two spatial
objects, the label was chosen based on the pixel’s centroid.

In this experiment, pixels in the map at 360-m resolution corresponded to sampling units and their
labels were considered to be the target values for the different response designs. The high-resolution
data set was aggregated at the resolution of 360 m using the different labeling rules based on the pixel
counts (with several 32,400 2-m pixels per 360-m cell; Figure 3). While 360 m does not correspond
to the spatial resolution of any current satellites, it is similar to medium-resolution satellite such as
PROBA-V, MODIS, Sentinel-3 or VIIRS and it has the advantage of being factorizable by a diversity of
integers (2, 3, 4, 5, 6, 9, 12, 15, 20, . . . ), thereby allowing partitions of a wide variety of size of squares
used as sub-samples.
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Figure 2. Maps of the study area based on majority classification system (a) and the different binary
classification systems for the forest classes: 10% for top right (b); 50 % for bottom left (c) and 75% for
bottom right (d).
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Figure 3. Procedure to generate sampling units and sub-samples from the 2-m reference map. The
colors correspond to the multiclass legend of Figure 2.

3.2. Types of Classification Systems

Two types of aggregative classification systems were compared in this study: a multiclass majority
classification system and a binary classification system for three thresholds (Figure 2). For the majority
classification system, the label of the most frequent class within the mapping unit was selected. There
are eight classes in the 2-m map so there are also eight classes at the aggregated level. For the binary
classification system, the map represents the presence or absence of a specific class. When pixels are
larger or similar in size to the spatial objects or the spatial regions of interest, an arbitrary threshold on
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the proportion of the class becomes necessary to handle mixed pixels. In this study, we considered
maps of forests (broad-leaved and needle-leaved forests all together). Three different thresholds of
crown cover have been chosen, namely 10% (FAO’s forest definition) [50]; 50% (the most commonly
used threshold); and 75% (threshold used for closed canopy forests).

4. Methods

We sought to answer the following questions:

1. What is the accuracy of point-based and partition-based response designs for different number of
sub-samples in a realistic case study?

2. How can the accuracy of response designs be predicted based on landscape structure indices?
3. How to optimize the number of sub-samples per sampling unit?

We addressed these questions in three successive steps for the four classification systems described
in Section 3.2. First, the accuracy of the various response designs was compared with simulated
sampling across the study site (Section 4.1). Second, we generalized the relationship between the error
rate and the underlying landscape of sampling units (Section 4.2). We finally proposed a method that
iteratively adds sub-samples to label until the estimated class proportions driving the labeling process
reach the desired confidence level (Section 4.3).

This optimization method is formulated for point-based designs only, as theoretical confidence
intervals are not available for partition-based designs and labels cannot be reused when the number
of partitions is increased. In fact, optimizing the partition-based designs depends on the ability of
the operator to decide the appropriate number of sub-samples. As we assumed perfect operators
throughout this paper, the question of optimizing partition-based designs falls beyond the scope of
this paper. Nonetheless, the impact of photo-interpretation errors on the response design is discussed
in Section 6.

4.1. Accuracy of Point-Based and Partition-Based Response Designs

Our approach to empirically quantify the accuracy of response designs was based on a Monte
Carlo framework. For every sampling unit, we repeatedly estimated the class proportions of ground
truth for a range of sub-sampling efforts. The labels of the randomly simulated response designs were
then assigned using the decision rules of the four classification systems. The same decision rules were
applied on the true proportions (i.e., computed from the 2-m reference map) to derive the true label.
For each iteration, the error rate was computed by dividing the number of disagreements between the
true and the simulated labels of the sampling units, with

Error rate =
Number of erroneous labels
Number of sampling units

(2)

For the point-based response designs, the sub-sample selection was repeated 36 times. Sub-samples
were selected by simple probabilistic sampling of the 2-m pixels located inside each sampling unit.

For partition-based response designs, the 36 realizations were generated by shifting the origin of
the grid by six multiples of 11 pixels (22, 33, 44, 55, 66, 77) in both the x and y directions (sampling units
that are not completely inside the study area were discarded). Spatial resampling of the 2-m reference
map was performed at intermediate spatial resolutions of 180, 120, 90, 72, 60, 36 and 30 m, which
correspond to a partitioning in 4, 9, 16, 25, 36, 100 and 144 squares, respectively. These resolutions
were constrained by the availability of integer divisors of 180. For the sake of comparison, the same
numbers of sub-samples were used for the point-based approach. In the TTM case, the proportion of
the forest class was computed within every intermediate resolution pixel, which were then labeled as
forest or non-forest according to the threshold value. Those pixels were then resampled at the spatial
resolution of 360 m with a majority rule to select the final label. In the MTT case, the forest label was
assigned to each sub-sample where forest was the majority class. The proportion of forest pixels was
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then computed for each 360 m pixel and the final forest/non-forest label was assigned based on the
selected threshold. For the majority classification system, the majority class was first identified for
each sub-sample, then the majority of the sub-sample labels was assigned to the sampling unit.

4.2. Impact of Landscape Fragmentation

We sought to evidence the link between landscape structure and response design to predict
the response design accuracy in other landscapes where prior structure knowledge is available. We
therefore selected two landscape metrics, one per type of classification system, which can be easily
computed for any areal sampling unit and any scale.

For binary classification systems, we characterized landscapes by reporting the proportion of our
main class within each sampling unit. Because there is only one degree of freedom with two classes,
the choice of the main class does not influence the reasoning, hence the forest class was arbitrarily
selected, with:

pm =
Sforest
Stotal

(3)

where Sforest is the area of forest (more precisely in this case, tree crown cover) inside the sampling
unit, and Stotal is the area of the sampling unit.

For multiclass classification systems, we opted for the Equivalent Reference Probability (ε) [51].
Rooted in information theory, the equivalent reference probability is particularly interesting because it
accounts for the full set of probabilities and remains consistent with the maximum probability, unlike
entropy. Given p = (p1, ..., pk) the vector of the class proportions in the landscape, k the number of
classes and i∗ the index of the dominant class, the equivalent reference probability is

ε =
exp (E[D(i||i∗)])

exp (E[D(i||i∗)]) + k− 1
(4)

where E[D(i||i∗)] is the expected difference of information as described in equation :

E[D(i||i∗)] = ln pi∗ −
1

1− pi∗
∑
i\i∗

pi ln pi (5)

with pi∗ , the proportion of the majority class. Class purity and ε were computed for each sampling
unit based on the true proportions.

Average error rates of the response designs were estimated for the full range of possible pm and
ε values with a step of 0.05. For visualization purposes, the error rate was smoothed by fitting local
regressions LOESS [52].

4.3. Local Optimization of the Number of Sub-Samples

When collecting validation data, the structure of the landscapes covered by the sample units is
generally unknown, so that the optimal number of sub-sampling units cannot be estimated a priori from
relationships between accuracy and landscape fragmentation. However, thanks to the interactivity
of the Web 2.0, online validation platforms can be tailored to compute and update class proportion
estimates as soon as sub-samples are labeled by photo-interpreters. This part of the study aimed
to optimize the number of sub-samples needed for reaching a certain level of accuracy, resulting
in an optimal response design that minimizes costs and/or time constraints. We propose to define
an optimal number of sub-samples for each sampling unit based on the confidence intervals of the
estimated sub-sample class proportions. Here, the confidence levels were set to 99.9% to illustrate
the stringent requirements of building authoritative reference data sets, and to 90% to illustrate the
required effort for collecting reference data under constrained conditions.

In practice, the local optimization process consisted of randomly selecting an initial set of nine
sub-samples and assessing the corresponding confidence level. Sub-samples were then added one at
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a time until the confidence on the estimated proportions reached the desired confidence. For binary
classification systems, the confidence interval (for a given confidence level) around the estimated
proportion must not include the threshold value that divides the study area in the two binary
classes. For the multiclass majority classification system, the confidence interval around the estimated
proportions of the majority class must not include the estimated proportion of the second most
frequent class.

For binary classification systems, a given sampling unit is correctly labeled if the estimated
proportion is on the same side of the threshold value as the true proportion. In practice, the proportion
of the sampled area is unknown. However, the probability of assigning the correct label can be
estimated based on the estimated value of the binomial distribution.

The confidence interval around estimated class proportions or accuracy indices is usually
estimated using a Normal approximation

CILB = m/n− zα

√
(m/n ∗ (1−m/n))/n (6)

CIUB = m/n + zα

√
(m/n ∗ (1−m/n))/n (7)

where CILB is the confidence interval lower bound, CIUB is the confidence interval upper bound, n is
the number of sub-sampling units, m is the number of points belonging to the class label selected by
the decision rule, z is a percentile from the standard normal distribution and α is the percent chance of
making a Type I error (so that 1− α is the confidence level).

However, the two main hypotheses of the Normal approximation are not respected in our
incremental case: the number of points is small and proportions close or equal to 1 (pure pixels) are
likely to be observed. The Clopper-Pearson exact confidence interval (CI) was therefore used instead
of the Normal approximation [53], with

CILB = 1− BetaInv(
α

2
, n−m, m + 1) (8)

CIUB = 1− BetaInv(1− α

2
, n−m + 1, m) (9)

where CILB is the confidence interval lower bound, CIUB is the confidence interval upper bound, n is
the number of sub-sampling units, m is the number of points belonging to the majority class, α is the
percent chance of making a Type I error, and 1− α is the confidence level. Those parameters are taken
by the BetaInv function, which computes the inverse of the beta cumulative distribution function.

Exact confidence intervals are not available for multinomial cases. Several approximations
have been proposed [54–56]. Simultaneous confidence interval estimates from Goodman [56] were
selected because preliminary tests revealed that in a binomial case, it provides a closer match to
the Clopper-Pearson interval than other alternatives. For a multinomial distribution p, Goodman’s
simultaneous confidence interval for the ith class is given by

CIi =
b + 2pi ±

√
b[b + 4pi(n− pi)/n])
2(n + b)

; i = 1, . . . , k (10)

where pi is the proportion of class i, n is the total number of samples and b = χ2
1−α/k(1), the 1− α/k

quantile of the chi-square distribution with one degree of freedom.
In some cases, e.g., where the observed class proportion is equal to the arbitrary threshold in a

binary classification or when several classes have the same proportion in the case of majority rule,
the number of points to meet the required confidence could grow infinitely. Therefore, the maximum
number of points was arbitrarily set to 144. This process was repeated 25 times to compare the
theoretical confidence levels with the observed accuracy and to estimate the average number of
sub-samples needed for each sampled area.
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5. Results

5.1. Impact of Response Design and Sampling Effort on Accuracy of the Labels

Overall, our results highlight the relatively large uncertainty linked with the response designs
for all types of classification systems in the study area. In addition, the average error rate is not only
linked with the sampling effort, but also depends on the combination of the classification systems and
the type of response design (Table 1).

Table 1. Average error rate in reference labels across the study area for point-based and partition-
based designs. The binary maps on which the test was performed define the forest class based on the
percentage of tree cover. The other type of map (called majority) includes 9 land-cover (LC) classes
assigned based on the class that covers the largest area inside the sampling unit. The two types of
partition-based designs are identical when the classification system is a majority rule.

Classification System Average Error Rate (%)

Number of Sub-Samples Per Sampling Unit

4 9 16 25 36 81 100 144

Point-based design

Binary (forest > 10%) 13.7 10.6 7.8 6.5 5.5 3.8 3.5 2.9
Binary (forest > 50%) 13.0 8.5 6.3 5.1 4.2 2.8 2.5 2.1
Binary (forest > 75%) 17.1 11.5 9.3 7.6 6.5 4.4 4.0 3.4
Majority (9 LC classes) 27.2 18.7 14.1 11.5 9.5 6.4 5.7 4.8

Partition-based design: threshold-then-majority

Binary (forest > 10%) 8.6 9.7 12.0 13.9 15.5 19.0 19.9 21.4
Binary (forest > 50%) 4.4 2.2 2.1 1.6 1.3 1.3 1.3 1.2
Binary (forest > 75%) 4.5 4.2 5.0 5.5 6.0 7.0 7.2 7.7

Partition-based design: majority-then-threshold

Binary (forest > 10%) 20.3 12.5 12.9 12.1 10.9 8.3 8.0 7.0
Binary (forest > 50%) 4.8 2.2 2.3 1.6 1.7 1.3 1.3 1.2
Binary (forest > 75%) 10.0 6.5 6.3 5.2 5.1 4.3 4.2 4.0

Partition-based designs

Majority (9 LC classes) 10.6 6.8 5.8 4.9 4.4 3.5 3.4 3.1

For any sub-sample size, the most reliable labels are obtained for the binary classification
system with a threshold at 50% for both partition-based and point-based response designs. For the
other classification systems, the ranking of the ease of validation differs across response designs.
For instance, the second most consistent labeling is obtained for the majority classification system
with a partition-based design, while the binary classification system with 10% threshold ranks second
for point-based validation. For the same classification system, the partition-based response design
performs poorly, with an error rate of 12% for 25 sub-samples.

The average error rates of point-based designs markedly decrease between 4 and 100 sub-samples
(Table 1). This trend is observed across the four classification systems. With only four points, error
rates are >15%. The error rates then drop to <2.5% for sub-sample sizes larger than 100 in the case of
threshold-based classification systems. The decreasing error rate with respect to the sampling effort is
also observed for the majority classification system, but the improvement is smaller (6% error with 100
sub-samples). In comparison, the other binary classification systems provide more correct labels (4%
error with 100 sub-samples for the 75% binary classification system), with the most accurate labeling
obtained from the binary 50% classification system (3.5% error).

The two types of partition-based response designs exhibit an opposite behavior for the binary
thresholds of 10% and 75%. In those two cases, the error rates of a perfect operator increase in TTM



Remote Sens. 2020, 12, 257 12 of 22

(but decrease in MTT) for increasing numbers of sub-samples. The binary classification system at
50% yielded similar results for MTT and TTM, with slightly better results from the TTM approach.
It reaches 98.4% accuracy with 25 sub-samples. The majority classification system fails to generate
labels with less than 3% error when using less than 144 sub-samples, and achieves less than 5% errors
starting from 25 sub-samples (Table 1).

Our results show that the most efficient response design depends on the classification system.
Given the spatial resolution of the sampling units and the relatively fragmented landscape of the
study area, the partition-based response design outperformed point-based response design for the
majority classification system. With the latter, 25 sub-samples were necessary to achieve 95% of
accuracy. The validation effort required for binary classification systems depends on the threshold
value. The least effort was required with a threshold of 50% and a partition-based model (95.2% with
only 4 sub-samples). On the contrary, point-based response design outperformed partition-based
response designs for the 10% threshold. This classification system was the most difficult to validate in
the study area—36 sub-samples were needed to reach at least 95% accuracy.

5.2. Relationship Between Sampling Unit Heterogeneity and Accuracy

Heterogeneity indices allow us to generalize the overall error rates estimated on the study area.
The selected heterogeneity indices, which are independent of the landscape and spatial resolution,
highlight the peaks of the labeling uncertainty and the sampling units where the label can be trusted.
The error rates are strongly related to the heterogeneity indices of the sampling units for both binary
(pm, see Figure 4) and majority classification system (ε, see Figure 5).

In point-based designs, the error rate is maximum for sampling units with forest proportions close
to the class threshold. The error distribution is slightly asymmetric, especially with small sampling
efforts, with the longest tail towards the proportion of 50%. Consistently with the expression of the
variance for a binomial distribution, the largest variance of the distribution of errors is observed with
the 50% threshold and decreased towards the extremities of the range. To achieve an error rate of <1%
on average with 16 points, the actual proportion needs to differ from the threshold value by circa 20%.

Thus, the error distribution of partition-based response designs also peaks near threshold values.
Our results clearly indicate that the partition-based method are strongly biased when the threshold is
not 50%: with thresholds at 10% and 75%, the errors rates increase from 50% towards the value of the
threshold, where they are systematically wrong. This is due to the systematic omission of the class that
contains the 50% interval when approaching the extremities of the range, which is the only type of
error when using a partition-based response design with these threshold values. Indeed, the error rate
drops to zero in terms of detection of the class that is located at one end of the interval.

For the majority classification system, the largest error rates are observed for sampling units with
similar proportions (low ε values). Labeling is 99% correct when the reference equivalent probability
is ≥0.5. Interestingly, point-based designs are more accurate than partition-based designs for complex
landscapes. On the other hand, designs based on a limited number of partitions outperformed their
point-based counterparts for simple landscapes (ε > 0.25). Overall, partition-based designs appear
insensitive to an increase above 9 in the number of sub-samples, while larger numbers of sub-samples
markedly improve the efficiency of point-based design within the range of values tested in this study.
This corroborates the results of overall error rates in the case study (Table 1).
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Figure 4. Error rates in reference labels as a function of landscape fragmentation for binary point-based
(a) and partition-based (b) designs. The percentages in the titles of the graphs indicate the threshold
that is used to determine the membership to one of the two binary classes.

Figure 5. Error rates in reference labels as a function of landscape fragmentation for majority
point-based (a) and partition-based (b) designs. Low equivalent reference probabilities are caused by
large fragmentation.
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5.3. Optimization of the Number of Sub-samples

We optimized the number of sub-samples so that the resulting label reached either (1) a 90% or
99.9% confidence level for each sampling unit or (2) the maximum number of sub-samples (144) was
attained. The difference between the error rates of the 99.9% optimized and the error rate with a fixed
(144) number of sub-samples was <1%.

The regions of high label uncertainty highlighted in Figure 4 and Table 1 are consistent with the
regions that require more validation efforts (Figure 6a,b). More samples are needed when ε is low or
pm is close to the threshold value. The mean number of sub-samples then decreases quickly, especially
with the binary classification systems, so that less than 20 points are needed for most of the range of ε

or pm when the confidence level is set to 99.9%. Furthermore, the 90% confidence level is achieved with
low effort for the binary classification systems (Figure 6a). The sampling effort around the minimum ε

value for the majority classification system remains high in comparison (Figure 6b), which is consistent
with the larger error rates observed for point-based validation.

The main difference between the shapes of the distribution of the error rates (Figure 4) compared
with the mean optimized number of points (Figure 6a) occurs on the extreme values of pm for the
binary classification system. Indeed, the error rate for pm value of 0% with 10% threshold (or 100% with
threshold 75%) is close to zero, but the number of sub-samples needed to achieve 99.9% confidence is
relatively high (75 for the 10% threshold and 40 for the 75% threshold).

In the study area, the optimization method with a very high confidence (99.9%) could more than
halve the labeling effort compared to a systematic sub-sampling of 144 sub-samples per sampling
unit (Figure 6c). It required an average of 57, 27 and 26 sub-samples for binary thresholds of 10, 50
and 75%, respectively. The majority classification system was the most difficult to validate, with an
average of 115 points needed and the maximum (144) number of sub-samples needed in 56.1% of the
sampling units.

Figure 6. Effect of optimizing the number of sub-samples on the labeling effort and the error rate using
different confidence levels for threshold-based (a) and majority-based classification system (b). The
red line indicates the amount of sub-samples collected without optimisation (144 sub-samples). The
proposed method markedly reduces the number of sub-samples in all cases (c).
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The 90% confidence interval could be achieved for the binary classification systems with on
average 21, 10 and 11 sub-samples for thresholds of 10, 50 and 75% respectively. For the majority
classification system, it required an average of 99 points. Those results are due to the fact that the
maximum number of sub-samples (that is 144 in this study) was reached 38% of the cases.

Collecting reference data with a confidence level of 90% can be achieved at a reasonable cost
(Figure 7). The number of sub-samples that is needed to determine the binary class is indeed relatively
low (between 9 and 40) over the entire study area, despite the fragmentation of the landscape. For the
majority classification system, a spatial pattern of sampling units that need more than 100 sub-samples
becomes visible along the main rivers (Meuse and Sambre) and the main cities, where the diversity of
land-cover types is the highest.

Figure 7. Optimized number of sub-samples for binary classification systems at 10% (a); 50% (b); 75%
(c); and for a majority classification system (d).
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Reaching a confidence level of 99.9% on the reference data set is much more challenging
(Figure 7). For the majority classification system, the required number of sub-samples is even larger
in heterogeneous areas (such as the large urban areas) while only a few patches of homogeneous
land-cover types can be validated with as little less than 20 sub-samples. Mapping the required number
of sub-samples also highlights the particularities of the landscape in the study area. For instance, the
binary classification system is more demanding in open landscapes (for the 10% threshold) or closed
forests (for the 75% threshold), when the actual proportions are close to the threshold values. On the
other hand, the benefits of the optimization of the number of sub-samples is substantial on large
patches where the land-cover proportions are distinct from the threshold value of the classification
system. On the study area, the threshold of 75% shows the biggest contrasts between the areas that
need a large effort and the areas that can be easily validated. On the other hand, the 50% threshold
is most of the time the less demanding in terms of validation effort and mainly requires extra efforts
along the forest edges.

6. Discussion

We assessed the accuracy of two main types of quantitative response designs—a set of points and
a grid of squares—based on a protocol that provided full control over the validation process. While it
is well known that mixed pixels are more difficult to label than pure ones, we quantified how labeling
uncertainty increased for class proportions close to the class boundaries. Our results highlight the
underestimated difficulty of developing accurate reference data sets for any combination of response
design and classification system. Indeed, the required number of sub-samples to reach 98% confidence
level was often too high (more than 100 sub-samples per sampling unit) to be practically implemented.
When factoring in the cost of response designs with large number of sub-samples, collecting error-free
reference data seems barely feasible. Therefore, matching the data collection effort to the available
resources appears critical. In other words, there is a necessary sacrifice of the confidence of reference
data to achieve rigorous accuracy assessment at reasonable costs.

The efficiency of point-based and partition-based response designs differed depending on the
classification system. Partition-based response designs ought to be preferred for majority classification
systems and for binary classification systems with threshold values close to 50%. Point-based response
designs become more efficient for thresholds that are close to 0% or 100%. The ability to directly
determine the class proportions inside a sampling could also help to arbitrate between the two
types of partition-based response designs, MTT and TTM, because TTM is much more dependent of
the operator skills than the other response designs. Response designs that are solely based on the
estimations of the proportions by an operator would however necessitate a specific quality control to
evaluate their accuracy.

The main advantage of point-based validation is the possibility to estimate the reliability of
the label from the points themselves, and hence to objectively optimize the sub-sampling process
without prior knowledge about the sampling units. We demonstrated that relying on a fixed number
of sub-samples is inefficient because the same amount of resources is spent to label both homogeneous
and complex sampling units. An efficient approach would reduce the effort for those easy-to-interpret
cases and allocate it to label complex cases to increase their confidence. To this aim, we propose to
iteratively interpret sub-samples until the estimated class proportions reached the desired confidence
level. Combined with advanced validation applications, such an approach computes the required
number of sub-samples on the fly, thereby reducing the labeling cost as soon as there is no doubt
(for a given confidence level) about the label of the sampling units. We showed that, in our study
area, the labeling effort could be reduced by 50% to 75% without affecting the accuracy of the labels.
As a result, the labeling effort was strongly reduced across the study site and concentrated in the
fragmented and ambiguous areas. In some cases, i.e., close to the threshold value, the added value of
labeling additional points plateaus because sampling units with proportions close to the classification
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system definition are always uncertain. Limiting the maximum number of sub-samples to be labelled
is thus recommended.

An iterative optimization approach for partition-based designs is impractical because labels could
be contradictory when changing scale. Therefore, optimizing partition-based designs would rather
depend on subjective operator decision about the proportions she/he estimates inside each sampling
unit. Nonetheless, well trained operators could be granted the ability to select several partitions
based on their impression of the complexity of the landscape. This method is likely to work well for
threshold values near 50% and could avoid extra work in simple cases, but remains sensitive to the
Modifiable Area Unit Problem (MAUP) –a statistical biasing effect that occurs when arbitrary units
are used to collect data such as class proportions. As described in Jelinski and Wu [57], the MAUP
applies to two types of problems which are relevant in partition-based designs. The first aspect of
the MAUP is the “scale problem”, where the same set of areal data is aggregated into several sets of
larger areal units, with each combination leading to different data values. The second is the “zoning
problem”, where a given set of areal units is recombined into zones that are of the same size but
located differently, again resulting in variation in data values. MAUP could be mitigated by generating
partitions that correspond to actual image objects derived via segmentation [46]. Image segmentation
has been used in response designs for coarse resolution image validation [58] and is mainly justified
in landscapes that can be divided in a small number of homogeneous patches, not in areas that are
very fragmented at a larger scale than the sampling unit. Because of the purity of image-objects
derived by image segmentation is usually larger than square cells of the same area [49], this reduces the
uncertainty of the labeling [59]. However, delineation errors frequently introduce variance and bias on
the estimated surfaces of the patches extracted by automated image segmentation [60]. The accuracy
of the response design should therefore be assessed with external data or again rely on an estimation
provided by the operator. However, one may lose control over the number of sub-samples generated
by the segmentation algorithm, leading to unpractical labeling effort.

In this study, the reported error rates resulted only from imprecise estimation of the class
proportions. There are, however, additional errors that should still be considered for a complete
understanding of the response design reliability: (1) the simplification of the pixel model, which is
a simplified representation of the area observed by remote sensing [61–65]; (2) geolocation errors,
which further increase the variance of the estimated proportions because the sub-samples may be
matched with locations that are outside the sampling unit; and (3) photo-interpretation errors. Indeed,
while we assumed that operators made no errors throughout the paper, their performance is in reality
imperfect [23,46,66,67]. For instance, Powell et al. [23] concluded that five interpreters were required to
agree upon a specific class. Human factors are responsible for no less than 20% of the inter-individual
differences in operator performance [10]. To be more realistic, errors rates should account for errors of
interpretation of the landscape and, in partition-based designs, errors in estimating the area of each
class. As such, the error rates reported in this study are thus lower bounds.

Sampling units of 360 m × 360 m were used because these are divisible by a large number of
integers and, therefore, allowed us to easily simulate a large set of regular partition-based designs.
While this practical constraint has no direct impact on the generalization of our results, changing the
size of sampling units would, however, indirectly impact the response design accuracy. Indeed, the
average purity of the sampling units increases when the ratio between the ground sampling distance
and the width of the object increases [62]. This general rule was also observed in our study area,
which showed very strong relationship (R2 > 0.99) between the pixel purity and the spatial resolution
(Figure 8). If the classification system remains identical, the accuracy of the response design will likely
increase for sampling units of higher spatial resolution, and the estimation errors could be neglected
when the sampling units become smaller than the spatial objects of interest.
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Figure 8. Proportions of the purity index values for different spatial resolutions. The purple line
indicates pixels with a purity above 90% and the green line shows pixels with a purity of less than 50%

Another solution to minimize the estimation error is to carefully select the classification system
with threshold values as far as possible from the modes of the distributions of land-cover proportions.
This explained why our results with the binary classification system at 50% threshold was more reliable
than the other binary classification systems despite its larger variance on the estimated proportions
around the threshold value. In practice, this is not always feasible because it might reduce the fitness
for purpose of the map. Besides, the uncertainty of the classification system could become misleading
when the study area becomes too large. The preliminary step of defining the classification system is
therefore of paramount importance.

In consolidating good practices to collect gold-standard validation data, we demonstrated that the
number of sub-samples required to meet stringent confidence levels is often too large to be realistically
implemented. Therefore, this work suggests three main directions for future research. First, direct
class assessment by operators should be compared with sub-sampling approaches to evaluate the
overall level of confidence with real photo-interpretation in both cases. Second, unbiased confusion
matrices could be built to account for uncertain reference data. While the errors affecting reference
data cannot be predicted, we have however shown that the probability of estimation error could be
estimated based on the sub-samples. This information could be used to quantify a large part of the
uncertainty of a reference data set at no extra cost. Third, the recent advances in image recognition
and computer vision suggest that computer-assisted labeling of sub-samples could help to increase
the number of sub-samples at lower cost (see, for instance, [68]). However, algorithms would need to
perform very accurately not to compromise the quality standards of reference data.

7. Conclusions

Photo-interpreted reference data sets are generally assumed error-free, but they are in practice
affected by erroneous labeling due to inaccurate image interpretation, drops of vigilance and estimation
errors. We argue that in contrast to interpretation errors and drops of vigilance that could be prevented
(using for instance repeated labeling), estimation errors are intrinsic to the response design and cannot
be avoided once the response design is defined. With the goal of improving good practices in reference
data collection, we empirically assessed the relationship between the accuracy of reference data and the
type of response design for binary and majority classification systems. Our results highlight the need
for dense sub-sampling to collect error-free reference data. We further demonstrated that estimation
errors are strongly linked to landscape composition, labeling errors being more prevalent when the
class proportions are close to the class definition threshold (binary classification systems) or in areas
with complex class compositions (majority classification systems). To leverage the relationship between
landscape composition and labeling accuracy, we propose to iteratively interpret sub-samples until
the class proportions are estimated with the desired confidence level. By quantifying the confidence
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of photo-interpreted labels, this optimization method provides an efficient trade-off between the
accuracy of the reference data and the labeling cost. Therefore, its uptake by the remote sensing
community will likely improve the reliability of accuracy estimates and the assessment of the usability
of thematic maps.
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